Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness
(This article belongs to the Section Animal Products)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- (a)
- Quantity or productivity indicator: number of papers by main subject areas, authors, countries, institutions and journals.
- (b)
- Quality or performance indicator: number of citations for the aforementioned elements, in addition to some metrics that measure the impact of the journals.
- (c)
- Structural or connections indicator: collaboration maps between authors and between countries, grouping of journals and keywords.
3. Results and Discussion
3.1. Publications by Subject Area
3.2. Main Authors, Countries, Affiliations and Journals
3.2.1. Most Prolific Authors
3.2.2. Most Prolific Countries
3.2.3. Most Prolific Institutions
3.2.4. Most Prolific Journals
3.3. Main Articles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). FAOSTAT Database. Ann. Dermatol. Venereol. 2020, 147, A236. [Google Scholar]
- Huang, C.; Hou, C.; Ijaz, M.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics Discovery of Protein Biomarkers Linked to Meat Quality Traits in Post-Mortem Muscles: Current Trends and Future Prospects: A Review. Trends Food Sci. Technol. 2020, 105, 416–432. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Ren, C.; Bai, Y.; Ijaz, M.; Hou, C.; Chen, L. Effects of Protein Posttranslational Modifications on Meat Quality: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 289–331. [Google Scholar] [CrossRef]
- Kaur, L.; Hui, S.X.; Morton, J.D.; Kaur, R.; Chian, F.M.; Boland, M. Endogenous Proteolytic Systems and Meat Tenderness: Influence of Post-Mortem Storage and Processing. Food Sci. Anim. Resour. 2021, 41, 589–607. [Google Scholar] [CrossRef]
- Warner, R.D.; Wheeler, T.L.; Ha, M.; Li, X.; Bekhit, A.E.D.; Morton, J.; Vaskoska, R.; Dunshea, F.R.; Liu, R.; Purslow, P.; et al. Meat Tenderness: Advances in Biology, Biochemistry, Molecular Mechanisms and New Technologies. Meat Sci. 2022, 185, 108657. [Google Scholar] [CrossRef]
- Ellies-Oury, M.P.; Lee, A.; Jacob, H.; Hocquette, J.F. Meat Consumption–What French Consumers Feel about the Quality of Beef? Ital. J. Anim. Sci. 2019, 18, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Kantono, K.; Hamid, N.; Ma, Q.; Chadha, D.; Oey, I. Consumers’ Perception and Purchase Behaviour of Meat in China. Meat Sci. 2021, 179, 108548. [Google Scholar] [CrossRef]
- Miller, M.F.; Carr, M.A.; Ramsey, C.B.; Crockett, K.L.; Hoover, L.C. Consumer Thresholds for Establishing the Value of Beef Tenderness. J. Anim. Sci. 2001, 79, 3062–3068. [Google Scholar] [CrossRef]
- Ramanathan, R.; Mafi, G.G.; Yoder, L.; Perry, M.; Pfeiffer, M.; VanOverbeke, D.L.; Maheswarappa, N.B. Biochemical Changes of Postmortem Meat during the Aging Process and Strategies to Improve the Meat Quality. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies; Biswas, A.K., Mandal, P.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 67–80. ISBN 9780128192337. [Google Scholar]
- Koohmaraie, M.; Geesink, G.H. Contribution of Postmortem Muscle Biochemistry to the Delivery of Consistent Meat Quality with Particular Focus on the Calpain System. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Koohmaraie, M.; Kent, M.P.; Shackelford, S.D.; Veiseth, E.; Wheeler, T.L. Meat Tenderness and Muscle Growth: Is There Any Relationship? Meat Sci. 2002, 62, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.V.; Suman, S.P.; Burdick, K.S.; Sutovsky, P.; Lonergan, S.M.; Lorenzen, C.L. Color Attributes and Myoglobin Chemistry Exhibit Relationships with Tenderness and Calpain-1 Abundance in Postmortem Longissimus Lumborum Muscles from Holstein Heifers. Meat Sci. 2022, 189, 108824. [Google Scholar] [CrossRef] [PubMed]
- Madhusankha, G.D.M.P.; Thilakarathna, R.C.N. Meat Tenderization Mechanism and the Impact of Plant Exogenous Proteases: A Review. Arab. J. Chem. 2021, 14, 102967. [Google Scholar] [CrossRef]
- Morton, J.D.; Bhat, Z.F.; El-Din Ahmed Bekhit, A. Proteases and Meat Tenderization. In Encyclopedia of Food Chemistry; Varelis, P., Melton, L., Shahidi, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, ISBN 9780128140260. [Google Scholar]
- Purslow, P.P.; Gagaoua, M.; Warner, R.D. Insights on Meat Quality from Combining Traditional Studies and Proteomics. Meat Sci. 2021, 174, 108423. [Google Scholar] [CrossRef] [PubMed]
- Leal-Gutiérrez, J.D.; Mateescu, R.G. Genetic Basis of Improving the Palatability of Beef Cattle: Current Insights. Food Biotechnol. 2019, 33, 193–216. [Google Scholar] [CrossRef]
- Smith, T.P.L.; Thallman, R.M.; Casas, E.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Approaches To Improve the Quality and Value of Beef 1. Outlook Agric. 2003, 32, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Goddard, M. Genomic Selection: Prediction of Accuracy and Maximisation of Long Term Response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef]
