Innovations for Reducing Methane Emissions in Livestock toward a Sustainable System: Analysis of Feed Additive Patents in Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Dynamics of the Inventive Process
3.2. Types of Innovation: Characteristics and Specificity of Inventions
3.3. Key Players in Innovation and Target Markets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.-W. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- Pulina, G.; Francesconi, A.H.D.; Stefanon, B.; Sevi, A.; Calamari, L.; Lacetera, N.; Dell’Orto, V.; Pilla, F.; Ajmone Marsan, P.; Mele, M.; et al. Sustainable Ruminant Production to Help Feed the Planet. Ital. J. Anim. Sci. 2017, 16, 140–171. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Share of Agriculture in Total Greenhouse Gas Emission. Global, Regional and Country Trends 1990–2017; Series No 1; FAO: Rome, Italy, 2020. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 10: Emissions From Livestock and Manure Management. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2019; ISBN 978-4-88788-232-4. [Google Scholar]
- Hristov, A.N.; Melgar, A.; Wasson, D.; Arndt, C. Symposium Review: Effective Nutritional Strategies to Mitigate Enteric Methane in Dairy Cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef]
- Almeida, A.K.; Hegarty, R.S.; Cowie, A. Meta-Analysis Quantifying the Potential of Dietary Additives and Rumen Modifiers for Methane Mitigation in Ruminant Production Systems. Anim. Nutr. 2021, 7, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Wattiaux, M.; Uddin, M.; Letelier, P.; Jackson, R.; Larson, R. Invited Review: Emission and Mitigation of Greenhouse Gases from Dairy Farms: The Cow, the Manure, and the Field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary Manipulation: A Sustainable Way to Mitigate Methane Emissions from Ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. Main Science and Technology Indicators. Main Science and Technology Indicators; OECD Publishing: Paris, France, 2014. [Google Scholar]
- OECD. Frascati Manual 2002: Proposed Standard Practice for Surveys on Research and Experimental Development; The Measurement of Scientific and Technological Activities; OECD Publishing: Paris, France, 2002; ISBN 978-92-64-19903-3. [Google Scholar]
- Baumann, M.; Domnik, T.; Haase, M.; Wulf, C.; Emmerich, P.; Rösch, C.; Zapp, P.; Naegler, T.; Weil, M. Comparative Patent Analysis for the Identification of Global Research Trends for the Case of Battery Storage, Hydrogen and Bioenergy. Technol. Forecast. Soc. Chang. 2021, 165, 120505. [Google Scholar] [CrossRef]
- OECD. OECD Patent Statistics Manual; OECD Publishing: Paris, France, 2009; ISBN 978-92-64-05412-7. [Google Scholar]
- Clarke, N.S. The Basics of Patent Searching. World Pat. Inf. 2018, 54, S4–S10. [Google Scholar] [CrossRef]
- OECD. The Measurement of Scientific and Technical Activities: Standard Practice for Surveys of Research and Experimental Development Frascati Manual 1993; The Measurement of Scientific and Technological Activities; OECD Publishing: Paris, France, 1994; ISBN 978-92-64-14202-2. [Google Scholar]
- Regibeau, P.; Rockett, K. Innovation cycles and learning at the patent office: Does the early patent get the delay?*. J. Ind. Econ. 2010, 58, 222–246. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Dernis, H.; Guellec, D.; van Pottelsberghe, B. Using Patent Counts for Cross-Country Comparisons of Technology Output. STI Rev. 2001, 27, 7–211. [Google Scholar]
- Araya, M.; Morelli, L.; Reid, G.; Sanders, M.; Stanton, C.; Pineiro, M.; Embarek, P. Guidelines for the Evaluation of Probiotics in Food. In Proceedings of the Joint FAO working Group on Drafting Guielines for Evaluation of Probiotics in Food, London, ON, Canada, 30 April–1 May 2002. [Google Scholar]
- Reuben, R.C.; Elghandour, M.M.M.Y.; Alqaisi, O.; Cone, J.W.; Márquez, O.; Salem, A.Z.M. Influence of Microbial Probiotics on Ruminant Health and Nutrition: Sources, Mode of Action and Implications. J. Sci. Food Agric. 2022, 102, 1319–1340. [Google Scholar] [CrossRef]
