Application of Electroencephalography in Preslaughter Management: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Stress Response Pathway
Pain, Fear, and Distress during Slaughter: A Significant Threat to Animal Welfare
- Transmission of nervous impulses by myelinated fibers at high speed (12–30 m/s) in case of “first pain” or “throbbing pain”.
- Signal transmission from polymodal nociceptors through unmyelinated nerve fibers of Type C at slow velocity (0.5–2 m/s) is responsible for “second pain,” such as visceral pain/burning and penetrating pain.
- Type A nerve fibers transmit impulses at a speed of 50 m/s. These are activated under a low stimulus threshold under pre-sensitized conditions such as touch/pressure.
- The incision transects skin, connective tissues, muscle, veins, arteries, and sensory nerves having nociceptive nerves.
- The incised soft tissue is sensitive to noxious stimuli.
- Transecting these tissues and nerves will induce a barrage of impulses transmitting and processing in the brain as the perception of acute pain.
- Initiating the inflammatory reactions due to cell damage leads to the formation of eicosanoids activating pain pathways.
3. State of Unconsciousness: Crucial Window for Interventions
4. Electroencephalography
4.1. Subdermal vs. Epidural EEG
4.2. EEG Spectrum Variables
4.3. EEG Spectral and Behavioral Parameters
4.4. Stages of EEG during the Process of Unconsciousness
4.5. Evoked Response
5. EEG Application in Preslaughter Management
5.1. EEG Application in the Slaughter of Livestock
Minimal Anesthesia Model (MAM)
5.2. EEG Application in the Slaughter of Poultry
5.3. EEG Application in the Slaughter of Fish
6. Prospects and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathur, M.B.; Peacock, J.; Reichling, D.B.; Nadler, J.; Bain, P.A.; Gardner, C.D.; Robinson, T.N. Interventions to reduce meat consumption by appealing to animal welfare: Meta-analysis and evidence-based recommendations. Appetite 2021, 164, 105277. [Google Scholar] [CrossRef]
- Clonan, A.; Wilson, P.; Swift, J.A.; Leibovici, D.G.; Holdsworth, M. Red and processed meat consumption and purchasing behaviours and attitudes: Impacts for human health, animal welfare and environmental sustainability. Public Health Nutr. 2015, 18, 2446–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzo, G.; Barrasso, R.; Grimaldi, C.A.; Tantillo, G.; Roma, R. Consumer attitudes towards animal welfare and their willingness to pay. Vet. Ital. 2019, 55, 289–297. [Google Scholar] [PubMed]
- Kumar, P.; Mehta, N.; Abubakar, A.A.; Verma, A.K.; Kaka, U.; Sharma, N.; Sazili, A.Q.; Pateiro, M.; Kumar, M.; Lorenzo, J.M. Potential Alternatives of Animal Proteins for Sustainability in the Food Sector. Food Rev. Int. 2022, 1–26. [Google Scholar] [CrossRef]
- Kumar, P.; Abubakar, A.A.; Verma, A.K.; Umaraw, P.; Ahmed, M.A.; Mehta, N.; Hayat, M.N.; Kaka, U.; Sazili, A.Q. New insights in improving sustainability in meat production: Opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2022, 12, 1–29. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Sharma, S.; Mehta, N.; Verma, A.K.; Chemmalar, S.; Sazili, A.Q. In-vitro meat: A promising solution for sustainability of meat sector. J. Anim. Sci. Technol. 2021, 63, 693–724. [Google Scholar] [CrossRef]
- Sharma, M.; Kaur, S.; Kumar, P.; Mehta, N.; Umaraw, P.; Ghosh, S. Development, Prospects, and Challenges of Meat Analogs with Plant-Based Alternatives. In Recent Advances in Food Biotechnology; Springer Nature: Singapore, 2022; pp. 275–299. [Google Scholar]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Kumar, P.; Mehta, N.; Malav, O.P.; Verma, A.K.; Umraw, P.; Kanth, M.K. The Structure of Meat Analogs. Encycl. Food Chem. 2019, 105–109. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, M.; Abubakar, A.A.; Nizam bin Hayat, M.; Ahmed, M.A.; Kaka, U.; Sazili, A.Q. Soybean: Sustainability Issues. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Giri, K.; Jacobs, J.L.; Plozza, T.; Lewandowski, P.; Bekhit, A. The use of oxidative stress biomarkers in live animals (in vivo) to predict meat quality deterioration postmortem (in vitro) caused by changes in muscle biochemical components. J. Anim. Sci. 2017, 95, 3012. [Google Scholar] [CrossRef]
- Veissier, I.; Aubert, A.; Boissy, A. Animal welfare: A result of animal background and perception of its environment. Anim. Front. 2012, 2, 7–15. [Google Scholar] [CrossRef] [Green Version]
- OIE. Introduction to the recommendations for animal welfare. Terr. Anim. Health. Code 2018, 1, 1–4. [Google Scholar]
- Wickham, S.L.; Collins, T.; Barnes, A.; Miller, D.; Beatty, D.T.; A Stockman, C.; Blache, D.; Wemelsfelder, F.; Fleming, P.A. Qualitative behavioral assessment of transport-naïve and transport-habituated sheep. J. Anim. Sci. 2012, 90, 4523–4535. [Google Scholar] [CrossRef] [Green Version]
- OIE. Chapter 7.1 Introduction to the Recommendations for Animal Welfare. 2021. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/2018/en/chapitre_aw_introduction.pdf (accessed on 29 July 2022).
- Korte, S.M.; Olivier, B.; Koolhaas, J.M. A new animal welfare concept based on allostasis. Physiol. Behav. 2007, 92, 422–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- Tilbrook, A.; Clarke, I. Neuroendocrine mechanisms of innate states of attenuated responsiveness of the hypothalamo-pituitary adrenal axis to stress. Front. Neuroendocr. 2006, 27, 285–307. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Depner, K.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Schmidt, C.G.; Michel, V.; et al. Welfare of cattle at slaughter. EFSA J. 2020, 18, e06275. [Google Scholar] [CrossRef] [PubMed]
- International Association for the Study of Pain IASP. IASP Announces Revised Definition of Pain. Available online: https://www.iasp-pain.org/publications/iasp-news/iasp-announces-revised-definition-of-pain/ (accessed on 8 July 2022).
