Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Welfare Statement
2.2. Preparation of the Complete Feed Containing the Fermented Plant Fraction
2.3. Poultry Husbandry
2.4. Test Diet
2.5. Experimental Design
2.6. Growth Performance
2.7. Total Apparent Digestibility of the Feed Nutrients
2.8. Antioxidant Function
2.9. Cecal Microbial Composition
2.10. Meat Quality
2.11. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Total Apparent Digestibility of DM, CP, and GE
3.3. Meat Quality
3.4. Antioxidant Function
3.5. Intestinal Microbial Composition
4. Discussion
4.1. Growth Performance
4.2. Total Apparent Digestibility of DM, CP, and GE
4.3. Meat Quality
4.4. Antioxidant Function
4.5. Intestinal Microbial Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodarzi, B.F.; Senz, M.; Koz, O.K. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers. Animal 2017, 11, 1698–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, G.; Liang, N.; Zeng, M. Efects of fermented feed on global performance, intestinal microflora and PH value of broilers. Chin. J. Anim. Sci. 2013, 49, 51–54. [Google Scholar]
- Ni, Y.J.; Liang, Y.; Tian, D.D. Effects of fermented unconventional protein feed on growth performance and nutrient digestibility of broilers. Cereal Feed. Ind. 2012, 4, 56–59. [Google Scholar]
- Zhang, W.W.; Shao, S.L.; Xu, X.J.; Jia, Q.Y. The effect of adding potato residue fermented protein feed to the diet on the growth performance and meat quality of broilers. J. Sci. Norm. Univ. 2011, 31, 65–68. [Google Scholar]
- Zhang, Z.F.; Cho, J.H. Effects of Bacillus subtilis UBT-MO2 on growth performance, immune organ relative weight, fecal gas concentration and intestinal microbial shedding in broiler chickens. Livest Sci. 2013, 155, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Santoso, U.; Tanaka, K.; Ohtani, S. Effect of fermented product from bacillus subtilis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks. Asian Australas. J. Anim. Sci. 2001, 14, 333–337. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Wang, Y.Z.; Liu, J.X. Effects of Fermented Soybean Meal on Digestive Enzyme Activities and Intestinal Morphology in Broilers. Poult. Sci. 2007, 86, 1149–1154. [Google Scholar] [CrossRef]
- Yang, A.; Zuo, L.L.; Cheng, Y. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food Funct. 2018, 3, 1039–1050. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.K. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Anim. Sci. J. 2018, 89, 1561–1571. [Google Scholar]
- Sugiharto, S.; Lauridsen, C.; Jensen, B.B. Gastrointestinal ecosystem and immunological responses in E.coli challenged pigs after weaning fed liquid diets containing whey permeate fermented with different lactic acid bacteria. Anim. Feed. Sci. Technol. 2015, 207, 278–282. [Google Scholar] [CrossRef]
- Ruan, J.J.; Huan, H.L.; Yan, J.S.; Zhao, Y.; Du, Y.F.; Tian, G.H.; Jia, D.H. Effects of rice bran oil on muscle quality, fatty acid composition and antioxidant function of broilers. J. Anim. Nutr. 2013, 25, 1976–1988. [Google Scholar]