- Habib, R.; Afzal, M.T. Sections-Based Bibliographic Coupling for Research Paper Recommendation. Scientometrics 2019, 119, 643–656. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, E.M.C.; Mullen, A.M.; Franco, D.; Warner, R.D.; Lorenzo, J.M.; Purslow, P.P.; Gerrard, D.; Hopkins, D.L.; Troy, D.; et al. Molecular Signatures of Beef Tenderness: Underlying Mechanisms Based on Integromics of Protein Biomarkers from Multi-Platform Proteomics Studies. Meat Sci. 2021, 172, 108311. [Google Scholar] [CrossRef]
- Zalewska, M.; Puppel, K.; Sakowski, T. Associations between Gene Polymorphisms and Selected Meat Traits in Cattle—A Review. Anim. Biosci. 2021, 34, 425–1438. [Google Scholar] [CrossRef]
- Pelmus, R.S.; Grosu, H.; Rotar, M.C.; Gras, M.A.; Lazãr, C.; Popa, F. The Genetic Influence on Sheep Meat Quality, Growth and Body Weight: A Review. Asian J. Dairy Food Res. 2020, 39, 225–231. [Google Scholar] [CrossRef]
- Munekata, P.E.; Pateiro, M.; López-Pedrouso, M.; Gagaoua, M.; Lorenzo, J.M. Foodomics in Meat Quality. Curr. Opin. Food Sci. 2021, 38, 79–85. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Kaliniak-Dziura, A.; Prasow, M.; Domaradzki, P.; Litwińczuk, A. Meat Quality—Genetic Background and Methods of Its Analysis. Czech J. Food Sci. 2022, 40, 15–25. [Google Scholar] [CrossRef]
- Hamid, H.; Jamal, M.A.; Ahmad, I.; Munir, S.; Ali, S.; Wariss, H.M.; Talpur, M.Z. A Brief Overview of Impact of Genotype, Single Nucleotide Polymorphism and Environment on Quality of Chicken Meat: A Review. J. Entomol. Zool. Stud. 2018, 6, 1697–1701. [Google Scholar]
- Gavran, M.; Antunović, Z.; Gantner, V. Candidate Genes Associated with Economically Important Traits of Sheep—A Review. Agric. Conspec. Sci. 2021, 86, 195–201. [Google Scholar]
- Uzabaci, E.; Dincel, D. Associations Between c.2832A > G Polymorphism of CAST Gene and Meat Tenderness in Cattle: A Meta-Analysis. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 613–620. [Google Scholar] [CrossRef]
- Huertas-Valdivia, I.; Ferrari, A.M.; Settembre-Blundo, D.; García-Muiña, F.E. Social Life-Cycle Assessment: A Review by Bibliometric Analysis. Sustainability 2020, 12, 6211. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Mas-Tur, A.; Roig-Tierno, N.; Sarin, S.; Haon, C.; Sego, T.; Belkhouja, M.; Porter, A.; Merigó, J.M. Co-Citation, Bibliographic Coupling and Leading Authors, Institutions and Countries in the 50 Years of Technological Forecasting and Social Change. Technol. Forecast. Soc. Change 2021, 165, 120487. [Google Scholar] [CrossRef]
- Ni, M.; Li, X.; Zhang, L.; Kumar, V.; Chen, J. Bibliometric Analysis of the Toxicity of Bisphenol A. Int. J. Environ. Res. Public Health 2022, 19, 7886. [Google Scholar] [CrossRef]
- López-Serrano, M.J.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Román-Sánchez, I.M. Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability 2020, 12, 8948. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durieux, V.; Gevenois, P.A. Bibliometric Idicators: Quality Masurements of Sientific Publication. Radiology 2010, 255, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.; Goddard, M. Genome-Wide Association and Genomic Selection in Animal Breeding. Genome 2010, 53, 876–883. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Schefers, J.M.; Weige, K.A. Genomic Selection in Dairy Cattle: Integration of DNA Testing into Breeding Programs. Anim. Front. 2012, 2, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Miller, S. Melhoramento Genético de Bovinos de Corte Utilizando Informações Da Genômica. Rev. Bras. Zootec. 2010, 39, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Juyena, N.S.; Shamsuddin, M.; Bhuiyan, M.M.U. Genomic Tools and Genetic Improvement of Crossbred Friesian Cattle. Res. Agric. Livest. Fish. 2021, 8, 89–107. [Google Scholar] [CrossRef]
- Price, D.J.S. The Exponential Curve of Science. Discovery 1956, 17, 240–243. [Google Scholar]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2020, 22, 787–809. [Google Scholar] [CrossRef]
- Torres, R.T.; Carvalho, J.; Cunha, M.V.; Serrano, E.; Palmeira, J.D.; Fonseca, C. Temporal and Geographical Research Trends of Antimicrobial Resistance in Wildlife—A Bibliometric Analysis. One Health 2021, 11, 100198. [Google Scholar] [CrossRef]
- Bennett, G.L.; Tait, R.G.; Shackelford, S.D.; Wheeler, T.L.; King, D.A.; Casas, E.; Smith, T.P.L. Enhanced Estimates of Carcass and Meat Quality Effects for Polymorphisms in Myostatin and μ-Calpain Genes. J. Anim. Sci. 2019, 97, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.F.B.; Schenkel, F.S.; Garcia, D.A.; Gordo, D.G.M.; Tonussi, R.L.; Espigolan, R.; Silva, R.M.d.O.; Braz, C.U.; Júnior, G.A.F.; Baldi, F.; et al. Genomic Selection for Meat Quality Traits in Nelore Cattle. Meat Sci. 2019, 148, 32–37. [Google Scholar] [CrossRef]