- Vitali, M.; Bosi, P.; Santacroce, E.; Trevisi, P. The multivariate approach identifies relationships between pre-slaughter factors, body lesions, ham defects and carcass traits in pigs. PLoS ONE 2021, 16, e0251855. [Google Scholar] [CrossRef] [PubMed]
- Stockman, C.A.; McGilchrist, P.; Collins, T.; Barnes, A.L.; Miller, D.; Wickham, S.L.; Greenwood, P.L.; Cafe, L.M.; Blache, D.; Wemelsfelder, F.; et al. Qualitative Behavioural Assessment of Angus steers during pre-slaughter handling and relationship with temperament and physiological responses. Appl. Anim. Behav. Sci. 2012, 142, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Machado, S.T.; Santos, R.C.; Caldara, F.R.; Gonçalves, M.C.; Nääs, I. de A. Integrated multivariate analysis to evaluate effects of pre-slaughter handling on pork quality. Eng. Agrícola 2014, 34, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Verma, A.K.; Umaraw, P.; Mehta, N.; Sazili, A.Q. Processing and preparation of slaughtered poultry. In Postharvest and Postmortem Processing of Raw Food Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 281–314. [Google Scholar]
- Verma, A.K.; Umaraw, P.; Kumar, P.; Mehta, N.; Sazili, A.Q. Processing of red meat carcasses. In Postharvest and Postmortem Processing of Raw Food Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 243–280. [Google Scholar]
- Grandin, T. Making Slaughterhouses More Humane for Cattle, Pigs, and Sheep. Annu. Rev. Anim. Biosci. 2013, 1, 491–512. [Google Scholar] [CrossRef]
- Tilbrook, A.J.; Ralph, C.R. Hormones, stress and the welfare of animals. Anim. Prod. Sci. 2018, 58, 408. [Google Scholar] [CrossRef]
- Sawchenko, P.E.; Li, H.-Y.; Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Prog. Brain Res. 2000, 122, 61–80. [Google Scholar]
- Moberg, G.P. Biological response to stress: Implications for animal welfare. In The Biology of Animal Stress; Moberg, G.P., Mench, J.A., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 123–146. [Google Scholar]
- Siegel, P.B.; Honaker, C.F. Impact of genetic selection for growth and immunity on resource allocations. J. Appl. Poult. Res. 2009, 18, 125–130. [Google Scholar] [CrossRef]
- Siegel, P.B.; Gross, W.B. Others General principles of stress and well-being. Livest. Handl. Transp. 2000, 27, 42. [Google Scholar]
- Mellor, D.J.; Cook, C.J.; Stafford, K.J. Quantifying some responses to pain as a stressor. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI: Wallingford, UK, 2000; pp. 171–198. [Google Scholar]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J. Clin. Investig. 2010, 120, 3779–3787. [Google Scholar] [CrossRef] [Green Version]
- Nachum, D. “Chapter 6: Pain Principles”. Neuroscience Online. Available online: https://nba.uth.tmc.edu/neuroscience/m/s2/chapter06.html (accessed on 26 August 2020).
- Dubin, A.E.; Patapoutian, A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig. 2010, 120, 3760–3772. [Google Scholar] [CrossRef] [Green Version]
- Dinakar, P.; Stillman, A.M. Pathogenesis of Pain. Semin. Pediatr. Neurol. 2016, 23, 201–208. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Napolitano, F.; Strappini, A.; Orihuela, A.; Ghezzi, M.D.; Hernández-Ávalos, I.; Mora-Medina, P.; Whittaker, A.L. Pain at the Slaughterhouse in Ruminants with a Focus on the Neurobiology of Sensitisation. Animals 2021, 11, 1085. [Google Scholar] [CrossRef]
- Bell, A. The neurobiology of acute pain. Vet. J. 2018, 237, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Becerril-Herrera, M.; Alonso-Spilsbury, M.; Ortega, M.E.T.; Guerrero-Legarreta, I.; Ramírez-Necoechea, R.; Roldan-Santiago, P.; Pérez-Sato, M.; Soní-Guillermo, E.; Mota-Rojas, D. Changes in blood constituents of swine transported for 8 or 16h to an Abattoir. Meat Sci. 2010, 86, 945–948. [Google Scholar] [CrossRef]
- Wigham, E.E.; Butterworth, A.; Wotton, S. Assessing cattle welfare at slaughter—Why is it important and what challenges are faced? Meat Sci. 2018, 145, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, D.L. Physiology of Pain. Crit. Care Nurs. Clin. N. Am. 2017, 29, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.A. Peripheral mechanisms of cutaneous nociception. Wall Melzack’s Textb. Pain 2006, 17, 190–198. [Google Scholar]
- Johnson, C.; Mellor, D.; Hemsworth, P.; Fisher, A. A scientific comment on the welfare of domesticated ruminants slaughtered without stunning. N. Z. Vet. J. 2015, 63, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.B.; Sylvester, S.P.; Stafford, K.J.; Mitchinson, S.L.; Ward, R.N.; Mellor, D.J. Effects of age on the electroencephalographic response to castration in lambs anaesthetized with halothane in oxygen from birth to 6 weeks old. Vet. Anaesth. Analg. 2009, 36, 273–279. [Google Scholar] [CrossRef]
- Mellor, D.J.; Thornber, P.M.; Bayvel, D.A.C.; Kahn, S. Scientific Assessment and Management of Animal Pain; OIE (World Organisation for Animal Health): Paris, France, 2008; ISBN 9290447206. [Google Scholar]
- Gibson, T.; Johnson, C.; Murrell, J.; Hulls, C.; Mitchinson, S.; Stafford, K.; Johnstone, A.; Mellor, D. Electroencephalographic responses of halothane-anaesthetised calves to slaughter by ventral-neck incision without prior stunning. N. Z. Vet. J. 2009, 57, 77–83. [Google Scholar] [CrossRef]