- El-Hack, M.E.; Alagawany, M.; Arif, M. The uses of microbial phytase as a feed additive in poultry nutrition—A review. Ann. Anim. Sci. 2018, 18, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.Y.; Song, H.L. Determination and analysis of intramuscular fat and fatty acid content in part of poultry meat. J. Wuxi Univ. Light Ind. 2004, 33, 26–28. [Google Scholar]
- Wu, M.S.; Hu, D.Z.; Dai, Q.Z.; Zhu, G.H.; Zuo, X.H.; Huang, L.; Zhu, L. Effects of meat quality conditioners on the quality components of Duchangda fattening pork. J. Livest. Ecol. 2014, 35, 25–30. [Google Scholar]
- Wang, J.J.; Wang, S.X.; Lu, W.Q.; Hu, Y.Y. The effect of fermented feed on fat quality of growing and finishing pigs. Food Feed. Ind. 2010, 6, 59–62. [Google Scholar]
- Li, M.; Zhang, S.R.; He, K.L.; Zhang, C.C.; Wu, J.; Zhang, L.L. Effects of dephenolic cottonseed protein on the production performance and blood biochemical indexes of fattening pigs. Feed. Ind. 2012, 33, 38–40. [Google Scholar]
- Gungor, E.; Altop, A.; Erener, G. Effect of Raw and Fermented Grape Pomace on the Growth Performance, Antioxidant Status, Intestinal Morphology, and Selected Bacterial Species in Broiler Chicks. Animals 2021, 11, 364. [Google Scholar] [CrossRef]
- Gungor, E.; Altop, A.; Erener, G.; Coskun, I. Effect of raw and fermented pomegranate pomace on performance, antioxidant activity, intestinal microbiota and morphology in broiler chickens. Arch. Anim. Nutr. 2021, 75, 137–152. [Google Scholar] [CrossRef]
- Niu, Y.; Wan, X.L.; Zhang, X.H.; Zhao, L.G.; He, J.T.; Zhang, J.F.; Zhang, L.L. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality, and antioxidant status of breast and thigh muscles in broiler chickens. Poult. Sci. 2017, 96, 869–877. [Google Scholar] [CrossRef]
- Wang, C.C.; Lin, L.J.; Chao, Y.P.; Chiang, C.J.; Lee, M.T.; Chang, S.C.; Yu, B. Antioxidant molecular targets of wheat bran fermented by white rot fungi and its potential modulation of antioxidative status in broiler chickens. Br. Poult. Sci. 2017, 58, 262–271. [Google Scholar] [CrossRef]
- Song, Y.S.; Perez, V.G.; Pettigrew, J.E.; Martinez, V.C. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed. Sci. Technol. 2010, 159, 41–49. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, Y.; Xi, H.; Yu, H.; Zhu, Z.; Dai, S.; Ying, W. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult. Sci. 2019, 98, 4673–4684. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; Hsiao, S.H.; Wen, C.M. Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers. J. Appl. Anim. Res. 2019, 47, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.T.; Thuy, T.T.; Passoth, V.; Lindberg, J.E. Gut ecology, feed digestion and performance in weaned piglets fed liquid diets. Livest Sci. 2009, 125, 232–237. [Google Scholar] [CrossRef]
