Requirements and Metabolism for Calcium, Phosphorus and Vitamin D3 in the Growing–Furring Blue Foxes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diets, and Sampling
2.2. Slaughter Traits
2.3. Analysis Method
2.4. Statistics
3. Results
3.1. Growth Performance
3.2. Digestibility
3.3. N Metabolism
3.4. Ca and P Digestibility
3.5. Serum Biochemical Indices
3.6. Serum Hormone
4. Discussion
4.1. Growth Performance
4.2. Digestibility
4.3. N Metabolism
4.4. Ca and P Digestibility
4.5. Serum Biochemical Indices
4.6. Serum Hormone
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capra, S. Nutrient Reference Values for Australia and New Zealand: Including Recommended Dietary Intakes; Commonwealth of Australia: Canberra, Australia, 2006. [Google Scholar]
- Adachi, J.D.; Bensen, W.G.; Bianchi, F.; Cividino, A.; Goldsmith, C.H. Vitamin D and calcium in the prevention of corticosteroid induced osteoporosis: A 3 year followup. J. Rheumatol. 1996, 23, 995–1000. [Google Scholar] [PubMed]
- Song, L. Calcium and bone metabolism indices. Adv. Clin. Chem. 2017, 82, 1–46. [Google Scholar] [PubMed]
- Jorgensen, G.; Hansen, N.G. Forsog med forskellige proteinmaengder til mink. Dansk Pelsdyravl. 1972, 35, 15–23. [Google Scholar]
- Brincat, M.; Gambin, J.; Brincat, M.; Calleja-Agius, J. The role of vitamin D in osteoporosis. Maturitas 2015, 80, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. Blood glucose, plasma inorganic phosphorus, plasma calcium, hematocrit, and bone ash values of normal minks (Mustela vison) and foxes (Vulpes fulva). Cornell Vet. 1941, 31, 56–62. [Google Scholar]
- National Research Council. Nutrient Requirements of Mink and Foxes; National Academy Press: Washington, DC, USA, 1982. [Google Scholar]
- Korhonen, H.T.; Happo, M.; Rekilä, T.; Valaja, J.; Pölönen, I. Effects of diet calcium: Phosporus ratio and metabolizable energy content on development of osteochondrosis, foot bending and performance in blue foxes. Anim. Sci. 2005, 80, 325–331. [Google Scholar] [CrossRef]
- Nagy, K. Food requirements of wild animals: Predictive equations for free-living mammals, reptiles, and birds. Nutr. Abstr. Rev. Ser. B 2021, 71, 21R–31R. [Google Scholar]
- Liu, J.; Du, Z.; Li, T.; Xu, Y.; Lv, J.; Bai, X.; Xu, Y.; Li, G. Effect of Dietary Supplementation with Calcium, Phosphorus and Vitamin D3 on Growth Performance, Nutrient Digestibility, and Serum Biochemical Parameters of Growing Blue Foxes. Animals 2022, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, G.; Hansen, N.G. A cage designed for metabolism-and nitrogen balance trials with mink. Acta Agric. Scand. 1973, 23, 3–4. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; The Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Hansen, N.; Finne, L.; Skrede, A.; Tauson, A. Energy Supply for the Mink and the Fox; NJF Report; Nordic Association of Agricultural Scientists: Copenhagen, Denmark, 1991; Volume 59. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Nielsen, A.C.; Rahmel, H.A. Statistical Analysis System. US Patent 2,501,080, 21 March 1950. [Google Scholar]