- Gibson, T.; Johnson, C.; Murrell, J.; Mitchinson, S.; Stafford, K.; Mellor, D. Electroencephalographic responses to concussive non-penetrative captive-bolt stunning in halothane-anaesthetised calves. N. Z. Vet. J. 2009, 57, 90–95. [Google Scholar] [CrossRef]
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.-D.; Zubieta, J.-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 2005, 9, 463–484. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). The use of animal-based measures at slaughter for assessing the welfare of calves on farm: EFSA’s AHAW Network exercise. EFSA Support. Publ. 2021, 18, 7042E. [Google Scholar] [CrossRef]
- Gamez, D. Conscious Sensation, Conscious Perception and Sensorimotor Theories of Consciousness. In Contemporary Sensorimotor Theory; Springer: Cham, Switzerland, 2014; pp. 159–174. [Google Scholar]
- Zeman, A. What in the world is consciousness? Prog. Brain Res. 2005, 150, 1–10. [Google Scholar]
- EFSA. Panel on Animal Health and Welfare (AHAW) Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to standards for the microclimate inside animal road transport vehicles. EFSA J. 2004, 2, 122. [Google Scholar] [CrossRef]
- Damasio, A.R. Self Comes to Mind: Constructing the Conscious Brain; Vintage: New York, NY, USA, 2012. [Google Scholar]
- Terlouw, C.; Bourguet, C.; Deiss, V. Consciousness, unconsciousness and death in the context of slaughter. Part II. Evaluation methods. Meat Sci. 2016, 118, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Terlouw, C.; Bourguet, C.; Deiss, V. Consciousness, unconsciousness and death in the context of slaughter. Part I. Neurobiological mechanisms underlying stunning and killing. Meat Sci. 2016, 118, 133–146. [Google Scholar] [CrossRef]
- Laureys, S.; Owen, A.M.; Schiff, N.D. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004, 3, 537–546. [Google Scholar] [CrossRef]
- Rodriguez, P.; Velarde, A.; Dalmau, A.; Llonch, P. Assessment of unconsciousness during slaughter without stunning in lambs. Anim. Welf. 2012, 21, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Gerritzen, M.A.; Verhoeven, M.T.W.; Kluivers-Poodt, M.; Reimert, H.G.M.; Anjema, D. Progress Report Validation of Parameters to Examine Unconsciousness; Validation of Parameters Used to Assess Consciousness in Sheep at Slaughter; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Gregory, N.G.; Grandin, T. Animal Welfare and Meat Production; Gregory, N.G., Grandin, T., Eds.; CABI: Wallingford, UK, 2007; ISBN 9781845932152. [Google Scholar]
- Rosen, S.D. Physiological insights into shechita. Vet. Rec. 2004, 154, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Grandin, T. Euthanasia and slaughter of livestock. J. Am. Vet. Med. Assoc. 1994, 204, 1354. [Google Scholar]
- Muñoz, D.; Strappini, A.; Gallo, C. Indicadores de bienestar animal para detectar problemas en el cajón de insensibilización de bovinos. Arch. Med. Vet. 2012, 44, 297–302. [Google Scholar] [CrossRef]
- Driessen, B. Pain: From sign to disease. Clin. Tech. Equine Pract. 2007, 6, 120–125. [Google Scholar] [CrossRef]
- Driessen, B. Pain: Systemic and local/regional drug therapy. Clin. Tech. Equine Pract. 2007, 6, 135–144. [Google Scholar] [CrossRef]
- Johnson, C.; Gibson, T.; Stafford, K.; Mellor, D. Pain perception at slaughter. Anim. Welf. 2012, 21, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Murrell, J.C.; Johnson, C.B. Neurophysiological techniques to assess pain in animals. J. Vet. Pharmacol. Ther. 2006, 29, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Cwynar, P.; Kołacz, R.; Walerjan, P. Electroencephalographic recordings of physiological activity of the sheep cerebral cortex. Pol. J. Vet. Sci. 2014, 17, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaka, U.; Cheng, C.H.; Meng, G.Y.; Fakurazi, S.; Kaka, A.; Behan, A.A.; Ebrahimi, M. Electroencephalographic Changes Associated with Antinociceptive Actions of Lidocaine, Ketamine, Meloxicam, and Morphine Administration in Minimally Anaesthetized Dogs. Biomed. Res. Int. 2015, 2015, 305367. [Google Scholar] [CrossRef] [PubMed]
- Ball, T.; Kern, M.; Mutschler, I.; Aertsen, A.; Schulze-Bonhage, A. Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage 2009, 46, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.F.; Bolger, D.J. The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology 2014, 51, 1061–1071. [Google Scholar] [CrossRef]
- Duun-Henriksen, J.; Kjaer, T.W.; Madsen, R.E.; Jespersen, B.; Duun-Henriksen, A.K.; Remvig, L.S.; Thomsen, C.E.; Sorensen, H.B.D. Subdural to subgaleal EEG signal transmission: The role of distance, leakage and insulating affectors. Clin. Neurophysiol. 2013, 124, 1570–1577. [Google Scholar] [CrossRef]
- Silva, A.C.D.S.; Arce, A.I.C.; Souto, S.; Costa, E.J.X. A wireless floating base sensor network for physiological responses of livestock. Comput. Electron. Agric. 2005, 49, 246–254. [Google Scholar] [CrossRef]
- Llonch, P.; Rodríguez, P.; Jospin, M.; Dalmau, A.; Manteca, X.; Velarde, A. Assessment of unconsciousness in pigs during exposure to nitrogen and carbon dioxide mixtures. Animal 2013, 7, 492–498. [Google Scholar] [CrossRef]