- Frylinck, L.; van Wyk, G.L.; Smith, T.P.L.; Strydom, P.E.; van Marle-Köster, E.; Webb, E.C.; Koohmaraie, M.; Smith, M.F. Evaluation of Biochemical Parameters and Genetic Markers for Association with Meat Tenderness in South African Feedlot Cattle. Meat Sci. 2009, 83, 657–665. [Google Scholar] [CrossRef] [PubMed]
- White, S.N.; Casas, E.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; Riley, D.G.; Chase, C.C.; Johnson, D.D.; Keele, J.W.; Smith, T.P.L. A New Single Nucleotide Polymorphism in CAPN1 Extends the Current Tenderness Marker Test to Include Cattle of Bos Indicus, Bos Taurus, and Crossbred Descent. J. Anim. Sci. 2005, 83, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Chardulo, L.A.L.; Baldassini, W.A.; Curi, R.A.; Pereira, G.L.; Machado Neto, O.R.; Dal-Pai, M.; Vechetti-Júnior, I.J.; Malheiros, J.M.; Enriquez-Valencia, C.E. Gene and Protein Expression of Myosin Heavy Chain in Nellore Cattle Comparing Growth or Meat Tenderness Traits. Anim. Biotechnol. 2021, 32, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Bruscadin, J.J.; de Souza, M.M.; de Oliveira, K.S.; Rocha, M.I.P.; Afonso, J.; Cardoso, T.F.; Zerlotini, A.; Coutinho, L.L.; Niciura, S.C.M.; de Almeida Regitano, L.C. Muscle Allele-Specific Expression QTLs May Affect Meat Quality Traits in Bos Indicus. Sci. Rep. 2021, 11, 7321. [Google Scholar] [CrossRef]
- Tahamtan, I.; Afshar, A.S.; Ahamdzadeh, K. Factors Affecting Number of Citations: A Comprehensive Review of the Literature. Scientometrics 2016, 107, 1195–1225. [Google Scholar] [CrossRef]
- Price, D.D.S. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963; ISBN 0231085621. [Google Scholar]
- Tirado-Kulieva, V.A.; Gutiérrez-Valverde, K.S.; Villegas-Yarlequé, M.; Camacho-Orbegoso, E.W.; Villegas-Aguilar, G.F. Research Trends on Mango By-Products: A Literature Review with Bibliometric Analysis. J. Food Meas. Charact. 2022, 16, 2760–2771. [Google Scholar] [CrossRef]
- Curi, R.A.; Chardulo, L.A.L.; Giusti, J.; Silveira, A.C.; Martins, C.L.; de Oliveira, H.N. Assessment of GH1, CAPN1 and CAST Polymorphisms as Markers of Carcass and Meat Traits in Bos Indicus and Bos Taurus-Bos Indicus Cross Beef Cattle. Meat Sci. 2010, 86, 915–920. [Google Scholar] [CrossRef]
- Curi, R.A.; Fortes, M.R.S.; Chardulo, L.A.L.; Silveira, A.C.; Arrigoni, M.D.B.; Martins, C.L.; Assumpçao, M.E.O.D.A.; de Oliveira, H.N. Genetic Polymorphisms Related to Meat Traits in Purebred and Crossbred Nelore Cattle. Pesqui. Agropecu. Bras. 2009, 44, 1660–1666. [Google Scholar] [CrossRef]
- Fortes, M.R.S.; Curi, R.A.; Chardulo, L.A.L.; Silveira, A.C.; Assumpção, M.E.O.D.; Visintin, J.A.; de Oliveira, H.N. Bovine Gene Polymorphisms Related to Fat Deposition and Meat Tenderness. Genet. Mol. Biol. 2009, 32, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Marty, A.; Amigues, Y.; Servin, B.; Renand, G.; Levéziel, H.; Rocha, D. Genetic Variability and Linkage Disequilibrium Patterns in the Bovine DNAJA1 Gene. Mol. Biotechnol. 2010, 44, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Page, B.T.; Casas, E.; Heaton, M.P.; Cullen, N.G.; Hyndman, D.L.; Morris, C.A.; Crawford, A.M.; Wheeler, T.L.; Koohmaraie, M.; Keele, J.W.; et al. Evaluation of Single-Nucleotide Polymorphisms in CAPN1 for Association with Meat Tenderness in Cattle. J. Anim. Sci. 2002, 80, 3077–3085. [Google Scholar] [CrossRef] [PubMed]
- Page, B.T.; Casas, E.; Quaas, R.L.; Thallman, R.M.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; White, S.N.; Bennett, G.L.; Keele, J.W.; et al. Association of Markers in the Bovine CAPN1 Gene with Meat Tenderness in Large Crossbred Populations That Sample Influential Industry Sires. J. Anim. Sci. 2004, 82, 3474–3481. [Google Scholar] [CrossRef]
- Stone, R.T.; Casas, E.; Smith, T.P.L.; Keele, J.W.; Harhay, G.; Bennett, G.L.; Koohmaraie, M.; Wheeler, T.L.; Shackelford, S.D.; Snelling, W.M. Identification of Genetic Markers for Fat Deposition and Meat Tenderness on Bovine Chromosome 5: Development of a Low-Density Single Nucleotide Polymorphism Map. J. Anim. Sci. 2005, 83, 2280–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barendse, W.; Harrison, B.E.; Hawken, R.J.; Ferguson, D.M.; Thompson, J.M.; Thomas, M.B.; Bunch, R.J. Epistasis between Calpain 1 and Its Inhibitor Calpastatin within Breeds of Cattle. Genetics 2007, 176, 2601–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barendse, W.; Harrison, B.E.; Bunch, R.J.; Thomas, M.B. Variation at the Calpain 3 Gene Is Associated with Meat Tenderness in Zebu and Composite Breeds of Cattle. BMC Genet. 2008, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, C.; Cassar-Malek, I.; Le Cunff, M.; Dubroeucq, H.; Renand, G.; Hocquette, J.F. New Indicators of Beef Sensory Quality Revealed by Expression of Specific Genes. J. Agric. Food Chem. 2007, 55, 5229–5237. [Google Scholar] [CrossRef] [Green Version]
- Cafe, L.M.; McIntyre, B.L.; Robinson, D.L.; Geesink, G.H.; Barendse, W.; Greenwood, P.L. Production and Processing Studies on Calpain-System Gene Markers for Tenderness in Brahman Cattle: 1. Growth, Efficiency, Temperament, and Carcass Characteristics. J. Anim. Sci. 2010, 88, 3047–3058. [Google Scholar] [CrossRef]
