Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cheeses Samples
2.2. Analytical Methods
2.2.1. Chemical Composition
2.2.2. Lipid Extraction
2.2.3. Preparation of Fatty Acid Methyl Esters
2.2.4. Gas Chromatography (GC) Analysis
2.2.5. The Lipid Quality Indices
2.2.6. Assessment of the Coverage of Daily Requirements for Selected Nutrients According to National Nutrition Standards
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Fatty Acids Profile and Lipid Quality Indices in Cheese Fat
3.3. The Content of CLA and Trans C18:1 and Trans C18:2 Fatty Acids in Cheese
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piekut, M. Production and consumption of cheese in Poland. Dairy Rev. 2012, 7, 36–38. [Google Scholar]
- Szajner, P. Polish dairy products supply—Demand. Food Ind. 2013, 4, 8–12. [Google Scholar]
- Polish Federation of Cattle Breeders and Milk Producers. Milk Market Report I/2021. 2021. Available online: https://pfhb.pl/fileadmin/aktualnosci/2021/rynek_mleka/Raport_Rynek_mleka_I2021_r.pdf (accessed on 29 June 2021).
- Walther, B.; Schmid, A.; Sieber, R.; Wehrmüller, K. Cheese in nutrition and health. Dairy Sci. Technol. 2008, 88, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Månsson, H.L. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharm. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Bernard, L.; Bonnet, M.; Delavaud, C.; Delosiére, M.; Ferlay, A.; Fougére, H.; Graulet, B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol. 2018, 102, 1–27. [Google Scholar] [CrossRef]
- Parodi, P.W. Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int. Dairy J. 2009, 19, 345–361. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Adamska, A.; Rutkowska, J. Odd- and branched-chain fatty acids in milk fat—Characteristic and health properties. Postepy Hig. Med. Dosw. 2014, 68, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-Chain fatty acids—An underexplored class of dairy-derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef] [PubMed]
- Arnould, V.M.-R.; Soyeurt, H. Genetic variability of milk fatty acids. J. Appl. Genet. 2009, 50, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Formaggioni, P.; Franceschi, P.; Frangia, F.D.; Righi, F.; Malacarne, M. Cheese as functionalfood: The example of parmigiano reggiano and grana padano. Food Technol. Biotechnol. 2017, 55, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-N.; Oh, J.-J.; Wang, T.; Lee, J.-S.; Kim, S.-H.; Kim, Y.-H.; Lee, H.-G. Trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients 2014, 6, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Akalln, A.S.; Tokusoglu, Ö. A potential Anticarcinogenic Agent: Conjugated linoleic acid (CLA). Pak. J. Nutr. 2003, 2, 109–110. [Google Scholar] [CrossRef] [Green Version]
- Parodi, P.W. Anti-cancer agents in milkfat. Aust. J. Dairy Technol. 2003, 58, 114–118. [Google Scholar]
- Aydin, R. Conjugated linoleic acid: Structure, sources and biological properties. Turk. J. Vet. Anim. Sci. 2005, 29, 189–195. [Google Scholar]
- Park, Y. Conjugated linoleic acid (CLA): Good or bad trans fat? J. Food Compos. Anal. 2009, 22, S4–S12. [Google Scholar] [CrossRef]
- Kee, J.-I.; Ganesan, P.; Kwak, H.-S. Bioactive conjugated linoleic acid (CLA) in milk. Korean J. Food Sci. Anim. Resour. 2010, 30, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.M. Dietary fatty acids and human health. Ann. Zootech. 2000, 49, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Juárez, M.; Angel de la Fuente, M. Milk fat acids and potential health benefits: An update vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Czajkowska, A.; Szponar, B. Short chain fatty acids (SCFA), the products of gut bacteria metabolism and their role in the host. Postęp. Hig. Med. Doswiadczalnej. 2018, 72, 131–142. [Google Scholar] [CrossRef]