- Verhoeven, M.T.W.; Gerritzen, M.A.; Kluivers-Poodt, M.; Hellebrekers, L.J.; Kemp, B. Validation of behavioural indicators used to assess unconsciousness in sheep. Res. Vet. Sci. 2015, 101, 144–153. [Google Scholar] [CrossRef]
- Rault, J.-L.; Kells, N.; Johnson, C.; Dennis, R.; Sutherland, M.; Lay, D.C. Nitrous oxide as a humane method for piglet euthanasia: Behavior and electroencephalography (EEG). Physiol. Behav. 2015, 151, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Watanabe, Y.; Nemoto, T.; Kasuya, E.; Sakumoto, R. Radiotelemetry recording of electroencephalogram in piglets during rest. Physiol. Behav. 2005, 84, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.-L.; Lai, A.; Hemsworth, L.; Le Chevoir, M.; Bauquier, S.; Gates, R.S.; Lay, D.C. Wireless ‘under the skull’ epidural EEG and behavior in piglets during nitrous oxide or carbon dioxide gas euthanasia. Physiol. Behav. 2020, 227, 113142. [Google Scholar] [CrossRef] [PubMed]
- Bauquier, S.H.; Jiang, J.L.; Lai, A.; Cook, M.J. Clonic Seizures in GAERS Rats after Oral Administration of Enrofloxacin. Comp. Med. 2016, 66, 220–224. [Google Scholar] [PubMed]
- McKeegan, D.E.F.; Mclntyre, J.A.; Demmers, T.G.M.; Lowe, J.C.; Wathes, C.; Van Den Broek, P.L.C.; Coenen, A.M.L.; Gentle, M.J. Physiological and behavioural responses of broilers to controlled atmosphere stunning: Implications for welfare. Anim. Welf. 2007, 16, 409. [Google Scholar]
- Perentos, N.; Nicol, A.U.; Martins, A.Q.; Stewart, J.E.; Taylor, P.; Morton, A.J. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J. Neurosci. Methods 2017, 279, 87–100. [Google Scholar] [CrossRef]
- Sabow, A.B.; Goh, Y.M.; Zulkifli, I.; Kadir, M.Z.A.; Kaka, U.; Adeyemi, K.D.; Abubakar, A.A.; Imlan, J.C.; Ebrahimi, M.; Sazili, A.Q. Electroencephalographic and blood parameters changes in anaesthetised goats subjected to slaughter without stunning and slaughter following different electrical stunning methods. Anim. Prod. Sci. 2019, 59, 849–860. [Google Scholar] [CrossRef]
- Sabow, A.B.; Zulkifli, I.; Goh, Y.M.; Ab Kadir, M.Z.A.; Kaka, U.; Imlan, J.C.; Abubakar, A.A.; Adeyemi, K.D.; Sazili, A.Q. Bleeding efficiency, microbiological quality and oxidative stability of meat from goats subjected to slaughter without stunning in comparison with different methods of pre-slaughter electrical stunning. PLoS ONE 2016, 12, e0178890. [Google Scholar] [CrossRef] [Green Version]
- Schomer, D.L.; da Silva, F.H.L. Niedermeyer’s Electroencephalography; Schomer, D.L., Lopes da Silva, F.H., Eds.; Oxford University Press: Oxford, UK, 2017; Volume 1, ISBN 9780190228484. [Google Scholar]
- Abhang, P.A.; Gawali, B.; Mehrotra, S. Introduction to EEG-and Speech-Based Emotion Recognition; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Nayak, C.S.; Anilkumar, A.C. EEG Normal Sleep; Statpearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Verhoeven, M.; Gerritzen, M.; Velarde, A.; Hellebrekers, L.; Kemp, B. Time to loss of consciousness and its relation to behavior in slaughter pigs during stunning with 80 or 95% carbon dioxide. Front. Vet. Sci. 2016, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- McKeegan, D.E.F.; Sandercock, D.A.; Gerritzen, M.A. Physiological responses to low atmospheric pressure stunning and the implications for welfare. Poult. Sci. 2013, 92, 858–868. [Google Scholar] [CrossRef] [PubMed]
- EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare). Guidance on the assessment criteria for studies evaluating the effectiveness of stunning interventions regarding animal protection at the time of killing. EFSA J. 2013, 11, 3486. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.B.; Taylor, P.M. Comparison of the effects of halothane, isoflurane and methoxyflurane on the electroencephalogram of the horse. Br. J. Anaesth. 1998, 81, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R. Physiologic Measures of Animal Stress during Transitional States of Consciousness. Animals 2015, 5, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Lambooij, E.; van der Werf, J.T.N.; Reimert, H.G.M.; Hindle, V.A. Restraining and neck cutting or stunning and neck cutting of veal calves. Meat Sci. 2012, 91, 22–28. [Google Scholar] [CrossRef]
- Lambooij, E.; Pilarczyk, M.; Bialowas, H.; van den Boogaart, J.G.M.; van de Vis, J.W. Electrical and percussive stunning of the common carp (Cyprinus carpio L.): Neurological and behavioural assessment. Aquac. Eng. 2007, 37, 171–179. [Google Scholar] [CrossRef]
- Lambooij, E.; Grimsbø, E.; van de Vis, J.; Reimert, H.; Nortvedt, R.; Roth, B. Percussion and electrical stunning of Atlantic salmon (Salmo salar) after dewatering and subsequent effect on brain and heart activities. Aquaculture 2010, 300, 107–112. [Google Scholar] [CrossRef]
- Lambooij, E.; van de Vis, J.; Kloosterboer, R.; Pieterse, C. Welfare aspects of live chilling and freezing of farmed eel (Anguilla anguilla L.): Neurological and behavioural assessment. Aquaculture 2002, 210, 159–169. [Google Scholar] [CrossRef]
- Kells, N.; Beausoleil, N.; Johnson, C.; Sutherland, M. Evaluation of Different Gases and Gas Combinations for On-Farm Euthanasia of Pre-Weaned Pigs. Animals 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Kells, N.; Beausoleil, N.; Sutherland, M.; Johnson, C. Electroencephalographic responses of anaesthetised pigs to intraperitoneal injection of sodium pentobarbital. Anim. Welf. 2018, 27, 205–214. [Google Scholar] [CrossRef]