- Café, L.M.; Mcintyre, B.L.; Robinson, D.L.; Geesink, G.H.; Barendse, W.; Pethick, D.W.; Thompson, J.M.; Greenwood, P.L. Production and Processing Studies on Calpain-System Gene Markers for Tenderness in Brahman Cattle: 2. Objective Meat Quality. J. Anim. Sci. 2010, 88, 3059–3069. [Google Scholar] [CrossRef] [Green Version]
- Casas, E.; White, S.N.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; Riley, D.G.; Chase, C.C.; Johnson, D.D.; Smith, T.P.L. Effects of Calpastatin and μ-Calpain Markers in Beef Cattle on Tenderness Traits. J. Anim. Sci. 2006, 84, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corva, P.M.; Soria, L.; Schor, A.; Villarreal, E.; Cenci, M.P.; Motter, M.; Mezzadra, C.; Melucci, L.; Miquel, C.; Paván, E.; et al. Association of CAPN1 and CAST Gene Polymorphisms with Meat Tenderness in Bos Taurus Beef Cattle from Argentina. Genet. Mol. Biol. 2007, 30, 1064–1069. [Google Scholar] [CrossRef] [Green Version]
- Curi, R.A.; Chardulo, L.A.L.; Mason, M.C.; Arrigoni, M.D.B.; Silveira, A.C.; De Oliveira, H.N. Effect of Single Nucleotide Polymorphisms of CAPN1 and CAST Genes on Meat Traits in Nellore Beef Cattle (Bos Indicus) and in Their Crosses with Bos Taurus. Anim. Genet. 2009, 40, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Allais, S.; Journaux, L.; Levéziel, H.; Payet-Duprat, N.; Raynaud, P.; Hocquette, J.F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C.; et al. Effects of Polymorphisms in the Calpastatin and μ-Calpain Genes on Meat Tenderness in 3 French Beef Breeds. J. Anim. Sci. 2011, 89, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Curi, R.A.; Chardulo, L.A.L.; Arrigoni, M.D.B.; Silveira, A.C.; de Oliveira, H.N. Associations between LEP, DGAT1 and FABP4 Gene Polymorphisms and Carcass and Meat Traits in Nelore and Crossbred Beef Cattle. Livest. Sci. 2011, 135, 244–250. [Google Scholar] [CrossRef]
- Enriquez-Valencia, C.E.; Pereira, G.L.; Malheiros, J.M.; de Vasconcelos Silva, J.A.I.I.; Albuquerque, L.G.; de Oliveira, H.N.; Chardulo, L.A.L.; Curi, R.A. Effect of the g.98535683A > G SNP in the CAST Gene on Meat Traits of Nellore Beef Cattle (Bos Indicus) and Their Crosses with Bos Taurus. Meat Sci. 2017, 123, 64–66. [Google Scholar] [CrossRef]
- Giusti, J.; Castan, E.; Dal Pai, M.; Arrigoni, M.D.B.; Rodrigues Baldin, S.; De Oliveira, H.N. Expression of Genes Related to Quality of Longissimus Dorsi Muscle Meat in Nellore (Bos Indicus) and Canchim (5/8 Bos Taurus × 3/8 Bos Indicus) Cattle. Meat Sci. 2013, 94, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Hou, G.; Huang, M.; Gao, X.; Li, J.; Gao, H.; Ren, H.; Xu, S. Association of Calpain 1 (CAPN1) and HRSP12 Allelic Variants in Beef Cattle with Carcass Traits. Afr. J. Biotechnol. 2011, 10, 13714–13718. [Google Scholar] [CrossRef] [Green Version]
- Malheiros, J.M.; Enríquez-Valencia, C.E.; da Silva Duran, B.O.; de Paula, T.G.; Curi, R.A.; de Vasconcelos Silva, J.A.I.I.; Dal-Pai-Silva, M.; de Oliveira, H.N.; Chardulo, L.A.L. Association of CAST2, HSP90AA1, DNAJA1 and HSPB1 Genes with Meat Tenderness in Nellore Cattle. Meat Sci. 2018, 138, 49–52. [Google Scholar] [CrossRef]
- Melucci, L.M.; Panarace, M.; Feula, P.; Villarreal, E.L.; Grigioni, G.; Carduza, F.; Soria, L.A.; Mezzadra, C.A.; Arceo, M.E.; Papaleo Mazzucco, J.; et al. Genetic and Management Factors Affecting Beef Quality in Grazing Hereford Steers. Meat Sci. 2012, 92, 768–774. [Google Scholar] [CrossRef]
- Tian, W.Q.; Wang, H.C.; Song, F.B.; Zan, L.S.; Wang, H.; Wang, H.B.; Xin, Y.P.; Ujan, J.A. Association between a Single Nucleotide Polymorphism in the Bovine Chemerin Gene and Carcass Traits in Qinchuan Cattle. Genet. Mol. Res. 2011, 10, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Ujan, J.A.; Zan, L.S.; Ujan, S.A.; Adoligbe, C.; Wang, H.B. Back Fat Thickness and Meat Tenderness Are Associated with a 526 T → A Mutation in the Exon 1 Promoter Region of the MyF-5 Gene in Chinese Bos Taurus. Genet. Mol. Res. 2011, 10, 3070–3079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Qi, Y.X.; Gao, X.; Li, J.Y.; Xu, S.Z. Expression of ADAMTS4 and ADAMTS5 in Longissimus Dorsi Muscle Related to Meat Tenderness in Nanyang Cattle. Genet. Mol. Res. 2013, 12, 4639–4647. [Google Scholar] [CrossRef] [PubMed]
- Tizioto, P.C.; Decker, J.E.; Taylor, J.F.; Schnabel, R.D.; Mudadu, M.A.; Silva, F.L.; Mourão, G.B.; Coutinho, L.L.; Tholon, P.; Sonstegard, T.S.; et al. Genome Scan for Meat Quality Traits in Nelore Beef Cattle. Physiol. Genom. 2013, 45, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Allais, S.; Levéziel, H.; Hocquette, J.F.; Rousset, S.; Denoyelle, C.; Journaux, L.; Renand, G. Fine Mapping of Quantitative Trait Loci Underlying Sensory Meat Quality Traits in Three French Beef Cattle Breeds. J. Anim. Sci. 2014, 92, 4329–4341. [Google Scholar] [CrossRef] [Green Version]