- Soyeurt, H.; Dardenne, P.; Gillon, A.; Croquet, C.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 2006, 89, 4858–4865. [Google Scholar] [CrossRef]
- Capuano, E.; Gravink, R.; Boerrigter-Eenling, R.; van Ruth, S.M. Fatty acid and triglycerides profiling of retail organic, conventional and pasture milk: Implications for health and authenticity. Int. Dairy J. 2015, 42, 58–63. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootechnol. 2000, 49, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Hanuš, O.; Krížová, L.; Samková, E.; Špička, J.; Kučera, J.; Klimešová, M.; Roubal, P.; Jedelská, R. The effect of cattle bread, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016, 59, 373–380. [Google Scholar] [CrossRef]
- Kelsey, J.A.; Corl, B.A.; Collier, R.J.; Bauman, D.E. The effect of breed, parity and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003, 86, 2588–2597. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.A.; Innocent, G.; Grove-White, D.; Cripps, P.; Mclean, W.G.; Howard, C.V.; Mihm, M. Comparing the fatty acid composition of organic and conventional milk. J. Dairy Sc. 2006, 89, 1938–1950. [Google Scholar] [CrossRef]
- Zunong, M.; Hanada, M.; Aibibula, Y.; Okamato, M.; Tanaka, K. Variations in conjugated linoleic acid concentrations in cow‘s milk, depending on feeding systems in different seasons. Asian Aust. J. Anim. Sci. 2008, 21, 1466–1472. [Google Scholar] [CrossRef]
- Kuczyńska, B.; Nałęcz-Tarwacka, T.; Puppel, K.; Gołębiewski, M.; Grodzki, H.; Slósarz, J. The content of bioactive components in milk depending on cow feeding model in certified ecological farms. J. Res. Appl. Agric. Eng. 2011, 56, 7–13. [Google Scholar]
- Lipiński, K.; Stasiewicz, M.; Rafałowski, R.; Kaliniewicz, J.; Purwin, C. Effect of milk production season on profile of fatty acids in milk fat. Żywność Nauka Technol. Jakość 2012, 1, 72–80. [Google Scholar] [CrossRef]
- Frelich, J.; Šlachta, M.; Hanuš, O.; Špička, J.; Samková, E.; Węglarz, A.; Zapletal, P. Seasonal variation in fatty acid composition of cow milk in relation to the feeding system. Anim. Sci. Pap. Rep. 2012, 30, 219–229. [Google Scholar]
- Radkowska, I. Effect of housing system and diet on the fatty acid, vitamin and macronutrient content of milk from holstein-friesian cows. Rocz. Nauk. Zoot. 2013, 40, 171–182. [Google Scholar]
- Żegarska, Z.; Paszczyk, B.; Borejszo, Z. Trans fatty acids in milk fat. Pol. J. Food Nutr. Sci. 1996, 5/46, 89–97. [Google Scholar]
- Żegarska, Z.; Paszczyk, B.; Rafałowski, R.; Borejszo, Z. Annual changes in the content of unsaturated fatty acids with 18 carbon atoms, including cis9,trans11 C18:2 (CLA) acid, in milk fat. Pol. J. Nutr. Sci. 2006, 15/56, 409–414. [Google Scholar]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef]
- Uzun, P.; Masucci, F.; Serrapica, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Esposito, G.; Di Francia, A. The inclusion of fresh forage in the lactating buffalo diet affects fatty acid and sensory profile of mozzarella cheese. J. Dairy Sci. 2018, 101, 6752–6761. [Google Scholar] [CrossRef]
- Lucas, A.; Rock, E.; Chamba, J.-F.; Verdier-Metz, I.; Brachet, P.; Coulon, J.-B. Respective effects of milk composition and the cheese-making process on cheese compositional variability in components of nutritional interest. Lait 2006, 86, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Bittante, G.; Cipolat-Gotet, C.; Malchiodi, F.; Sturaro, E.; Tagliapietra, F.; Schiavon, S.; Cecchinato, A. Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk. J. Dairy Sci. 2014, 98, 2759–2774. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Summer, A. Quantification of the Effect of the Cattle Breed on Milk Cheese Yield: Comparison between Italian Brown Swiss and Italian Friesian. Animals 2020, 10, 1331. [Google Scholar] [CrossRef]