- Dalla Costa, F.A.; Gibson, T.J.; Oliveira, S.E.O.; Gregory, N.G.; Coldebella, A.; Faucitano, L.; Ludtke, C.B.; Buss, L.P.; Dalla Costa, O.A. Evaluation of Blunt Force Trauma for Culling of Neonatal Piglets On-Farm. J. Anim. Sci. 2020, 98, skaa204. [Google Scholar] [CrossRef] [PubMed]
- Hartung, J.; von Müffling, T.; Nowak, B. Influence of CO2 stunning on EEG, catecholamines and clinical reflexes of slaughter pigs. In Proceedings of the 20th International Pig Veterinary Society Congress, Durban, South Africa, 22–26 June 2008; p. 265. [Google Scholar]
- Kells, N.; Beausoleil, N.; Sutherland, M.; Johnson, C. Post-natal development of EEG responses to noxious stimulation in pigs (Sus scrofa) aged 1–15 days. Anim. Welf. 2019, 28, 317–329. [Google Scholar] [CrossRef]
- Husheer, J.; Luepke, M.; Dziallas, P.; Waldmann, K.-H.; von Altrock, A. Electrocution as an alternative euthanasia method to blunt force trauma to the head followed by exsanguination for non-viable piglets. Acta Vet. Scand. 2020, 62, 67. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; White, P.J.; Hall, E.; Van der Saag, D.; Lomax, S. Evaluation of Electroencephalography, Behaviour and Eye Temperature in Response to Surgical Castration in Sheep. Animals 2021, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; White, P.J.; Mohler, V.L.; Lomax, S. Electroencephalography Can Distinguish between Pain and Anaesthetic Intervention in Conscious Lambs Undergoing Castration. Animals 2020, 10, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jongman, E.; Morris, J.; Barnett, J.; Hemsworth, P. EEG changes in 4-week-old lambs in response to castration, tail docking and mulesing. Aust. Vet. J. 2000, 78, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Kells, N.J.; Beausoleil, N.J.; Chambers, J.P.; Sutherland, M.A.; Morrison, R.S.; Johnson, C.B. Electroencephalographic responses of anaesthetized pigs (Sus scrofa) to tail docking using clippers or cautery iron performed at 2 or 20 days of age. Vet. Anaesth. Analg. 2017, 44, 1156–1165. [Google Scholar] [CrossRef]
- Gibson, T.; Johnson, C.; Murrell, J.; Chambers, J.; Stafford, K.; Mellor, D. Amelioration of electroencephalographic responses to slaughter by non-penetrative captive-bolt stunning after ventral-neck incision in halothane-anaesthetised calves. N. Z. Vet. J. 2009, 57, 96–101. [Google Scholar] [CrossRef]
- Johnson, C.; Stafford, K.; Sylvester, S.; Ward, R.; Mitchinson, S.; Mellor, D. Effects of age on the electroencephalographic response to castration in lambs anaesthetised using halothane in oxygen. N. Z. Vet. J. 2005, 53, 433–437. [Google Scholar] [CrossRef]
- Murrell, J.C.; White, K.L.; Johnson, C.B.; Taylor, P.M.; Doherty, T.J.; Waterman-Pearson, A.E. Investigation of the EEG effects of intravenous lidocaine during halothane anaesthesia in ponies. Vet. Anaesth. Analg. 2005, 32, 212–221. [Google Scholar] [CrossRef]
- Bergamasco, L.; Coetzee, J.F.; Gehring, R.; Murray, L.; Song, T.; Mosher, R.A. Effect of intravenous sodium salicylate administration prior to castration on plasma cortisol and electroencephalography parameters in calves. J. Vet. Pharmacol. Ther. 2011, 34, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.; Tolo, E.; Hektoen, L.; Haga, H. The effect of electrical head-to-chest stunning on the EEG in sheep. Anim. Welf. 2018, 27, 343–350. [Google Scholar] [CrossRef]
- Llonch, P.; Lambooij, E.; Reimert, H.; van de Vis, H. Assessing effectiveness of electrical stunning and chilling in ice water of farmed yellowtail kingfish, common sole and pike-perch. Aquaculture 2012, 364–365, 143–149. [Google Scholar] [CrossRef]
- Daskalova, A.H.; Bracke, M.B.M.; van de Vis, J.W.; Roth, B.; Reimert, H.G.M.; Burggraaf, D.; Lambooij, E. Effectiveness of tail-first dry electrical stunning, followed by immersion in ice water as a slaughter (killing) procedure for turbot (Scophthalmus maximus) and common sole (Solea solea). Aquaculture 2016, 455, 22–31. [Google Scholar] [CrossRef]
- Lambooij, B.; Bracke, M.; Reimert, H.; Foss, A.; Imsland, A.; van de Vis, H. Electrophysiological and behavioural responses of turbot (Scophthalmus maximus) cooled in ice water. Physiol. Behav. 2015, 149, 23–28. [Google Scholar] [CrossRef]
- Bergamasco, L.; Macchi, E.; Facello, C.; Badino, P.; Odore, R.; Re, G.; Osella, M.C. Electroencephalographic power spectral analysis of growing goat kids (Capra hircus). Small Rumin. Res. 2006, 66, 265–272. [Google Scholar] [CrossRef]
- Bergamasco, L.; Macchi, E.; Facello, C.; Badino, P.; Odore, R.; Pagliasso, S.; Bellino, C.; Osella, M.C.; Re, G. Effects of brief maternal separation in kids on neurohormonal and electroencephalographic parameters. Appl. Anim. Behav. Sci. 2005, 93, 39–52. [Google Scholar] [CrossRef]
- Gibson, T.; Johnson, C.; Stafford, K.; Mitchinson, S.; Mellor, D. Validation of the acute electroencephalographic responses of calves to noxious stimulus with scoop dehorning. N. Z. Vet. J. 2007, 55, 152–157. [Google Scholar] [CrossRef]