- Sun, H.; Tang, C.L.; Fang, X.H.; Yao, Y.F.; Wu, X.; Feng, J. Molecular Analysis of Intestinal Bacterial Microbiota of Broiler Chickens Fed Diets Containing Fermented Cottonseed Meal. Poult. Sci. 2013, 92, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, W.F.; Liu, S.Z. Probiotic fermented feed improved the production, health and nutrient utilisation of yellow-feathered broilers reared in high altitude in Tibet. Br. Poult. Sci. 2020, 61, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Kho, W.L.; You, S.H. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult. Sci. 2009, 88, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, L.; Krzyzanowski, J.; Wrona, Z.; Kostro, K.; Siwicki, A.K. The influence of nonspecific immunostimulation of pregnant sows on the immunological value of colostrum. Vet. Immunol. Immunopathol. 2002, 87, 89–95. [Google Scholar] [CrossRef]
- Kabir; Lutful, S.M. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M. A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Horng, Y.B.; Dybus, A. Bacillus licheniformis-Fermented Products Improve Growth Performance and Intestinal Gut Morphology in Broilers under Clostridium perfringens Challenge. J. Poult. Sci. 2020, 58, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S.; Ranjitkar, S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Yang, L.J.; Zeng, X.F.; Qiao, S.Y. Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Anim. Nutr. 2021, 7, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.H.; Gao, Z.X.; Zhuang, Z.W. Effects of two compound acidifiers on growth performance, digestive enzyme activities and intestinal flora of broilers. Poult. Sci. 2021, 1, 9–15. [Google Scholar]
- Sugiharto, S.; Widiastuti, E.; Isroli, I. Effect of feeding fermented mixture of cassava pulp and Moringa oleifera leaf meal on immune responses, antioxidative status, biochemistry indices, and intestinal ecology of broilers. Vet. World 2020, 13, 392–399. [Google Scholar] [CrossRef]
- Chen, Z.M.; Zheng, A.J.; Chang, W.H.; Cai, H.Y.; Liu, G.H. Effects of mixed fermentation feed of Lactobacillus plantarum and Bacillus subtilis on growth performance, slaughter performance and intestinal structure of broilers. China Anim. Husb. Vet. Med. 2020, 47, 3909–3916. [Google Scholar]
Items | Starter Stage (1–21 Days) | Finisher Stage (22–42 Days) | ||||||
---|---|---|---|---|---|---|---|---|
Corn | 59.27 | 56.31 | 53.34 | 50.38 | 63.32 | 60.15 | 56.99 | 53.82 |
Soybean meal | 29.01 | 27.56 | 26.11 | 24.66 | 22.22 | 21.11 | 20.00 | 18.89 |
Cottonseed meal | 2.00 | 1.90 | 1.80 | 1.70 | 3.00 | 2.85 | 2.70 | 2.55 |
Rapeseed meal | 2.00 | 1.90 | 1.80 | 1.70 | 3.00 | 2.85 | 2.70 | 2.55 |
Fermented feed | 0 | 5.00 | 10.00 | 15.00 | 0 | 5.00 | 10.00 | 15.00 |
Vegetable oil | 2.61 | 2.48 | 2.35 | 2.22 | 3.78 | 3.59 | 3.40 | 3.21 |
Salt | 0.35 | 0.33 | 0.32 | 0.30 | 0.35 | 0.33 | 0.32 | 0.30 |
Dicalcium Phosphate | 1.94 | 1.84 | 1.75 | 1.65 | 1.76 | 1.67 | 1.58 | 1.50 |
Stone powder | 1.12 | 1.06 | 1.01 | 0.95 | 1.00 | 0.95 | 0.90 | 0.85 |
Lysine Hydrochloride | 0.44 | 0.42 | 0.40 | 0.37 | 0.35 | 0.33 | 0.32 | 0.30 |