- Braz, C.U.; Taylor, J.F.; Bresolin, T.; Espigolan, R.; Feitosa, F.L.B.; Carvalheiro, R.; Baldi, F.; De Albuquerque, L.G.; De Oliveira, H.N. Sliding Window Haplotype Approaches Overcome Single SNP Analysis Limitations in Identifying Genes for Meat Tenderness in Nelore Cattle. BMC Genet. 2019, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.B.; Magnabosco, C.U.; Passafaro, T.L.; Brunes, L.C.; Costa, M.F.O.; Eifert, E.C.; Narciso, M.G.; Rosa, G.J.M.; Lobo, R.B.; Baldi, F. Improving Genomic Prediction Accuracy for Meat Tenderness in Nellore Cattle Using Artificial Neural Networks. J. Anim. Breed. Genet. 2020, 137, 438–448. [Google Scholar] [CrossRef]
- Ramayo-Caldas, Y.; Renand, G.; Ballester, M.; Saintilan, R.; Rocha, D. Multi-Breed and Multi-Trait Co-Association Analysis of Meat Tenderness and Other Meat Quality Traits in Three French Beef Cattle Breeds. Genet. Sel. Evol. 2016, 48, 37. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, L.F.S.; Gimenez, D.F.J.; dos Santos Silva, D.B.; Barthelson, R.; Baldi, F.; Ferro, J.A.; Albuquerque, L.G. Differences in Global Gene Expression in Muscle Tissue of Nellore Cattle with Divergent Meat Tenderness. BMC Genom. 2017, 18, 945. [Google Scholar] [CrossRef] [Green Version]
- Muniz, M.M.M.; Fonseca, L.F.S.; dos Santos Silva, D.B.; de Oliveira, H.R.; Baldi, F.; Chardulo, A.L.; Ferro, J.A.; Cánovas, A.; de Albuquerque, L.G. Identification of Novel MRNA Isoforms Associated with Meat Tenderness Using RNA Sequencing Data in Beef Cattle. Meat Sci. 2021, 173, 108378. [Google Scholar] [CrossRef]
- Muniz, M.M.M.; Fonseca, L.F.S.; Magalhães, A.F.B.; dos Santos Silva, D.B.; Canovas, A.; Lam, S.; Ferro, J.A.; Baldi, F.; Chardulo, A.L.; de Albuquerque, L.G. Use of Gene Expression Profile to Identify Potentially Relevant Transcripts to Myofibrillar Fragmentation Index Trait. Funct. Integr. Genom. 2020, 20, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Ocaña, A.; Gómez-Viquez, H.; Merritt, H.; Oliver-Espinoza, R. Promotion of Technological Development and Determination of Biotechnology Trends in Five Selected Latin American Countries: An Analysis Based on PCT Patent Applications. Electron. J. Biotechnol. 2019, 37, 41–46. [Google Scholar] [CrossRef]
- IndexMundi Country Comparison > GDP (Purchasing Power Parity). Available online: https://www.indexmundi.com/g/r.aspx?t=0&v=65&l=en (accessed on 12 October 2022).
- Hirsch, J.E. An Index to Quantify an Individual’s Scientific Research Output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roldan-Valadez, E.; Salazar-Ruiz, S.Y.; Ibarra-Contreras, R.; Rios, C. Current Concepts on Bibliometrics: A Brief Review about Impact Factor, Eigenfactor Score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-Index, and Alternative Metrics. Ir. J. Med. Sci. 2019, 188, 939–951. [Google Scholar] [CrossRef]
- Gallego-Valero, L.; Moral-Parajes, E.; Román-Sánchez, I.M. Wastewater Treatment Costs: A Research Overview through Bibliometric Analysis. Sustainability 2021, 13, 5066. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric Methods: Pitfalls and Possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- Casas, E.; Shackelford, S.D.; Keele, J.W.; Stone, R.T.; Kappes, S.M.; Koohmaraie, M. Quantitative Trait Loci Affecting Growth and Carcass Composition of Cattle Segregating Alternate Forms of Myostatin. J. Anim. Sci. 2000, 78, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Van Eenennaam, A.L.; Li, J.; Thallman, R.M.; Quaas, R.L.; Dikeman, M.E.; Gill, C.A.; Franke, D.E.; Thomas, M.G. Validation of Commercial DNA Tests for Quantitative Beef Quality Traits. J. Anim. Sci. 2007, 85, 891–900. [Google Scholar] [CrossRef] [Green Version]
- Casas, E.; White, S.N.; Riley, D.G.; Smith, T.P.L.; Brennemant, R.A.; Olson, T.A.; Johnson, D.D.; Coleman, S.W.; Bennett, G.L.; Chase, C.C. Assessment of Single Nucleotide Polymorphisms in Genes Residing on Chromosomes 14 and 29 for Association with Carcass Composition Traits in Bos Indicus Cattle. J. Anim. Sci. 2005, 83, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Al Husaeni, D.F.; Nandiyanto, A.B.D. Bibliometric Using Vosviewer with Publish or Perish (Using Google Scholar Data): From Step-by-Step Processing for Users to the Practical Examples in the Analysis of Digital Learning Articles in Pre and Post Covid-19 Pandemic. ASEAN J. Sci. Eng. 2021, 2, 19–46. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.D.A. Role of Calpain System in Meat Tenderness: A Review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.K.; Zhou, G.; Xu, X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr. Rev. Food Sci. Food Saf. 2019, 18, 380–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arce-Recinos, C.; Chay-Canul, A.J.; Alarcón-Zúñiga, B.; Ramos-Juárez, J.A.; Vargas-Villamil, L.M.; Aranda-Ibáñez, E.M.; del Carmen Sánchez-Villegas, N.; da Costa, R.L.D. Feed Efficiency Indexes in Hair Sheep: Meat Quality and Associated Genes. Review. Rev. Mex. Cienc. Pecu. 2021, 12, 523–552. [Google Scholar] [CrossRef]