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Influence of dietary calcium concentrations and the calcium-to-non-phytate phosphorus ratio on growth performance, bone characteristics, and digestibility in broilers. Poult. Sci. 2017, 96, 2795–2803. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.R.; Raju, M.V.L.N.; Reddy, M.R.; Pavani, P. Interaction between dietary calcium and non-phytate phosphorus levels on growth, bone mineralization and mineral excretion in commercial broilers—ScienceDirect. Anim. Feed Sci. Technol. 2006, 131, 135–150. [Google Scholar]
- Council, N.R. Mineral Tolerance of Animals: 2005; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Kwakkel, R.P.; Abdollahi, M.R.; Bootwalla, S.M. Investigation of the interaction between separate calcium feeding and phytase supplementation on growth performance, calcium intake, nutrient digestibility and energy utilisation in broiler starters. Anim. Feed Sci. Technol. 2016, 219, 48–58. [Google Scholar]
- Shafey, T.M.; Mcdonald, M.W. The effects of dietary calcium, phosphorus, and protein on the performance and nutrient utilization of broiler chickens. Poult. Sci. 1991, 70, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Varley, P.F.; Callan, J.J.; Feedence, J.V.O.D. Effect of dietary phosphorus and calcium level and phytase addition on performance, bone parameters, apparent nutrient digestibility, mineral and nitrogen utilization of weaner pigs and the subsequent effect on finisher pig bone parameters. Anim. Feed Sci. Technol. 2011, 165, 201–209. [Google Scholar] [CrossRef]
- Dahlman, T.; Valaja, J.; Jalava, T.; Skrede, A. Growth and fur characteristics of blue foxes (Alopex lagopus) fed diets with different protein levels and with or without DL-methionine supplementation in the growing-furring period. Can. J. Anim. Sci. 2003, 83, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Bribiesca, E.; Turgeon, S.L.; Britten, M.J. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. J. Dairy Sci. 2017, 100, 2454–2470. [Google Scholar] [CrossRef] [PubMed]
- Jongbloed, A.W. Phosphorus in the Feeding of Pigs: Effect of Diet on the Absorption and Retention of Phosphorus by Growing Pigs. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1987. [Google Scholar]
- Edwards, H.M. Dietary 1,25-dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens. J. Nutr. 1993, 123, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Waldroup, P.W.; Ammerman, C.B.; Harms, R.H. The Relationship of Phosphorus, Calcium, and Vitamin D3 in the Diet of Broiler-Type Chicks. Poult. Sci. 1963, 42, 982–989. [Google Scholar] [CrossRef]
- Liem, A.; Pesti, G.; Edwards, H.M., Jr. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks. Poult. Sci. 2008, 87, 689–693. [Google Scholar] [CrossRef]
- Rafacz-Livingston, K.A.; Parsons, C.M.; Jungk, R.A. The effects of various organic acids on phytate phosphorus utilization in chicks. Poult. Sci. 2005, 84, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, S.; Paul, G. The response of plasma alkaline phosphatase, parathyroids and blood and bone minerals to calcium intake in the fowl. J. Nutr. 1961, 73, 177–185. [Google Scholar] [CrossRef]
- He, W.; Zhang, X.; Liu, P.; Feng, J.; Qi, S. The influence of experimental rickets upon alkaline phosphatase activity of the serum, bone, intestine, kidney and liver in the chickens. Chin. J. Anim. Vet. Sci. 1987, 281, 5315–5321. [Google Scholar]