DL-methionine | 0.23 | 0.22 | 0.21 | 0.20 | 0.20 | 0.19 | 0.18 | 0.17 |
L-threonine | 0.13 | 0.12 | 0.12 | 0.11 | 0.16 | 0.15 | 0.14 | 0.14 |
L-tryptophan | - | - | - | - | 0.01 | 0.01 | 0.01 | 0.01 |
Betaine | 0.20 | 0.19 | 0.18 | 0.17 | 0.20 | 0.19 | 0.18 | 0.17 |
Choline Chloride | 0.20 | 0.19 | 0.18 | 0.17 | 0.15 | 0.14 | 0.14 | 0.13 |
TiO2 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Premix 1 | 0.13 | 0.12 | 0.12 | 0.11 | 0.13 | 0.12 | 0.12 | 0.11 |
Zeolite powder | 0.37 | 0.35 | 0.33 | 0.31 | 0.37 | 0.35 | 0.33 | 0.31 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutritional level 2 | ||||||||
Metabolizable energy (Mcal/kg) | 2972 | 3029 | 3048 | 3093 | 2910 | 2931 | 2953 | 2922 |
Crude protein (%) | 19.96 | 20.16 | 20.35 | 20.55 | 18.56 | 18.68 | 18.79 | 18.91 |
Ether extract (%) | 5.86 | 5.99 | 6.12 | 6.25 | 8.09 | 8.15 | 8.20 | 8.26 |
Crude fiber (%) | 2.88 | 2.81 | 2.74 | 2.66 | 2.79 | 2.76 | 2.73 | 2.71 |
Crude ash (%) | 4.76 | 4.85 | 4.92 | 5.00 | 4.09 | 4.13 | 4.16 | 4.20 |
Lysine (%) | 1.250 | 1.263 | 1.287 | 1.325 | 1.050 | 1.057 | 1.070 | 1.090 |
Methionine (%) | 0.500 | 0.505 | 0.515 | 0.530 | 0.450 | 0.453 | 0.459 | 0.467 |
Met + cystine (%) | 0.921 | 0.930 | 0.948 | 0.976 | 0.844 | 0.849 | 0.860 | 0.876 |
Threonine (%) | 0.760 | 0.768 | 0.783 | 0.806 | 0.720 | 0.725 | 0.734 | 0.747 |
Tryptophan (%) | 0.200 | 0.202 | 0.206 | 0.212 | 0.180 | 0.181 | 0.183 | 0.187 |
Calcium (%) | 1.000 | 1.010 | 1.030 | 1.060 | 0.900 | 0.906 | 0.917 | 0.934 |
Available phosphorus (%) | 0.450 | 0.455 | 0.463 | 0.477 | 0.420 | 0.423 | 0.428 | 0.436 |
1 to 21 Days | 22 to 42 Days | |||
---|---|---|---|---|
Items | Feed | Fermented Feed | Feed | Fermented Feed |
Crude Protein | 21.63 | 25.87 | 20.27 | 22.84 |
Ether Extract | 6.35 | 9.14 | 8.84 | 10.06 |
Crude Fiber | 3.12 | 1.54 | 3.05 | 2.46 |
Crude Ash | 5.16 | 6.83 | 4.47 | 5.28 |
Items | 0% | 5% | 10% | 15% | SEM | p-Value |
---|---|---|---|---|---|---|
1–21 days | ||||||
ADG, g | 41.08 | 41.07 | 42.37 | 40.45 | 1.97 | 0.202 |
ADFI, g | 55.17 | 55.34 | 55.53 | 54.99 | 2.18 | 0.925 |
FCR | 1.34 a | 1.35 a | 1.31 b | 1.36 a | 0.03 | 0.001 |
22–42 days | ||||||
ADG, g | 84.82 | 88.27 | 82.47 | 83.12 | 12.59 | 0.700 |
ADFI, g | 137.44 | 146.17 | 134.16 | 134.14 | 8.59 | 0.431 |
FCR | 1.62 | 1.66 | 1.65 | 1.61 | 1.10 | 0.176 |
1–42 days | ||||||
ADG, g | 62.95 b | 64.67 a | 62.42 b | 61.79 b | 4.37 | 0.026 |
ADFI, g | 96.31 b | 100.76 a | 94.85 b | 94.57 b | 6.63 | 0.018 |
FCR | 1.48 | 1.51 | 1.48 | 1.49 | 0.018 | 0.058 |
Items | 0 | 5% | 10% | 15% | SEM | p-Value |
---|---|---|---|---|---|---|
DM% | 68.89 b | 70.84 a,b | 71.72 a | 73.56 a | 1.95 | 0.010 |
CP% | 61.49 | 61.91 | 65.51 | 67.87 | 3.08 | 0.093 |
GE% | 72.13 b | 73.75 b | 74.47 b | 76.37 a | 1.85 | 0.022 |
Items | 0 | 5% | 10% | 15% | SEM | p-Value |
---|---|---|---|---|---|---|
DM% | 69.53 | 70.09 | 69.18 | 69.20 | 3.18 | 0.719 |
CP% | 60.60 | 61.93 | 50.03 | 63.17 | 5.06 | 0.729 |
GE% | 72.33 | 73.05 | 72.56 | 72.30 | 3.22 | 0.780 |