- Ilian, M.A.; Bekhit, A.E.D.; Bickerstaffe, R. The Relationship between Meat Tenderization, Myofibril Fragmentation and Autolysis of Calpain 3 during Post-Mortem Aging. Meat Sci. 2004, 66, 387–397. [Google Scholar] [CrossRef]
- Ilian, M.A.; Morton, J.D.; Bekhit, A.E.D.; Roberts, N.; Palmer, B.; Sorimachi, H.; Bickerstaffe, R. Effect of Preslaughter Feed Withdrawal Period on Longissimus Tenderness and the Expression of Calpains in the Ovine. J. Agric. Food Chem. 2001, 49, 1990–1998. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Jia, C.; Zhao, R. Gene Expression of Calpain 3 and PGC-1α Is Correlated with Meat Tenderness in the Longissimus Dorsi Muscle of Sutai Pigs. Livest. Sci. 2012, 147, 119–125. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Abdelnour, S.A.; Swelum, A.A.; Arif, M. The Application of Gene Marker-Assisted Selection and Proteomics for the Best Meat Quality Criteria and Body Measurements in Qinchuan Cattle Breed. Mol. Biol. Rep. 2018, 45, 1445–1456. [Google Scholar] [CrossRef]
- Morris, C.A.; Cullen, N.G.; Hickey, S.M.; Dobbie, P.M.; Veenvliet, B.A.; Manley, T.R.; Pitchford, W.S.; Kruk, Z.A.; Bottema, C.D.K.; Wilson, T. Genotypic Effects of Calpain 1 and Calpastatin on the Tenderness of Cooked M. Longissimus Dorsi Steaks from Jersey × Limousin, Angus and Hereford-Cross Cattle. Anim. Genet. 2006, 37, 411–414. [Google Scholar] [CrossRef]
- Smith, T.; Thomas, M.G.; Bidner, T.D.; Paschal, J.C.; Franke, D.E. Single Nucleotide Polymorphisms in Brahman Steers and Their Association with Carcass and Tenderness Traits. Genet. Mol. Res. 2009, 8, 39–46. [Google Scholar] [CrossRef]
- Pinto, L.F.; Ferraz, J.B.; Meirelles, F.V.; Eler, J.P.; Rezende, F.M.; Carvalho, M.E.; Almeida, H.B.; Silva, R.C. Association of SNPs on CAPN1 and CAST Genes with Tenderness in Nellore Cattle. Genet. Mol. Res. 2010, 9, 1431–1442. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.F.B.; Ferraz, J.B.S.; Pedrosa, V.B.; Eler, J.P.; Meirelles, F.V.; Bonin, M.N.; Rezende, F.M.; Carvalho, M.E.; Cucco, D.C.; Silva, R.C.G. Single Nucleotide Polymorphisms in CAPN and Leptin Genes Associated with Meat Color and Tenderness in Nellore Cattle. Genet. Mol. Res. 2011, 10, 2057–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilés, C.; Juárez, M.; Peña, F.; Domenech, V.; Clemente, I.; Molina, A. Association of Single Nucleotide Polymorphisms in CAPN1 and CAST Genes with Beef Tenderness from Spanish Commercial Feedlots. Czech J. Anim. Sci. 2013, 58, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Calvo, J.H.; Iguácel, L.P.; Kirinus, J.K.; Serrano, M.; Ripoll, G.; Casasús, I.; Joy, M.; Pérez-Velasco, L.; Sarto, P.; Albertí, P.; et al. A New Single Nucleotide Polymorphism in the Calpastatin (CAST) Gene Associated with Beef Tenderness. Meat Sci. 2014, 96, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, S.C.; Chai, H.H.; Cho, S.H.; Kim, H.C.; Lim, D.; Choi, B.H.; Dang, C.G.; Sharma, A.; Gondro, C.; et al. Mutations in Calpastatin and μ-Calpain Are Associated with Meat Tenderness, Flavor and Juiciness in Hanwoo (Korean Cattle): Molecular Modeling of the Effects of Substitutions in the Calpastatin/μ-Calpain Complex. Meat Sci. 2014, 96, 1501–1508. [Google Scholar] [CrossRef]
- Lozano, M.S.R.; Alfaro-Zavala, S.; Sifuentes-Rincón, A.M.; Parra-Bracamonte, G.M.; Varela, D.V.; Medina, R.D.M.; Pérez Linares, C.; Rincón, F.R.; Escalante, A.S.; Urrutia, G.T.; et al. Meat Tenderness Genetic and Genomic Variation Sources in Commercial Beef Cattle. J. Food Qual. 2016, 39, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Mazon, M.R.; Antonelo, D.S.; Fukumasu, H.; Leme, P.R.; Silva, S.L. Effect of Beta-Agonists and Immunocastration on Expression of CAPN1, CAPN2 and CAST in Feedlot Finished Zebu Cattle. In Proceedings of the 61st International Congress of Meat Science and Technology, Clermont-Ferrand, France, 23–28 August 2015. [Google Scholar]
- Kök, S.; Atalay, S. The Use of Various SNPs in CAST and CAPN1 Genes to Determine the Meat Tenderness in Turkish Grey Cattle. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Rosa, A.F.; Moncau, C.T.; Poleti, M.D.; Fonseca, L.D.; Balieiro, J.C.C.; Silva, S.L.E.; Eler, J.P. Proteome Changes of Beef in Nellore Cattle with Different Genotypes for Tenderness. Meat Sci. 2018, 138, 1–9. [Google Scholar] [CrossRef]
- Basson, A.; Strydom, P.E.; van Marle-Köster, E.; Webb, E.C.; Frylinck, L. Sustained Effects of Muscle Calpain System Genotypes on Tenderness Phenotypes of South African Beef Bulls during Ageing up to 20 Days. Animals 2022, 12, 686. [Google Scholar] [CrossRef]
- STATISTA. Number of Cattle Worldwide from 2012 to 2022 (in Million Head). Available online: https://www.statista.com/statistics/263979/global-cattle-population-since-1990/ (accessed on 12 October 2022).
- The Organisation for Economic Co-Operation and Development Meat Consumption. Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 12 October 2022).