- Huotari, A.-M.; Koskinen, M.; Suominen, K.; Alahuhta, S.; Remes, R.; Hartikainen, K.M.; Jäntti, V. Evoked EEG patterns during burst suppression with propofol. Br. J. Anaesth. 2004, 92, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Hunter, A.M.; Leuchter, A.F.; Cook, I.A.; Abrams, M.; Siegman, B.E.; Furst, D.E.; Chappell, A.S. Brain Functional Changes and Duloxetine Treatment Response in Fibromyalgia: A Pilot Study. Pain Med. 2009, 10, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Graversen, C.; Olesen, S.S.; Olesen, A.E.; Steimle, K.; Farina, D.; Wilder-Smith, O.H.G.; Bouwense, S.A.W.; van Goor, H.; Drewes, A.M. The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices. Br. J. Clin. Pharmacol. 2012, 73, 363–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongara, K.; McIlhone, A.; Kells, N.; Johnson, C. Electroencephalographic evaluation of decapitation of the anaesthetized rat. Lab. Anim. 2014, 48, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Sabow, A.B.; Goh, Y.M.; Zulkifli, I.; Sazili, A.Q.; Kadir, M.Z.A.A.; Kaka, U.; Khadijah, N.; Adeyemi, K.D.; Ebrahimi, M. Electroencephalographic responses to neck cut and exsanguination in minimally anaesthetized goats. S. Afr. J. Anim. Sci. 2017, 47, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.-H.; Lee, J.-T. Stress and EEG. Converg. Hybrid. Inf. Technol. 2010, 27, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Raghazli, R.; Othman, A.H.; Kaka, U.; Abubakar, A.A.; Imlan, J.C.; Hamzah, H.; Sazili, A.Q.; Goh, Y.M. Physiological and electroencephalogram responses in goats subjected to pre-and during slaughter stress. Saudi J. Biol. Sci. 2021, 28, 6396–6407. [Google Scholar] [CrossRef]
- Imlan, J.C.; Kaka, U.; Goh, Y.-M.; Idrus, Z.; Awad, E.A.; Abubakar, A.A.; Ahmad, T.; Quaza Nizamuddin, H.N.; Sazili, A.Q. Effects of Slaughter Positions on Catecholamine, Blood Biochemical and Electroencephalogram Changes in Cattle Restrained Using a Modified Mark IV Box. Animals 2021, 11, 1979. [Google Scholar] [CrossRef]
- Imlan, J.C.; Kaka, U.; Goh, Y.-M.; Idrus, Z.; Awad, E.A.; Abubakar, A.A.; Ahmad, T.; Nizamuddin, H.N.Q.; Sazili, A.Q. Effects of Slaughter Knife Sharpness on Blood Biochemical and Electroencephalogram Changes in Cattle. Animals 2020, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, A.A.; Zulkifli, I.; Goh, Y.M.; Kaka, U.; Sabow, A.B.; Imlan, J.C.; Awad, E.A.; Othman, A.H.; Raghazli, R.; Mitin, H.; et al. Effects of Stocking and Transport Conditions on Physicochemical Properties of Meat and Acute-Phase Proteins in Cattle. Foods 2021, 10, 252. [Google Scholar] [CrossRef]
- Othman, A.; Goh, Y.M.; Mustapha, N.M.; Raghazli, R.; Kaka, U.; Imlan, J.C.; Abubakar, A.A.; Abdullah, R. Physiological and electroencephalographic changes in goats subjected to transportation, lairage, and slaughter. Anim. Sci. J. 2021, 92, e13610. [Google Scholar] [CrossRef]
- Zulkifli, I.; Goh, Y.M.; Norbaiyah, B.; Sazili, A.Q.; Lotfi, M.; Soleimani, A.F.; Small, A.H. Changes in blood parameters and electroencephalogram of cattle as affected by different stunning and slaughter methods in cattle. Anim. Prod. Sci. 2014, 54, 187. [Google Scholar] [CrossRef] [Green Version]
- Zulkifli, I.; Abubakar, A.A.; Sazili, A.Q.; Goh, Y.M.; Imlan, J.C.; Kaka, U.; Sabow, A.B.; Awad, E.A.; Othman, A.H.; Raghazali, R.; et al. The Effects of Sea and Road Transport on Physiological and Electroencephalographic Responses in Brahman Crossbred Heifers. Animals 2019, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Velarde, A.; Ruiz-De-La-Torre, J.L.; Rosello, C.; Fabrega, E.; Diestre, A.; Manteca, X. Assessment of return to consciousness after electrical stunning in lambs. Anim. Welf. 2002, 11, 333–341. [Google Scholar]
- Mason, A.; Tolo, E.; Haga, H.A. Non-invasive EEG measurement during electrical stunning of sheep. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–6. [Google Scholar]
- Small, A.; Lea, J.; Niemeyer, D.; Hughes, J.; McLean, D.; McLean, J.; Ralph, J. Development of a microwave stunning system for cattle 2: Preliminary observations on behavioural responses and EEG. Res. Vet. Sci. 2019, 122, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Barrera, I.C.; Albarracin, W.; Rojas, M.J. Electroencephalographic spectrum power of sheep’s brain after stunning. J. Appl. Anim. Res. 2014, 42, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Murrell, J.C.; Johnson, C.B.; White, K.L.; Taylor, P.M.; Haberham, Z.L.; Waterman-Pearson, A.E. Changes in the EEG during castration in horses and ponies anaesthetized with halothane. Vet. Anaesth. Analg. 2003, 30, 138–146. [Google Scholar] [CrossRef]
- Sabow, A.B.; Goh, Y.M.; Zulkifli, I.; Sazili, A.Q.; Kaka, U.; Kadi, M.Z.A.A.; Ebrahimi, M.; Nakyinsige, K.; Adeyemi, K.D. Blood parameters and electroencephalographic responses of goats to slaughter without stunning. Meat Sci. 2016, 121, 148–155. [Google Scholar] [CrossRef]
- Gibson, T.; Johnson, C.; Murrell, J.; Chambers, J.; Stafford, K.; Mellor, D. Components of electroencephalographic responses to slaughter in halothane-anaesthetised calves: Effects of cutting neck tissues compared with major blood vessels. N. Z. Vet. J. 2009, 57, 84–89. [Google Scholar] [CrossRef]
- Phanwanich, W.; Puanhvuan, D.; Tharawadeepimuk, K.; Wongsawat, Y. Field Study of Unconsciousness Monitoring in Poultry after Stunning Using Real-Time EEG Interpretation Method. Trans. Jpn. Soc. Med. Biol. Eng. 2013, 51, R-288. [Google Scholar] [CrossRef]