- Kulkarni, N.A.; Chethan, H.S.; Srivastava, R.; Gabbur, A.B. Role of Probiotics in Ruminant Nutrition as Natural Modulators of Health and Productivity of Animals in Tropical Countries: An Overview. Trop. Anim. Health Prod. 2022, 54, 110. [Google Scholar] [CrossRef] [PubMed]
- Doyle, N.; Mbandlwa, P.; Kelly, W.J.; Attwood, G.; Li, Y.; Ross, R.P.; Stanton, C.; Leahy, S. Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Front. Microbiol. 2019, 10, 2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darabighane, B.; Salem, A.Z.M.; Mirzaei Aghjehgheshlagh, F.; Mahdavi, A.; Zarei, A.; Elghandour, M.M.M.Y.; López, S. Environmental Efficiency of Saccharomyces Cerevisiae on Methane Production in Dairy and Beef Cattle via a Meta-Analysis. Environ. Sci. Pollut. Res. 2019, 26, 3651–3658. [Google Scholar] [CrossRef] [PubMed]
- Konda, S.; Onodera, R.; Kanchanasatit, E.; Boonsaen, P.; Sawanon, S.; Nagashima, K.; Suzuki, Y.; Koike, S.; Kobayashi, Y. Effect of Cashew Nut Shell Liquid Feeding on Fermentation and Microbiota in the Rumen of Thai Native Cattle and Swamp Buffaloes. Livest. Sci. 2019, 226, 99–106. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Bradford, B.J. Plant Flavonoids to Improve Productivity of Ruminants A Review. Anim. Feed Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Kalantar, M. The Importance of Flavonoids in Ruminant Nutrition. AAHDS 2018, 1, 1–4. [Google Scholar] [CrossRef]
- Feng, X.Y.; Dijkstra, J.; Bannink, A.; van Gastelen, S.; France, J.; Kebreab, E. Antimethanogenic Effects of Nitrate Supplementation in Cattle: A Meta-Analysis. J. Dairy Sci. 2020, 103, 11375–11385. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, H.G.; Baek, Y.-C.; Lee, S.; Seo, J. The Effects of Dietary Supplementation with 3-Nitrooxypropanol on Enteric Methane Emissions, Rumen Fermentation, and Production Performance in Ruminants: A Meta-Analysis. J. Anim. Sci. Technol. 2020, 62, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane Mitigation in Ruminants: From Microbe to the Farm Scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef]
- Swick, R.A. Global Feed Supply and Demand. Recent Adv. Anim. Nutr. Aust. 2011, 18, 1–7. [Google Scholar]
- Coffey, D.; Dawson, K.; Ferket, P.; Connolly, A. Review of the Feed Industry from a Historical Perspective and Implications for Its Future. J. Appl. Anim. Nutr. 2016, 4, e3. [Google Scholar] [CrossRef]
- Caprarulo, V.; Ottoboni, M.; Tretola, M.; Demartini, E.; Gaviglio, A.; Agazzi, A.; Rossi, L.; Colovic, R.; Djuragic, O.; Vukmirovic, D.; et al. A Survey on the Potential Research and Development Tendency in the Italian and Serbian Feed Industry. Food Feed Res. 2016, 43, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, R.; Cortez Passetti, R.; Dittmer, K.; Wang, Y.; Shelton, S.; Emmet-Booth, J.; Wollenberg, E.; McAllister, T.; Leahy, S.; Beauchemin, K.; et al. An Evaluation of Emerging Feed Additives to Reduce Methane Emissions from Livestock, Edition 1 A Report Coordinated by Climate Change, Agriculture and Food Security (CCAFS) and the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) Initiative of the Global Research Alliance (GRA). 2021. Available online: https://hdl.handle.net/10568/116489 (accessed on 4 July 2022).
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of Sustainability in Agriculture: A Review of Indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- Naldi, M.; Flamini, M. The CR4 Index and the Interval Estimation of the Herfindahl-Hirschman Index: An Empirical Comparison. SSRN J. 2014. [Google Scholar] [CrossRef]
- Sampath, P.G.; Park, W. Do Patents Lead to Market Concentration and Excess Profits. In Global Development And Environment Institute Working Paper, Tufts University; Tufts University: Medford, MA, USA, 2019. [Google Scholar]
- FEFAC. European Feed Manufacturers’ Federation. In Feed & Food; FEFAC: Bruxelles, Belgium, 2021. [Google Scholar]
- USDA Foreign Agricultural Service. Grain and Feed Update-China; GAIN Report CH2022-0074; 2022. Available online: https://www.fas.usda.gov/data/china-grain-and-feed-update-17 (accessed on 12 July 2022).
- USDA Economic Research Service. Feed Outlook: January 2022; FDS-22a; 2022. Available online: https://www.ers.usda.gov/webdocs/outlooks/103046/fds-22a.pdf?v=5079.3 (accessed on 13 July 2022).