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, E.O. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef]
Ranking | Author | Publication Date Range | TP 1 | Contribution (%) 2 | Citations | |||
---|---|---|---|---|---|---|---|---|
TC 3 | LL 4 | UL 5 | TC/TP | |||||
1 | Smith, T. P. L. | 1999–2019 | 13 | 7.429 | 944 | 11 | 183 | 72.615 |
2 | Casas, E. | 2000–2019 | 12 | 6.857 | 1197 | 13 | 202 | 99.750 |
3 | de Oliveira, H. N. | 2008–2019 | 12 | 6.857 | 252 | 1 | 57 | 21.000 |
4 | Koohmaraie, M. | 1995–2009 | 11 | 6.286 | 1088 | 14 | 202 | 98.909 |
5 | Keele, J. W. | 1999–2005 | 11 | 6.286 | 933 | 13 | 202 | 84.818 |
6 | Shackelford, S. D. | 1999–2019 | 10 | 5.714 | 890 | 13 | 202 | 89.000 |
7 | Chardulo, L. A. L. | 2008–2021 | 9 | 5.143 | 196 | 3 | 57 | 21.778 |
8 | Wheeler, T. L. | 2001–2019 | 8 | 4.571 | 748 | 13 | 183 | 93.500 |
9 | Coutinho, L. L. | 2013–2021 | 8 | 4.571 | 228 | 0 | 90 | 28.500 |
10 | Bennett, G. L. | 2001–2019 | 7 | 4.000 | 340 | 13 | 121 | 48.571 |
Ranking | Author | Publication Date Range | TP 1 | Contribution (%) 2 | Citations | |||
---|---|---|---|---|---|---|---|---|
TC 3 | LL 4 | UL 5 | TC/TP | |||||
1 | United States | 1993–2021 | 41 | 23.429 | 1845 | 0 | 202 | 45.000 |
2 | Brazil | 2002–2021 | 37 | 21.143 | 688 | 0 | 90 | 18.595 |
3 | China | 2008–2021 | 27 | 15.429 | 204 | 0 | 22 | 7.556 |
4 | Australia | 2006–2020 | 14 | 8.000 | 426 | 10 | 64 | 30.429 |
5 | Spain | 2007–2020 | 11 | 6.286 | 136 | 0 | 42 | 12.364 |
6 | France | 2004–2020 | 10 | 5.714 | 448 | 9 | 187 | 44.800 |
7 | South Korea | 2008–2021 | 10 | 5.714 | 131 | 4 | 39 | 13.100 |
8 | New Zealand | 2000–2019 | 8 | 4.571 | 372 | 3 | 180 | 46.500 |
9 | Canada | 2010–2020 | 7 | 4.000 | 103 | 6 | 36 | 14.714 |
10 | Poland | 2004–2021 | 6 | 3.429 | 96 | 1 | 26 | 16.000 |
Ranking | Author | Publication Date Range | TP 1 | Contribution (%) 2 | Citations | |||
---|---|---|---|---|---|---|---|---|
TC 3 | LL 4 | UL 5 | TC/TP | |||||
1 | USDA Agricultural Research Service | 1992–2019 | 21 | 12.000 | 1524 | 11 | 202 | 72.571 |
2 | Universidade Estadual Paulista Júlio de Mesquita Filho | 2002–2021 | 17 | 9.714 | 321 | 1 | 57 | 18.882 |
3 | Empresa Brasileira de Pesquisa Agropecuária-Embrapa | 2012–2021 | 16 | 9.143 | 317 | 0 | 90 | 19.813 |
4 | Universidade de São Paulo | 2009–2021 | 13 | 7.429 | 343 | 0 | 90 | 26.385 |
5 | University of New England | 2007–2016 | 8 | 4.571 | 207 | 10 | 61 | 25.875 |
6 | Rural Development Administration | 2008–2019 | 8 | 4.571 | 110 | 4 | 39 | 13.750 |
7 | L’Institut national de la recherche agronomique | 2007–2020 | 6 | 3.429 | 317 | 9 | 187 | 52.833 |
8 | Universidade Federal de São Carlos | 2012–2021 | 6 | 3.429 | 144 | 0 | 90 | 24.000 |
9 | University of Florida | 2005–2018 | 5 | 2.857 | 470 | 9 | 183 | 94.000 |
10 | CSIRO Livestock Industries | 2006–2010 | 5 | 2.857 | 192 | 17 | 61 | 38.400 |
Ranking | Journal | Publisher | Country | Q | Publication Date Range | TP 1 | Contribution (%) 2 | Citations | h Index 6 | JIF 7 (2021) | SJR Index 8 (2021) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TC 3 | LL 4 | UL 5 | TC/TP | |||||||||||
1 | Journal of Animal Science | Oxford University Press | United States | Q1 | 1995–2019 | 28 | 16.000 | 1805 | 9 | 202 | 64.464 | 164 | 3.338 | 0.85 |
2 | Meat Science | Elsevier | Netherlands | Q1 | 2009–2019 | 16 | 9.143 | 322 | 4 | 65 | 20.125 | 175 | 7.077 | 1.3 |
3 | Genetics and Molecular Research | Fundacao de Pesquisas Cientificas de Ribeirao Preto | Brazil | Q4 | 2011-2020 | 12 | 6.857 | 77 | 1 | 20 | 6.417 | 52 | 0.583 | 0.24 |
4 | Animal Genetics | Wiley-Blackwell Publishing Ltd | United Kingdom | Q2 | 1999–2016 | 8 | 4.571 | 220 | 3 | 61 | 27.500 | 85 | 2.884 | 0.56 |
5 | Animals | Multidisciplinary Digital Publishing Institute (MDPI) | Switzerland | 2019–2021 | 6 | 3.429 | 21 | 1 | 6 | 3.500 | 43 | 3.231 | 0.61 | |
6 | Molecular Biology Reports | Springer | Netherlands | Q2 | 2011–2014 | 5 | 2.857 | 53 | 5 | 17 | 10.600 | 76 | 2.742 | 0.52 |
7 | Livestock Science | Elsevier | Netherlands | Q1 | 2011–2019 | 5 | 2.857 | 45 | 1 | 19 | 9.000 | 116 | 1.929 | 0.52 |
8 | Plos One | Public Library of Science | United States | Q1 | 2015–2016 | 4 | 2.286 | 62 | 6 | 37 | 15.500 | 367 | - | 0.85 |
9 | Italian Journal of Animal Science | Taylor and Francis | United Kingdom | Q2 | 2007–2020 | 4 | 2.286 | 11 | 0 | 6 | 2.750 | 42 | 2.552 | 0.55 |
10 | BMC Genetics | BioMed Central | United Kingdom | Q3 | 2008–2019 | 3 | 1.714 | 117 | 24 | 55 | 39.000 | 80 | 2.759 | 0.59 |
Ranking | Reference | Year of Publication | Number of Authors | Title | Journal | Citations | Citations Per Year |
---|---|---|---|---|---|---|---|
1 | Casas et al. [91] | 2000 | 6 | Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin | Journal of Animal Science | 202 | 9.182 |