- Bojanić Rašović, M.; Nikolić, N.; Martinović, A.; Katić, V.; Rašović, R.; Walcer, M.; Domig, K. Correlation between protein to fat ratio of milk and chemical parameters and the yield of semi-hard cheese. Biotechnol. Anim. Husb. 2013, 29, 145–159. [Google Scholar] [CrossRef]
- Bland, J.H.; Grandison, A.S.; Fagan, C.C. The effect of blending Jersey and Holstein- Friesian milk on composition and coagulation properties. Int. J. Dairy Technol. 2015, 68, 3–6. [Google Scholar] [CrossRef]
- Taboada, N.; Van Nieuwenhove, C.; Alzogaray, S.L.; Medina, R. Influence of autochthonous cultures on fatty acid composition, esterase activity and sensory profile of Argentinean goat cheeses. J. Food Compos. Anal. 2015, 40, 86–94. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Currò, S.; Penasa, M.; Cassandro, M.; De Marchi, M. Characterization of major and trace minerals, fatty acid composition, and cholesterol content of protected designation of origin cheeses. J. Dairy Sci. 2017, 100, 3384–3395. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y. Conjugated linoleic acid concentration as affected by lactic cultures and additives. Food Chem. 2000, 69, 27–31. [Google Scholar] [CrossRef]
- Murtaza, M.A.; Huma, N.; Hayat, Z.; Murtaza, M.S.; Meraj, A. Cheddar cheese from cow milk with elevated conjugated linoleic acid levels. J. Food Nutr. Res. 2014, 2, 506–509. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kwon, O.J.; Choi, N.J.; Oh, S.J.; Jeong, H.Y.; Song, M.K.; Jeong, I.; Kim, Y.J. Variations in conjugated linoleic acid (CLA) content of processed cheese by lactation time, feeding regimen, and ripening. J. Agric. Food Chem. 2009, 57, 3235–3239. [Google Scholar] [CrossRef] [PubMed]
- Prandini, A.; SigoLo, S.; Piva, G. A comparative study of fatty acid composition and CLA concentration in commercial cheeses. J. Food Compos. Anal. 2011, 24, 55–61. [Google Scholar] [CrossRef]
- Sieber, R.; Collomb, M.; Aeschlimann, A.; Jelen, P.; Eyer, H. Impact of microbial cultures on conjugated linoleic acid in dairy products—A review. Int. Dairy J. 2004, 14, 1–15. [Google Scholar] [CrossRef]
- Kim, Y.J.; Liu, R.H. Increase of conjugated linoleic acid content in milk by fermentation with lactic acid bacteria. J. Food Sci. 2002, 67, 1731–1737. [Google Scholar] [CrossRef]
- Rutkowska, J.; Sadowska, A.; Tabaszewska, M.; Stołyhwo, A. Fatty acid composition of hard cheeses from north, eastern and central region of Poland. Bromatol. Chem. Toksykol. 2009, 42, 263–269. [Google Scholar]
- Zeppa, G.; Giordano, M.; Gerbi, V.; Arlorio, M. Fatty acid composition of Piedmont “Ossolano” cheese. Lait 2003, 82, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Serrapica, F.; Masucci, F.; Di Francia, A.; Napolitano, F.; Braghieri, A.; Esposito, G.; Romano, R. Seasonal variation of chemical composition, fatty acid profile, and sensory properties of a Mountain Pecorino Cheese. Foods 2020, 9, 1091. [Google Scholar] [CrossRef] [PubMed]
- Wangin, J. Manufacture of Rennet Ripening Cheeses; LACPRES Publishing House: Warsaw, Poland, 1989. [Google Scholar]
- Christie, W.W. (Ed.) The isolation of lipids from tissues. Recommended Procedures. Chloroform-methanol (2:1,v/v) extraction and “Folch” wash. In Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon Press: Oxford, UK; New York, NY, USA; Toronto, ON, Canada; Tokyo, Japan; Sydney, Australia; Braunschweig, Germany, 1973; pp. 39–40. [Google Scholar]