- Wang, F.; Zhang, M.; Chen, Q.; Xu, M. The effects of dietary phosphorus and calcium to phosphorus ratio on the activity of alkaline phosphatase and serum calcium and phosphorus in miniature-pigs (Xiang pig). Acta Zoonutrimenta Sin. 2002, 13, 36–42. [Google Scholar]
- Liem, A. Dietary Factors Influencing Calcium and Phosphorus Utilization by Broiler Chicks. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2009. [Google Scholar]
- Marie, P.J.; Pettifor, J.M.; Ross, F.P.; Glorieux, F.H. Histological osteomalacia due to dietary calcium deficiency in children. N. Engl. J. Med. 1982, 307, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Pu, F.; Chen, N.; Xue, S. Calcium intake, calcium homeostasis and health. Food Sci. Hum. Well. 2016, 5, 8–16. [Google Scholar] [CrossRef]
- Cline, J. Calcium and Vitamin D Metabolism, Deficiency, and Excess. Top Companion Anim. Med. 2012, 27, 159–164. [Google Scholar] [CrossRef]
Items | Groups | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | Ⅸ | |
Ingredients (%) | |||||||||
Extruded corn | 39.8 | 39.8 | 39.8 | 38.2 | 38.2 | 38.2 | 36.3 | 36.3 | 36.3 |
Soybean meal | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
DDGS | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Corn protein meal | 11.3 | 11.3 | 11.3 | 11.5 | 11.5 | 11.5 | 12.0 | 12.0 | 12.0 |
Fish meal | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Chicken meal | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
CaHPO4 | 0.0 | 0.0 | 0.0 | 1.4 | 1.4 | 1.4 | 2.8 | 2.8 | 2.8 |
Limestone | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Soybean oil | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Premix a | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Chemical composition of diet | |||||||||
ME b (MJ kg−1) | 14.1 | 14.1 | 14.1 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 |
CP (%) | 30.2 | 30.2 | 30.2 | 30.2 | 30.2 | 30.2 | 30.3 | 30.3 | 30.3 |
Lys (%) | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
Met (%) | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
EE c (%) | 10.8 | 10.8 | 10.8 | 10.6 | 10.6 | 10.6 | 10.7 | 10.7 | 10.7 |
Ca (%) | 0.8 | 0.8 | 0.8 | 1.2 | 1.2 | 1.2 | 1.6 | 1.6 | 1.6 |
Total P (%) | 0.6 | 0.6 | 0.6 | 0.9 | 0.9 | 0.9 | 1.1 | 1.1 | 1.1 |
Ca/P | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
VD3 d (IU kg−1) | 1327 | 2327 | 4327 | 1327 | 2327 | 4327 | 1327 | 2327 | 4327 |
Items | Ca Level (%) | VD3 * Level (IU·kg−1) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
106–120 days (kg) | 0.72 | 0.77 | 0.72 | 0.75 | 0.73 | 0.73 | 0.024 | 0.310 | 0.858 | 0.075 |
121–135 days (kg) | 0.45 a | 0.34 b | 0.40 ab | 0.45 a | 0.41 a | 0.34 b | 0.013 | 0.002 | 0.001 | <0.001 |
136–150 days (kg) | 0.43 a | 0.32 b | 0.34 b | 0.38 | 0.35 | 0.36 | 0.012 | <0.001 | 0.510 | 0.361 |
Items | Ca Level (%) | VD3 * Level (IU·kg−1) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
DM digestibility (%) | 69.20 a | 67.28 b | 64.85 c | 67.92 | 66.51 | 66.86 | 9.092 | <0.001 | 0.257 | 0.562 |
CP digestibility (%) | 69.98 | 68.12 | 68.05 | 68.70 | 68.28 | 69.22 | 15.914 | 0.176 | 0.726 | 0.825 |
EE ** digestibility (%) | 90.48 b | 91.94 a | 91.52 a | 91.84 a | 90.34 b | 91.33 a | 1.989 | 0.007 | 0.023 | 0.002 |