- La Vega, L.T.; Sato, D.; Piza, L.V.; Costa, E.J.X. Effect of electrical hybrid-frequency waterbath stunning on the spontaneous electroencephalogram (EEG) and electrocardiogram (ECG) of broilers. bioRxiv 2021. [Google Scholar] [CrossRef]
- Gibson, T.J.; Rebelo, C.B.; Gowers, T.A.; Chancellor, N.M. Electroencephalographic assessment of concussive non-penetrative captive bolt stunning of turkeys. Br. Poult. Sci. 2018, 59, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Brijs, J.; Sundell, E.; Hjelmstedt, P.; Berg, C.; Senčić, I.; Sandblom, E.; Axelsson, M.; Lines, J.; Bouwsema, J.; Ellis, M.; et al. Humane slaughter of African sharptooth catfish (Clarias gariepinus): Effects of various stunning methods on brain function. Aquaculture 2021, 531, 735887. [Google Scholar] [CrossRef]
- Grimsbø, E. Measuring Methods for Fish Welfare during Slaughter Based on Electrical Impedance, EEG, ECG and Blood Parameters. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2016. [Google Scholar]
- EFSA Panel on Animal Health and Welfare (AHAW). Scientific Opinion on the welfare of cattle kept for beef production and the welfare in intensive calf farming systems. EFSA J. 2012, 10, 2669. [Google Scholar] [CrossRef] [PubMed]
Wave Type/Variables | Frequency Bandwidth | Indication |
---|---|---|
Infra-slow oscillation (ISO) | <0.5 Hz | In neonates, neuronal connectivity in the early immature stage is associated with a cognitive task, motor movements, and orientation paradigm |
Delta | 0.5 to 4 Hz | During awake state indicates generalized encephalopathy and focal cerebral dysfunction, deep sleep |
Theta | 4–7 Hz | Drowsiness and early stage of sleep (N1 & N2), Heightened emotional state, and high theta waves indicate increased arousal and alertness |
Alpha | 8–12 Hz | High alpha activity correlates with auditory and visual stimulations with memory-related events |
Sigma | 12–14 Hz (slow) 14–14 Hz | In N2 sleep, also known as sleep spindles |
Beta | 13–30 Hz | Sedation increases the quantity and amplitude; Amplitude increases during drowsiness, and Increased brain activity increases the beta wave such as panic conditions |
High-frequency oscillation (HFO) | >30 Hz | Gamma- 30–80 kHz; Ripples 80–200 Hz; fast ripples 200–500 Hz; Epilepsy, fast ripples correlate with the local epileptogenicity of the brain tissue |
F50 | Median frequency | Increase the F50 upon noxious stimulation, pain during a cut, and decrease F50 following blood vessel incision. |
F95 | 95% spectral edge frequency | An increase in F95 upon ventral-neck incision is due mainly to noxious stimulation rather than an interruption of blood flow |
Ptot | The total area under the power spectrum curve | Immediate and significant though transient increase due to electric effects of contracture of the strap muscles of the neck; animals in relaxed state have lower total power (Ptot) |
Animal Particular | EEG Protocol | Findings | Remark | References |
---|---|---|---|---|
Pre-weaned, piglets, healthy, male, Landrace × large white, 17 days old | Conscious state, Exposure to CO2, Ar, 60% Ar:40% CO2 | Earlier isoelectric EEG and decreased Ptot in piglets exposed to CO2 | No proper EEG data due to vigorous escape behavior caused displacement of electrodes, voluntary and involuntary skeletal muscle activity | [96] |
Lightly anesthetized (halothane 1.2 ± 0.5% end-tidal tension) with neuromuscular blocking agent (atracurium, 1 mg/kg) Exposure to CO2, Ar, 60% Ar:40% CO2 | Absence of nociceptive response in 100% CO2 prior to the onset of transitional EEG waveform | In welfare terms, 100% Ar is preferred for on-farm euthanasia of piglets over 100% CO2 | ||
Pig, white line, entire male, age 10–15 days | MAM, 3–4% halothane delivery during induction with 0.95–1.05% end-tidal concentration | Increased F50 and decreased Ptot after tail docking and pentobarbital injection; Conscious pig perceive IP sodium pentobarbital as painful/irritation to peritoneal and visceral organs prior to loss of consciousness | EEG nociceptive response in anesthetized pigs to intraperitoneal pentobarbital injections (250 mg/kg) | [97] |
Pigs, 93 kg live weight | exposed to CO2 & N2 combinations, Index of consciousness (IoC), and ESR | Gasping, loss of balance, and muscular excitation before reaching the stage of insensibility, period of reaching unconsciousness was higher with pigs showing less aversion while using N2/CO2 gas mixture | A significant decrease (p < 0.05) in brain activity (index of consciousness IoC *) 37.6 s after exposure to 90% CO2; significantly earlier than N2 and CO2 and N2 combinations | [73] |
Pigs, female, age 10 days | MAM with halothane end-tidal concentration of 1.2 ± 0.5%, I/V atracurium (1 mg/kg) N2O, and air mixture | 90% N2O induced isoelectric EEG in 71 s; behavioral changes reflect the differences in animals’ perceptive experience rather than motor function | Nitric oxide (90%) application in euthanizing piglets less | [75] |
Piglets, pre-pubertal, female, 3 week old | Telemetric implants of electrodes in epidural/under the skull (above dura matter) through holes in the skull | Paddling movements shortly before and during transitional EEG, gasping occurred even after isoelectric EEG, F50, and F95 positively correlated in inactive and exploratory behavior stage | Isoelectric EEG appeared after several minutes of loss of posture | [77] |