- International Organization for Standardization. ISO 15884:2002 (IDF 182:2002). Milkfat: Preparation of Fatty Acid Methyl Esters; International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- Roach, J.A.G.; Mossoba, M.M.; Yurawecz, M.P.; Kramer, J.K.G. Chromatographic separation and identification of conjugated linoleic acid isomers. Anal. Chim. Acta 2002, 465, 207–226. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Cruz-Hermantez, C.; Deng, Z.; Zhou, J.; Jahreis, G.; Dugan, M.E.R. Analysis of conjugated linoleic acid and trans 18:1 isomers in syntetic and animal products. Am. J. Clin. Nutr. 2004, 79, 1137S–1145S. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, M.; Chardigny, J.-M.; Darbois, M.; Soustre, Y.; Sébédio, J.-L.; Laloux, L. Fatty acid composition of French butters, with special emphasis on conjugated linoleic acid (CLA) isomers. J. Food Compos. Anal. 2005, 18, 409–425. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M.; Pelizzola, V.; Monti, L.; Lercker, G. Interlaboratory evaluation of milk fatty acid composition by using different GC operating conditions. J. Food Compos. Anal. 2013, 32, 131–140. [Google Scholar] [CrossRef]
- Osmari, E.K.; Cecato, U.; Macedo, F.A.F.; Souza, N.E. Nutritional quality indices of milk fat from goats on diets supplemented with different roughages. Small Rumin. Res. 2011, 98, 128–132. [Google Scholar] [CrossRef]
- Medeiros, E.; Queiroga, R.; Oliveira, M.; Medeiros, A.; Sabedot, M.; Bomfim, M.; Madruga, M. Fatty Acid Profile of Cheese from Dairy Goats Fed a Diet Enriched with Castor, Sesame and Faveleira Vegetable Oils. Molecules 2014, 19, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, A.; Hadzhinikolova, L. Evaluation of nutritional quality of common carp (Cyprinus carpio L.) lipidsthrough fatty acid ratios and lipid indices. Bulg. J. Agric. Sci. 2015, 21, 180–185. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Cichocka, A.; Białkowska, M. Nutrition Standards for the Polish Population; Jarosz, M., Ed.; Institute of Food and Nutrition: Warsaw, Poland, 2020; pp. 21–39. [Google Scholar]
- CSO. Situation of Households in 2019 in the Light of the Results of the Household Budget Survey; CSO: Bergerac, France, 2019. [Google Scholar]
- Statsoft. STATISTIC, Version 13.1 Software; Statsoft: Kraków, Poland, 2007. [Google Scholar]
- De Marchi, M.; Bittante, G.; Dal Zotto, R.; Dalvit, C.; Cassandro, M. Effect of Holstein Friesian and Brown Swiss breeds on quality of milk and cheese. J. Dairy Sci. 2008, 91, 4092–4102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formaggioni, P.; Summer, A.; Malacarne, M.; Franceschi, P.; Mucchetti, G. Italian and Italian-style hard cooked cheeses: Predictive formulas for Parmigiano-Reggiano 24-h cheese yield. Int. Dairy J. 2015, 51, 52–58. [Google Scholar] [CrossRef]
- Uzun, P.; Serrapica, F.; Masucci, F.; Assunta, B.C.M.; Yildiz, H.; Grasso, F.; Di Francia, A. Diversity of traditional Caciocavallo cheeses produced in Italy. Int. J. Dairy Technol. 2019, 73, 234–243. [Google Scholar] [CrossRef]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [Green Version]
- Lešić, T.; Pleadin, J.; Krešić, G.; Vahčić, N.; Markov, K.; Vrdoljak, M.; Frece, J. Chemical and fatty acid composition of cow and sheep milk cheeses in a lamb skin sack. J. Food Compos. Anal. 2016, 46, 70–77. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientifc opinion on Dietary Reference Values for protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients; Summary Report, EFSA Supporting Publication; EFSA (European Food Safety Authority): Parma, Italy, 2017; p. e15121. [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations/World Health Organization/United Nations University (FAO/WHO/UNU). Protein and Amino Acids Requirements in Human Nutrition; Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Technical Report Series 935; WHO: Geneva, Switzerland, 2007; p. 2011.