Items | 0 | 5% | 10% | 15% | SEM | p-Value |
---|---|---|---|---|---|---|
Fatty acid | 1.09 | 0.93 | 1.11 | 1.08 | 0.004 | 0.542 |
Cholesterol | 0.45 a | 0.33 b | 0.37 b | 0.21 c | 0.080 | 0.007 |
pH | 6.09 a | 5.78 b | 5.98 a,b | 5.98 a,b | 0.200 | 0.016 |
Items | 0 | 5% | 10% | 15% | SEM | p-Value |
---|---|---|---|---|---|---|
C8:0 | 0.03 | 0.05 | 0.03 | 0.07 | 0.032 | 0.063 |
C10:0 | 0.11 | 0.07 | 0.04 | 0.19 | 0.115 | 0.207 |
C12:0 | 0.03 | 0.04 | 0.02 | 0.13 | 0.07 | 0.013 |
C14:0 | 0.55 | 0.56 | 0.51 | 0.35 | 0.124 | 0.001 |
C16:0 | 23.78 | 26.61 | 23.17 | 23.61 | 2.12 | 0.002 |
C18:0 | 10.75 | 12.68 | 11.64 | 13.13 | 1.807 | 0.226 |
C20:0 | 0.42 | 0.45 | 0.42 | 0.21 | 0.148 | 0.055 |
C22:0 | 0.31 | 0.3 | 0.23 | 0.15 | 0.1 | 0.012 |
C24:0 | 0.29 | 0.18 | 0.18 | 0.1 | 0.102 | 0.001 |
SFA | 36.27 b | 40.92 a | 36.25 b | 37.94 b | 3.156 | 0.041 |
C16:1 | 1.8 | 2.28 | 1.79 | 1.61 | 0.459 | 0.026 |
C18:1 | 33.45 | 35.42 | 35 | 33.35 | 2.342 | 0.174 |
C20:1 | 0.41 | 0.45 | 0.5 | 0.51 | 0.08 | 0.021 |
C22:1 | 0.4 | 0.46 | 0.38 | 0.21 | 0.156 | 0.089 |
C24:1 | 0.35 | 0.24 | 0.22 | 0.15 | 0.112 | 0.001 |
MUFA | 36.40 b | 38.85 a | 37.89 a | 35.83 b | 2.62 | 0.109 |
C18:2 | 13.76 | 12.42 | 14.44 | 13.86 | 1.3 | 0.06 |
C18:3 | 0.35 | 0.26 | 0.38 | 0.33 | 0.135 | 0.62 |
C20:2 | 1.31 | 1.04 | 1.27 | 1.32 | 0.305 | 0.054 |
C20:3 | 0.27 | 0.11 | 0.15 | 0.16 | 0.07 | 0.001 |
C20:4 | 8.58 | 4.96 | 7.09 | 6.93 | 2.58 | 0.005 |
C22:5 | 2.56 | 1.24 | 2.08 | 2.99 | 1.132 | 0.002 |
C22:6 | 0.4 | 0.15 | 0.35 | 0.53 | 0.254 | 0.009 |
PUFA | 27.32 a | 20.22 b | 25.86 a,b | 26.24 a | 3.557 | 0.001 |
Items | 0 | 5% | 10% | 15% | SEM | p-Value |
---|---|---|---|---|---|---|
T-AOC (mM) | 0.67 | 0.64 | 0.61 | 0.80 | 0.052 | 0.273 |
MDA (nmol/mL) | 4.00 | 4.06 | 4.51 | 2.89 | 0.162 | 0.453 |
Fermented Feed Ratio | Number of Bacteria | Number of Escherichia coli | Number of Lactic Acid Bacteria |
---|---|---|---|
0 | 11.17 | 7.65 | 7.17 |
5% | 11.21 | 7.36 | 6.12 |
10% | 11.14 | 7.28 | 6.92 |
15% | 11.20 | 7.14 | 6.28 |
SEM | 10.67 | 7.46 | 6.11 |
p value | 0.232 | 0.235 | 0.102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Chen, D.; Cai, H.; Chang, W.; Wang, Z.; Liu, G.; Deng, X.; Chen, Z. Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers. Animals 2022, 12, 2870. https://doi.org/10.3390/ani12202870
Sun H, Chen D, Cai H, Chang W, Wang Z, Liu G, Deng X, Chen Z. Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers. Animals. 2022; 12(20):2870. https://doi.org/10.3390/ani12202870
Chicago/Turabian StyleSun, Haoxuan, Da Chen, Huiyi Cai, Wenhuan Chang, Zedong Wang, Guohua Liu, Xuejuan Deng, and Zhimin Chen. 2022. "Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers" Animals 12, no. 20: 2870. https://doi.org/10.3390/ani12202870
APA StyleSun, H., Chen, D., Cai, H., Chang, W., Wang, Z., Liu, G., Deng, X., & Chen, Z. (2022). Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers. Animals, 12(20), 2870. https://doi.org/10.3390/ani12202870