Area of Investigation | Variables | Description of Variables | Role in the Analysis |
---|---|---|---|
Inventive process | Earliest priority year | Year of the first filing | Development over time |
Latest publication year | Year of the last publication | ||
Earliest priority country | Country of the first filing | Where the invention originated and which countries were most prolific | |
Patent families | Number of patent families | ||
Single patents | Number of individual patents | ||
Earliestpriority date | Date of the first filing | ||
Latest publication date | Date of the last publication | ||
Characteristics of technologies | CPC 1 codes | Classification by technology field | Relative weighting of the technology areas |
Patent families | Number of patent families | ||
Type of additive | Classification criteria adopted in line with EFSA 2 guidelines | Identification of technologies | |
Non-self-forward citations | Received citations in other patents by type of additive | Technological impact of an invention | |
Average age | (latest publication date—earliest priority date)/number of patent families | ||
Single patents | Number of individual patents | ||
NPL 3 average references | Average citations per patent in NPL | Interaction between scientific knowledge and technologies | |
Key players and main markets | Standardized assignee | Patent owners grouped with standardized algorithm | Identification of key players |
Current assignee | Current patent holder | ||
Average patents per family | Average number of patents per family byassignee | Technology diffusion index | |
Non-self-forward citations | Received citations in other patents by assignee | Quality index of R&D 4 of an assignee | |
Protection country | Patent office chosen to protect the invention | Target markets |
Type of Additive | Number of Patents | Number of Patent Families | Average Patents Per Family | Non-Patent Literature Average References |
---|---|---|---|---|
Probiotics | 36 | 13 | 2.8 | 75 |
Cashew nut shell liquid | 31 | 1 | 31.0 | 8 |
Feed formula | 27 | 7 | 3.9 | 24 |
Flavanone glycoside | 24 | 1 | 24.0 | 19 |
Nitrate and sulfate | 23 | 1 | 23.0 | 12 |
Protein extract | 20 | 1 | 20.0 | 14 |
Enzymes | 19 | 2 | 9.5 | 130 |
Red marine macroalgae | 18 | 1 | 18.0 | 6 |
Encapsulated nitrates and sulfates | 16 | 2 | 8.0 | 28 |
Oligosaccharides and medium-chain fatty acids | 16 | 1 | 16.0 | 25 |
Lauric acid and 3-nitrooxypropanol | 15 | 1 | 15.0 | 12 |
Nitrooxy organic molecules | 15 | 1 | 15.0 | 24 |
Organic molecule | 14 | 1 | 14.0 | 10 |
Rumen protected non-protein n | 13 | 1 | 13.0 | 17 |
Method | 12 | 3 | 4.0 | 16 |
Para nitro amino derivates | 12 | 1 | 12.0 | 16 |
Nitrooxy alkanoic acids | 11 | 1 | 11.0 | 13 |
3-nitrooxypropanol | 9 | 4 | 2.3 | 13 |
Diallyl disulfide, nitrate and eucalyptus oil | 9 | 1 | 9.0 | 13 |
Dihydroxyquinoline compounds | 9 | 1 | 9.0 | 30 |
Pasture treatments (beneficial microorganism) | 9 | 1 | 9.0 | 5 |
Cysteine and its salts | 8 | 1 | 8.0 | 4 |
Polycyclic quinone and ionophore composition | 8 | 1 | 8.0 | 5 |
Eugenol; cinnamaldehyde; extract of a plant belonging to the alliaceous family | 7 | 1 | 7.0 | 9 |
Nitroaniline derivative or a salt | 7 | 1 | 7.0 | 13 |
Lignin | 6 | 1 | 6.0 | 6 |
Prebiotics | 6 | 1 | 6.0 | 3 |
Total | 480 | 113 | 4.2 | 6.8 |
Assignee | Nation | Private/Public | Number of Families | Number of Patents | Average Patents Per Family | Family Average Age | Non-Self Forward Citations |
---|---|---|---|---|---|---|---|