- Arnett Tymoczko, J.L.; Berg, J.M.; Stryer, L. Biochemistry; Short Course; Scientific Publishers PWN: Warsaw, Poland, 2013; pp. 193–206. [Google Scholar]
- Maldonado, G.E.; Gallego-Narbón, A.; Vaquero, M.P. Are vegetarian diets nutritionally adequate? A revision of the scientific evidence. Nutr. Hosp. 2019, 36, 950–961. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.P.; Laster, J.; Parag, B.; Shah, N.U. Multiple Health Benefits and Minimal Risks Associated with Vegetarian Diets. Curr Nutr. Rep. 2019, 8, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Prandini, A.; Sigolo, S.; Tansini, G.; Brogna, N.; Piva, G. Different level of conjugated linolei acid (CLA) in dairy products from Italy. J. Food Compos. Anal. 2007, 20, 472–479. [Google Scholar] [CrossRef]
- Paszczyk, B.; Łuczyńska, J. The comparison of fatty acids composition and lipid quality indices in hard cow, sheep and goat cheeses. Foods 2020, 9, 1667. [Google Scholar] [CrossRef] [PubMed]
- Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Tóth, T.; Mwau, P.J.; Bázár, G.; Andrássy-Baka, G.; Hingyi, H.; Csavajda, E.; Varga, L. Effect of feed supplementation based on extruded linseed meal and fish oil on composition and sensory properties of raw milk and ultra-high temperature treated milk. Int. Dairy J. 2019, 99, 104552. [Google Scholar] [CrossRef]
- Hirigoyen, D.; de los Santos, R.; Calvo, M.F.; Gonzales-Revello, A.; Constantin, M. Chemical composition and seasonal changes in the fatty acid profile of Uruguayan “Colonia” Cheeses. Grasas Aceites 2018, 69, e254. [Google Scholar] [CrossRef]
- Gutiérrez, L.F. Conjugated linoleic acid in milk and fermented milks: Variation and effects of the technological processes. VITAE. Rev. Fac. Cienc. Farm. Aliment. 2016, 23, 134–145. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.V.; Bauman, D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Żegarska, Z.; Paszczyk, B.; Borejszo, Z. Conjugated linoleic acid (CLA) and trans C18:1 and C18:2 isomers in fat of some commercial dairy products. Pol. J. Natur. Sci. 2008, 23, 248–256. [Google Scholar] [CrossRef]
- Fritsche, J.; Steinhart, H. Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Z. Fur Lebensm. -Unters. Und -Forsch. A 1998, 206, 77–82. [Google Scholar] [CrossRef]