Piglets, neonate, 0.35–1.17 kg live weight | Blunt force trauma as a method of on-farm cull | Isoelectric reaching within 18–117 s (mean time 64.3 s), Decreased Ptot (45%), theta (30%), alpha (20%) and beta (15%) from pre-treatment 15 s post-impact | It can be effective if applied correctly but should not be promoted over more humane methods such as captive-bolt pistol | [98] |
Pigs | CO2 stunning in gondola dip-lift system | 80% CO2 for 70 s is not sufficient for proper stunning and reflecting delta wave activities | 90% CO2 should be applied for stunning pigs | [99] |
Piglets, 1–15 days old | MAM, tail cutting by pliers | Tail docking in 1-day-old piglets induced no significant change in EEG spectrum, and tail docking in 10 days old piglets induced typical nociceptive response (increased F50 and decreased Ptot) | The qualitative difference in pain perception with an increase in age. Tail docking and other painful operations should be undertaken within 7 days of birth | [100] |
Pigs, Pietrain × Large White × Landrace cross-breed, live weight 108 ± 9 kg | Exposure to high CO2 concentration, gondola dip-lift | Loss of posture 10 s before the EEG-based loss of consciousness, time to reach isoelectric EEG in pigs- 75 ± 23 s in 80% CO2 and 64 ± 32 s in 95% CO2 | Muscular contraction before the loss of consciousness | [87] |
Piglets, non-viable, 1–2 kg liveweight | Euthanizing piglets by electrocution after electric stunning | Cardiac arrest and isoelectric EEG induced within 3 min, application of electric current through the chest | Termination of rhythmic breathing an as the most obvious indicator of effective stunning and electrocution | [101] |
Species and Place | Anesthesia | Pre-Slaughter Handling/Stressor | Salient Findings | References |
---|---|---|---|---|
Angus’s calves, New Zealand | Halothane anesthetized | Ventral neck incision, no stunning | i. Neck cut as noxious stimuli in anesthetized calves; ii. Significantly change (p < 0.05) the F95 and Ptot during the 30 s following ventral-neck incision; iii. No gross histological or pathological signs | [46] |
Concussive non-penetrative captive-bolt stunning | i. Non-penetrative stunning significantly altered cerebrocortical function ii. Insensibility within 0–14 s iii. Ptot decreased after stunning and remained or immediate decrease then transient increase followed by a decrease | [47] | ||
Non-penetrative stunning 5 s after ventral neck cut | i. After the neck cut, there was a period of active EEG in some claves ii. Active EEG/functional cortical activity ceased after non-penetrative captive stunning | [106] | ||
Ventral neck incision with or without blood vessels severing, no stunning | i. EEG response following neck cut is due to noxious stimuli due to severing soft tissue and not due to alteration of blood flow to the brain ii. Cutting of neck tissue has more significant noxious stimuli than transacting blood vessels. iii. Transection of significant blood vessels in most animals decreased F50. iv. The F50/MF, F90, and Ptot varied with neck tissue transection | [136] | ||
Goats (Boer cross-bred)In Malaysia | Propofol (5 mg/kg) followed by halothane in 100% oxygen; End-tidal halothane of 0.85–0.95% | Neck cut and exsanguination | i. EEG (alpha, beta, delta, and theta waves, F50, Ptot) of goat slaughter with or without anesthesia comparable due to noxious stimuli of neck cut. ii. The presence of noxious stimuli and nociception did not alter the EEG and hormonal response | [121] |
Low to high-frequency head only and head-to-back electric stunning | i. Goats slaughtered without stunning had higher brain activity (alpha, beta, and delta wave oscillation), and F50 increased significantly, but Ptot remains comparable. ii. Post-slaughter reduction of the amplitude of EEG. | [81] | ||
Slaughter without stunning | i. Hormonal and EEG variables were not affected by slaughter methods (without stunning vs. minimally anesthetized) ii. Noxious stimuli of neck cut present in both conscious and minimally anesthetized goats iii. Slaughtering without stunning affected EEG variables due to the presence of post-slaughter noxious stimuli associated with the neck cut | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Abubakar, A.A.; Sazili, A.Q.; Kaka, U.; Goh, Y.-M. Application of Electroencephalography in Preslaughter Management: A Review. Animals 2022, 12, 2857. https://doi.org/10.3390/ani12202857
Kumar P, Abubakar AA, Sazili AQ, Kaka U, Goh Y-M. Application of Electroencephalography in Preslaughter Management: A Review. Animals. 2022; 12(20):2857. https://doi.org/10.3390/ani12202857
Chicago/Turabian StyleKumar, Pavan, Ahmed A. Abubakar, Awis Qurni Sazili, Ubedullah Kaka, and Yong-Meng Goh. 2022. "Application of Electroencephalography in Preslaughter Management: A Review" Animals 12, no. 20: 2857. https://doi.org/10.3390/ani12202857
APA StyleKumar, P., Abubakar, A. A., Sazili, A. Q., Kaka, U., & Goh, Y.-M. (2022). Application of Electroencephalography in Preslaughter Management: A Review. Animals, 12(20), 2857. https://doi.org/10.3390/ani12202857