DSM IP Assets | Netherlands | Private | 12 | 86 | 7.2 | 2.9 | 31 |
Feed Research Institute—CAAS | China | Public | 4 | 4 | 1.0 | 1.5 | 3 |
Locus IP | USA | Private | 3 | 21 | 7.0 | 1.3 | 19 |
Institute of Animal Sciences—CAAS | China | Public | 3 | 3 | 1.0 | 0.0 | 0 |
Grasp Indústria & Comércio | Brazil | Private | 2 | 16 | 8.0 | 2.0 | 28 |
Ajinomoto | Japan | Private | 2 | 6 | 3.0 | 2.0 | 4 |
Blackcarbon | Denmark | Private | 2 | 4 | 2.0 | 1.0 | 3 |
Agricultural University of Hebei | China | Public | 2 | 2 | 1.0 | 1.0 | 0 |
China Agricultural University | China | Public | 2 | 2 | 1.0 | 3.0 | 10 |
Indian Council of Agricultural Research | India | Public | 2 | 2 | 1.0 | 1.5 | 0 |
Korea National Open University/Industry Academic Cooperation Foundation | Korea | Private/public | 2 | 2 | 1.0 | 0.0 | 1 |
National University Chonbuk | Korea | Public | 2 | 2 | 1.0 | 0.0 | 3 |
Sichuan Agricultural University | China | Public | 2 | 2 | 1.0 | 0.5 | 6 |
Zhejiang University | China | Public | 2 | 2 | 1.0 | 0.0 | 3 |
Idemitsu Kosan | Japan | Private | 1 | 31 | 31.0 | 10.0 | 7 |
Healthtech Bio Actives U | Spain | Private | 1 | 24 | 24.0 | 7.0 | 7 |
Cargill | USA | Private | 1 | 23 | 23.0 | 10.0 | 18 |
Alltech | USA | Private | 1 | 20 | 20.0 | 7.0 | 21 |
CSIRO | Australia | Public | 1 | 18 | 18.0 | 7.0 | 3 |
Nutrition Sciences | Belgium | Private | 1 | 16 | 16.0 | 8.0 | 18 |
Cornell Research Foundation | USA | Private/public | 1 | 14 | 14.0 | 15.0 | 27 |
Evonik Operations | Germany | Private | 1 | 13 | 13.0 | 5.0 | 2 |
Merck Sharp & Dohme | USA | Private | 1 | 13 | 13.0 | 10.0 | 23 |
C Lock | USA | Private | 1 | 10 | 10.0 | 7.0 | 48 |
Ableco Finance | USA | Private | 1 | 9 | 9.0 | 4.0 | 8 |
Alberto Samaia Neto | Brazil | Private | 1 | 9 | 9.0 | 4.0 | 2 |
CJ Feed & Care | Korea | Private | 1 | 9 | 9.0 | 4.0 | 4 |
Arkion Life Sciences | USA | Private | 1 | 8 | 8.0 | 3.0 | 13 |
CJ Cheil Jedang | Korea | Private | 1 | 8 | 8.0 | 2.0 | 0 |
Proagny | Australia | Private | 1 | 8 | 8.0 | 2.0 | 0 |
Snow Brand Seed | Japan | Private | 1 | 8 | 8.0 | 8.0 | 26 |
Pancosma | Switzerland | Private | 1 | 7 | 7.0 | 3.0 | 4 |
Alcell Technologies | Switzerland | Private | 1 | 6 | 6.0 | 2.0 | 3 |
Camas | USA | Private | 1 | 5 | 5.0 | 3.0 | 0 |
Rhone Poulenc Animal Nutrition | USA | Private | 1 | 5 | 5.0 | 3.0 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caprarulo, V.; Ventura, V.; Amatucci, A.; Ferronato, G.; Gilioli, G. Innovations for Reducing Methane Emissions in Livestock toward a Sustainable System: Analysis of Feed Additive Patents in Ruminants. Animals 2022, 12, 2760. https://doi.org/10.3390/ani12202760
Caprarulo V, Ventura V, Amatucci A, Ferronato G, Gilioli G. Innovations for Reducing Methane Emissions in Livestock toward a Sustainable System: Analysis of Feed Additive Patents in Ruminants. Animals. 2022; 12(20):2760. https://doi.org/10.3390/ani12202760
Chicago/Turabian StyleCaprarulo, Valentina, Vera Ventura, Achille Amatucci, Giulia Ferronato, and Gianni Gilioli. 2022. "Innovations for Reducing Methane Emissions in Livestock toward a Sustainable System: Analysis of Feed Additive Patents in Ruminants" Animals 12, no. 20: 2760. https://doi.org/10.3390/ani12202760
APA StyleCaprarulo, V., Ventura, V., Amatucci, A., Ferronato, G., & Gilioli, G. (2022). Innovations for Reducing Methane Emissions in Livestock toward a Sustainable System: Analysis of Feed Additive Patents in Ruminants. Animals, 12(20), 2760. https://doi.org/10.3390/ani12202760