- Donmez, M.; Seckin, A.K.; Sagdic, O.; Simsek, B. Chemical characteristics, fatty acid compositions, conjugated linoleic acid contents and cholesterol levels of same traditional Turkish cheeses. Int. J. Food Sci. Nutr. 2005, 56, 157–163. [Google Scholar] [CrossRef]
- Grega, T.; Sady, M.; Najgebauer, D.; Domagała, J.; Pustkowiak, H.; Faber, B. Seasonal changes in the level of conjugated linoleic acid (CLA) in ripened cheeses. Biotechnol. Anim. Husb. 2005, 21, 251–253. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Chilliard, Y.; Toivonen, P.; Kairenius, P.; Givens, D.I. Trans fatty acids and bioactive lipids in ruminant milk. Adv. Exp. Med. Biol. 2008, 606, 3–65. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, T.R.; Nam, S.-H.; Ure, M.L. Factors affecting conjugated linoleic acid content in milk and meat. Crit. Rev. Food Sci. Nutr. 2005, 45, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Lock, A.L.; Parodi, P.W.; Bauman, D.E. The biology of trans fatty acids: Implications for human health and the dairy industry. Aust. J. Dairy Technol. 2005, 60, 134–142. [Google Scholar]
Group/Age | Body Weight [kg] | Reference Protein [g/kg b.w./Day] | National Food Ration Protein -RDA [g/kg b.w./Day] | Cheese Consumption per Capita in 2019 * [kg Cheese/Day] | DDC [%] | |
---|---|---|---|---|---|---|
Summer Cheeses | Winter Cheeses | |||||
Women ≥ 19 | 45–75 | 0.80 | 0.90 | 0.033 | 14.44 | 15.56 |
Men ≥ 19 | 55–85 | 0.80 | 0.90 | 12.22 | 13.33 | |
Pregnat women ˂ 19 age | 45–75 | 1.10 | 1.20 | 10.83 | 11.67 | |
Pregnat women ≥ 19 age | 45–75 | 1.10 | 1.20 | 10.83 | 11.67 | |
Breast-feeding women ˂ 19 age | 45–75 | 1.3 | 1.45 | 8.97 | 9.66 | |
Breastfeeding women ≥ 19 age | 45–75 | 1.3 | 1.45 | 8,97 | 9.66 |
Group/Age | Body Weight [kg] | RI [g/Person/Day] | Cheese Consumption per capita in 2019 * [kg Cheese/Day] | DDC [%] | ||
---|---|---|---|---|---|---|
Summer Cheeses | Winter Cheeses | |||||
Women ≥ 19 | 77 | 0.033 | 11.58 | 11.86 | ||
55 | 85 | 10.49 | 10.74 | |||
Men ≥ 19 | 65 | 107 | 8.34 | 8.53 | ||
115 | 7.76 | 7.94 | ||||
Pregnat women | I | 65 | 80 | 11.15 | 11.41 | |
II | 87 | 10.25 | 10.49 | |||
III | 93 | 9.60 | 9.82 | |||
Breastfeeding women | 85 | 94 | 9.49 | 9.71 |
Summer Cheeses | Winter Cheeses | |||||
---|---|---|---|---|---|---|
Mean ± SD | Min–Max | Mean ± SD | Min–Max | |||
n | 20 | 20 | ||||