CHO *** digestibility (%) | 71.42 a | 70.69 ab | 68.98 b | 71.64 | 69.89 | 69.52 | 13.835 | 0.007 | 0.119 | 0.265 |
Items | Ca Level (%) | VD3 * Level (IU·kg−1) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
N intake (g d−1) | 13.82 a | 13.39 b | 13.29 b | 13.32 b | 13.36 b | 13.96 a | 0.025 | <0.001 | <0.001 | <0.001 |
Urinary N (g d−1) | 3.89 | 3.62 | 3.46 | 3.74 | 3.64 | 3.64 | 0.968 | 0.368 | 0.896 | 0.599 |
Fecal N (g d−1) | 4.02 b | 4.34 a | 4.20 ab | 4.15 | 4.18 | 4.22 | 0.176 | 0.042 | 0.803 | 0.607 |
N deposition (g d−1) | 5.95 a | 5.47 ab | 5.38 b | 5.68 | 5.48 | 5.76 | 0.584 | 0.046 | 0.357 | 0.192 |
NPU ** (%) | 46.12 a | 42.28 b | 41.97 b | 42.41 | 44.20 | 43.04 | 17.528 | 0.036 | 0.916 | 0.252 |
BV *** of protein (%) | 60.82 a | 57.14 b | 56.75 b | 56.49 b | 58.44 ab | 60.38 a | 15.667 | 0.015 | 0.048 | 0.231 |
Items | Ca Level (%) | VD3 * Level (IU·kg−1) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
Fecal Ca (g·d−1) | 2.79 c | 3.80 b | 4.80 a | 3.87 | 3.71 | 3.76 | 0.103 | <0.001 | 0.375 | 0.122 |
Fecal P (g·d−1) | 1.36 c | 1.88 b | 2.54 a | 1.92 | 1.92 | 1.92 | 0.015 | <0.001 | 0.704 | 0.071 |
Ca digestibility (%) | −4.99 | −8.40 | −11.65 | −9.43 | −6.93 | −8.56 | 1.579 | 0.053 | 0.699 | <0.001 |
P digestibility (%) | 31.50 a | 20.89 b | 17.60 c | 23.90 | 23.53 | 22.54 | 0.922 | <0.001 | 0.740 | 0.012 |
Items | Ca Level (%) | VD3 * Level (IU·kg−1) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
TP ** (g L−1) | 56.32 | 55.80 | 54.12 | 54.03 b | 56.47 a | 55.84 ab | 15.369 | 0.136 | 0.008 | 0.850 |
Serum Ca (mmol L−1) | 2.46 | 2.57 | 2.50 | 2.50 | 2.49 | 2.55 | 0.082 | 0.377 | 0.741 | 0.035 |
Serum P (mmol L−1) | 1.70 | 1.72 | 1.63 | 1.74 | 1.67 | 1.64 | 0.048 | 0.292 | 0.245 | 0.304 |
ALP *** (U L−1) | 53.84 | 58.40 | 56.71 | 56.17 | 59.08 | 53.90 | 1.494 | 0.446 | 0.320 | 0.147 |
Items | Ca Level (%) | VD3 * Level (IU·kg−1) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
PTH ** (pg. ml−1) | 18.56 a | 18.18 a | 16.79 b | 17.48 | 17.65 | 18.50 | 2.900 | 0.003 | 0.072 | <0.001 |
CT *** (pg. ml−1) | 15.42 a | 13.06 b | 12.78 b | 15.34 a | 14.18 b | 11.79 c | 3.095 | <0.001 | <0.001 | <0.001 |
25-OH-D3 (ng ml−1) | 8.69 | 8.62 | 9.00 | 8.89 a | 8.18 b | 9.15 a | 0.652 | 0.361 | <0.001 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Du, Z.; Xu, Y.; Bai, X.; Li, G. Requirements and Metabolism for Calcium, Phosphorus and Vitamin D3 in the Growing–Furring Blue Foxes. Animals 2022, 12, 2776. https://doi.org/10.3390/ani12202776
Li T, Du Z, Xu Y, Bai X, Li G. Requirements and Metabolism for Calcium, Phosphorus and Vitamin D3 in the Growing–Furring Blue Foxes. Animals. 2022; 12(20):2776. https://doi.org/10.3390/ani12202776
Chicago/Turabian StyleLi, Ting, Zhiheng Du, Yinan Xu, Xiujuan Bai, and Guangyu Li. 2022. "Requirements and Metabolism for Calcium, Phosphorus and Vitamin D3 in the Growing–Furring Blue Foxes" Animals 12, no. 20: 2776. https://doi.org/10.3390/ani12202776
APA StyleLi, T., Du, Z., Xu, Y., Bai, X., & Li, G. (2022). Requirements and Metabolism for Calcium, Phosphorus and Vitamin D3 in the Growing–Furring Blue Foxes. Animals, 12(20), 2776. https://doi.org/10.3390/ani12202776