2 | Bernard et al. [61] | 2007 | 6 | New Indicators of Beef Sensory Quality Revealed by Expression of Specific Genes | Journal of Agricultural and Food Chemistry | 187 | 12.467 |
3 | Casas et al. [64] | 2006 | 9 | Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits | Journal of Animal Science | 183 | 11.438 |
4 | Page et al. [56] | 2002 | 11 | Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle | Journal of Animal Science | 180 | 9.000 |
5 | White et al. [46] | 2005 | 10 | A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent | Journal of Animal Science | 150 | 8.824 |
6 | Van Eenennaam et al. [92] | 2007 | 8 | Validation of commercial DNA tests for quantitative beef quality traits | Journal of Animal Science | 149 | 9.933 |
7 | Page et al. [57] | 2004 | 12 | Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires | Journal of Animal Science | 121 | 6.722 |
8 | Casas et al. [93] | 2005 | 10 | Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle | Journal of Animal Science | 114 | 6.706 |
9 | Tizioto et al. [77] | 2013 | 21 | Genome scan for meat quality traits in Nelore beef cattle | Physiological Genomics | 90 | 10.000 |
10 | Allais et al. [67] | 2011 | 11 | Effects of polymorphisms in the calpastatin and µ-calpain genes on meat tenderness in 3 French beef breeds | Journal of Animal Science | 75 | 6.818 |
Ranking | Keyword 1 | Occurrence | Ranking | Keyword | Occurrence |
---|---|---|---|---|---|
1 | article | 100 | 11 | calpastatin | 46 |
2 | animals | 97 | 12 | skeletal muscle | 45 |
3 | meat | 88 | 13 | gene frequency | 41 |
4 | cattle | 85 | 14 | calpain | 41 |
5 | genetics | 77 | 15 | bos | 39 |
6 | single nucleotide polymorphism | 63 | 16 | bovine | 37 |
7 | genotype | 62 | 17 | metabolism | 35 |
8 | nonhuman | 62 | 18 | meat quality | 34 |
9 | meat tenderness | 55 | 19 | controlled study | 33 |
10 | male | 46 | 20 | food quality | 33 |
Reference | Population | Muscle 1 | Genes 2 | |
---|---|---|---|---|
CAPN | CAST | |||
[46] | Brahman, B. taurus, and germplasm from B. indicus and B. taurus | Longissimus | CAPN1 316+, CAPN1 4753+ and CAPN1 530+ | |
[64] | B. indicus and B. taurus | N.S. | CAPN1+ | CAST+ |
[56] | Piedmontese × Angus and Jersey × Limousin | Longissimus thoracis | 38 SNPs+ | |
[102] | Jersey-Limousin crosses, Angus and Hereford-cross | Longissimus dorsi | CAPN1: c.947C > G+ | CAST: c.2959A > G+ |
[60] | Santa Gertrudis, Brahman and Belmont Red | Longissimus lumborum | CAPN3:c.2443-103G > C+, CAPN3:c.53T>G+ and CAPN3:c.1538+225G > T+ | CAST:c.2832A > G+ |
[103] | Brahman | Longissimus dorsi | CAPN316+ and CAPN4751+ | CAST+ |
[104] | Nellore | Longissimus dorsi | CAPN1 316+, CAPN1 4751+, CAPN1 530+ and CAPN1 4753+ | UOGCAST+ and WSUCAST+ |
[105] | Nellore | Longissimus dorsi | CAPN1 4751− | |
[106] | Charolais, Limousin and Retinta | Longissimus dorsi | CAPN1+ | CAST+ |
[70] | Nellore | Longissimus dorsi | CAPN1− and CAPN2- | CAST− |
[107] | Parda de Montaña and Pirenaica | Longissimus thoracis | CAPN1 316−, CAPN1 530− and CAPN1 4751− | CAST1+, CAST2+, CAST3−, CAST4+ and CAST5− |
[108] | Hanwoo | Longissimus lumborum | CAPN1:c.1589G > A+, CAPN1:c.658C > T+, CAPN1:c.948G > C+ and CAPN1:c.580A, > G+ | CAST:c.182A > G+, CAST:c.1985G > C+ and CAST:c.1526T > C+ |
[109] | B. taurus, B. indicus and crosses | Longissimus dorsi | CAPN1 316+ and CAPN1 4751+ | CAST-T1− |
[110] | Nellore | Longissimus dorsi | CAPN1− and CAPN2− | CAST− |
[72] | Nellore | Longissimus thoracis | CAPN1− and CAPN2− | CAST1− and CAST2+ |
[111] | Turkish grey | Longissimus dorsi | CAPN1 316+ and CAPN1 4751+ | UOGCAST+ |
[112] | Nelore | Longissimus thoracis | CAPN1 4751+ | UOGCAST+ |
[113] | Angus, Charolais, Brahman and Nguni | Longissimus thoracis et lumborum | CAPN1 184+, CAPN1 187+, CAPN1 4751+ and CAPN2 780+ | CAST 736+ and CAST 763+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzales-Malca, J.A.; Tirado-Kulieva, V.A.; Abanto-López, M.S.; Aldana-Juárez, W.L.; Palacios-Zapata, C.M. Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals 2022, 12, 2976. https://doi.org/10.3390/ani12212976
Gonzales-Malca JA, Tirado-Kulieva VA, Abanto-López MS, Aldana-Juárez WL, Palacios-Zapata CM. Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals. 2022; 12(21):2976. https://doi.org/10.3390/ani12212976
Chicago/Turabian StyleGonzales-Malca, Jhony Alberto, Vicente Amirpasha Tirado-Kulieva, María Santos Abanto-López, William Lorenzo Aldana-Juárez, and Claudia Mabel Palacios-Zapata. 2022. "Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness" Animals 12, no. 21: 2976. https://doi.org/10.3390/ani12212976
APA StyleGonzales-Malca, J. A., Tirado-Kulieva, V. A., Abanto-López, M. S., Aldana-Juárez, W. L., & Palacios-Zapata, C. M. (2022). Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals, 12(21), 2976. https://doi.org/10.3390/ani12212976