C4:0 | 3.05 | ±0.36 | 2.56–3.80 | 2.80 | ±0.36 | 2.09–3.25 |
C6:0 | 2.12 | ±0.08 | 2.00–2.25 | 1.98 | ±0.27 | 1.54–2.25 |
C8:0 | 1.35 | ±0.06 | 1.24–1.44 | 1.33 | ±0.06 | 1.25–1.41 |
C10:0 | 3.07 | ±0.17 | 2.81–3.29 | 3.18 | ±0.08 | 3.09–3.32 |
C10:1 | 0.33 | ±0.02 | 0.30–0.36 | 0.33 | ±0.01 | 0.31–0.34 |
C11:0 | 0.06 | ±0.01 | 0.04–0.07 | 0.06 | ±0.01 | 0.5–0.07 |
C12:0 | 3.55 | ±0.16 b | 3.22–3.69 | 3.75 | ±0.13 a | 3.50–3.88 |
C12:1 | 0.08 | ±0.01 | 0.07–0.09 | 0.09 | ±0.00 | 0.08–0.09 |
C13:0 iso | 0.10 | ±0.01 | 0.09–0.11 | 0.10 | ±0.01 | 0.09–0.11 |
C13:0 | 0.13 | ±0.02 | 0.10–0.17 | 0.12 | ±0.01 | 0.10–0.14 |
C14:0 iso | 0.13 | ±0.01 | 0.11–0.14 | 0.13 | ±0.01 | 0.12–0.15 |
C14:0 | 11.31 | ±0.24 b | 11.18–11.85 | 12.10 | ±0.23 a | 11.66–12.45 |
C15:0 iso | 0.28 | ±0.02 | 0.23–0.31 | 0.26 | ±0.02 | 0.23–0.29 |
C15:0 aiso | 0.56 | ±0.06 a | 0.48–0.63 | 0.51 | ±0.02 b | 0.49–0.53 |
C14:1 | 1.03 | ±0.13 | 0.85–1.16 | 1.09 | ±0.04 | 1.02–1.12 |
C15:0 | 1.26 | ±0.06 | 1.18–1.34 | 1.22 | ±0.04 | 1.17–1.27 |
C16:0 iso | 0.31 | ±0.03 | 0.28–0.36 | 0.31 | ±0.03 | 0.26–0.34 |
C16:0 | 29.09 | ±1.77 b | 26.90–31.75 | 32.53 | ±0.40 a | 32.22–32.64 |
C17:0 iso | 0.44 | ±0.04 a | 0.36–0.49 | 0.36 | ±0.02 b | 0.33–0.39 |
C17:0 aiso | 0.23 | ±0.03 a | 0.19–0.26 | 0.18 | ±0.00 b | 0.17–0.19 |
C16:1 | 1.65 | ±0.25 | 1.24–2.02 | 1.65 | ±0.13 | 1.57–1.97 |
C17:0 | 0.86 | ±0.38 a | 0.68–1.92 | 0.72 | ±0.01 b | 0.71–0.74 |
C17:1 | 0.25 | ±0.02 | 0.23–0.29 | 0.25 | ±0.01 | 0.24–0.26 |
C18:0 | 9.95 | ±0.53 | 9.20–10.72 | 9.64 | ±0.48 | 8.89–10.26 |
t6 − t9 C18:1 | 0.44 | ±0.04 | 0.41–0.52 | 0.42 | ±0.02 | 0.37–0.34 |
t10 + t11 C18:1 | 2.20 | ±0.65 a | 1.27–3.05 | 1.24 | ±0.09 b | 1.13–1.35 |
t12 C18:1 | 0.30 | ±0.04 | 0.26–0.38 | 0.28 | ±0.02 | 0.24–0.30 |
c9 C18:1 | 19.59 | ±0.57 a | 18.83–20.60 | 19.04 | ±0.43 b | 18.54–19.70 |
c11 C18:1 | 0.61 | ±0.03 | 0.57–0.67 | 0.61 | ±0.04 | 0.56–0.64 |
c12 C18:1 | 0.24 | ±0.04 b | 0.19–0.30 | 0.27 | ±0.03 a | 0.21–0.33 |
c13 C18:1 | 0.09 | ±0.01 | 0.07–0.10 | 0.09 | ±0.01 | 0.07–0.10 |
t16 C18:1 | 0.34 | ±0.05 a | 0.27–0.42 | 0.29 | ±0.02 b | 0.25–0.31 |
C19:0 | 0.19 | ±0.02 a | 0.14–0.23 | 0.16 | ±0.02 b | 0.14–0.18 |
c9 t13 C18:2 | 0.20 | ±0.03 a | 0.15–0.25 | 0.16 | ±0.01 b | 0.15–0.17 |
c9 t12 C18:2 | 0.18 | ±0.03 a | 0.14–0.22 | 0.15 | ±0.01 b | 0.13–0.17 |
t11 c15 C18:2 | 0.26 | ±0.10 a | 0.10–0.37 | 0.10 | ±0.02 b | 0.06–0.14 |
c9 c12 C18:2 | 1.52 | ±0.19 a | 1.28–1.78 | 1.54 | ±0.14 a | 1.39–1. 86 |
C20:0 | 0.15 | ±0.01 | 0.14–0.16 | 0.15 | ±0.01 | 0.13–0.16 |
C20:1 | 0.11 | ±0.01 | 0.10–0.12 | 0.11 | ±0.00 | 0.11–0.12 |
c9c12c15 C18:3 | 0.53 | ±0.13 a | 0.31–0.66 | 0.35 | ±0.07 b | 0.26–0.48 |
c9t11 C18:2 (CLA) | 0.88 | ±0.19 a | 0.51–1.12 | 0.44 | ±0.03 b | 0.39–0.48 |
Fatty Acids | Summer Cheeses | Winter Cheeses | ||
---|---|---|---|---|
n | 20 | 20 | ||
Mean ± SD | Min–Max | Mean ± SD | Min–Max | |
ΣSCFA 1 | 9.58 ± 0.38 | 9.10–10.19 | 9.29 ± 0.69 | 8.08–10.07 |
ΣBCFA 2 | 2.08 ± 0.18 a | 1.76–2.24 | 1.84 ± 0.06 b | 1.76–1.97 |
ΣOCFA 3 | 2.50 ± 0.45 | 2.18–2.57 | 2.21 ± 0.04 | 2.15–2.27 |
ΣSFA 4 | 58.61 ± 1.12 b | 57.24–60.41 | 62.30 ± 0.84 a | 61.40–63.99 |
ΣMUFA 5 | 27.25 ± 0.60 a | 26.32–28.62 | 25.75 ± 0.50 b | 25.19–26.48 |
ΣPUFA 6 | 3.68 ± 0.60 a | 2.83–4.51 | 2.74 ± 0.14 b | 2.61–3.00 |
n − 3 | 0.53 ± 0.13 a | 0.31–0.66 | 0.35 ± 0.05 b | 0.31–0.42 |
n − 6 | 1.52 ± 0.19 | 1.28–1.78 | 1.54 ± 0.14 | 1.39–1.86 |
n − 6/n − 3 | 3.04 ± 0.81 b | 2.42–4.74 | 4.52 ± 0.99 a | 3.56–5.64 |
UFA 7 | 30.93 ± 0.94 a | 29.29–32.44 | 28.50 ± 0.47 b | 27.75–29.16 |
DFA 8 | 40.89 ± 1.38 a | 38.49–42.58 | 38.14 ± 0.91 b | 36.86–39.42 |
OFA9 | 48.66 ± 1.62 b | 46.68–51.21 | 52.60 ± 1.15 a | 51.14–55.10 |
AI 10 | 2.01 ± 0.07 b | 1.85–2.12 | 3.06 ± 0.05 a | 3.00–3.17 |
TI 11 | 1.99 ± 0.11 b | 1.83–2.14 | 3.79 ± 0.06 a | 3.71–3.87 |
H/H 12 | 0.49 ± 0.03 a | 0.45–0.53 | 0.43 ± 0.01 b | 0.42–0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszczyk, B.; Polak-Śliwińska, M.; Zielak-Steciwko, A.E. Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons. Animals 2022, 12, 198. https://doi.org/10.3390/ani12020198
Paszczyk B, Polak-Śliwińska M, Zielak-Steciwko AE. Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons. Animals. 2022; 12(2):198. https://doi.org/10.3390/ani12020198
Chicago/Turabian StylePaszczyk, Beata, Magdalena Polak-Śliwińska, and Anna E. Zielak-Steciwko. 2022. "Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons" Animals 12, no. 2: 198. https://doi.org/10.3390/ani12020198
APA StylePaszczyk, B., Polak-Śliwińska, M., & Zielak-Steciwko, A. E. (2022). Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons. Animals, 12(2), 198. https://doi.org/10.3390/ani12020198