Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Sample Collection
2.2. Protein Extract Preparation
2.3. Two-Dimensional Electrophoresis (2-DE)
2.4. Image Analysis
2.5. MALDI—TOF Mass Spectrometry Analysis and Bioinformatic Data Analysis
2.6. STRING Analysis of Protein Networks
2.7. RNA Isolation
2.8. Gene Expression Analysis
3. Results
3.1. Analysis of Aorta Proteome
3.2. STRING Analysis of Protein Networks
3.3. Changes in the Gene Accumulation in Porcine Aorta
4. Discussion
4.1. Stress Response-Related Proteins
4.2. Collagen Formation, and Matrix Metaloproteinases
4.3. Cell Junction and Cytoskeletal Proteins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The prebiotic potential of inulin-type fructans: A systematic review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef] [PubMed]
- Bosscher, D. Fructan prebiotics derived from inulin. In Prebiotics and Probiotics Science and Technology; Springer: New York, NY, USA, 2009; pp. 163–205. [Google Scholar]
- Gałązka, I. The composition of chicory flour of selected chicory cultivars Polanowicka and Fredonia in relations to root sizes and date of harvest. Food Sci. Technol. Qual. 2002, 3, 37–45. [Google Scholar]
- Boudoulas, K.D.; Vlachopoulos, C.; Raman, S.V.; Sparks, E.A.; Triposciadis, F.; Stefanadis, C.; Boudoulas, H. Aortic function: From the research laboratory to the clinic. Cardiology 2012, 121, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Tsang, H.G.; Rashdan, N.A.; Whitelaw, C.B.A.; Corcoran, B.M.; Summers, K.M.; MacRae, V.E. Large animal models of cardiovascular disease. Cell Biochem. Funct. 2016, 34, 113–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelovas, P.P.; Kostomitsopoulos, N.G.; Xanthos, T.T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 432–438. [Google Scholar]
- Swindle, M.M.; Smith, A.C. Comparative anatomy and physiology of the pig. Scand. J. Lab. Anim. Sci. 1998, 25 (Suppl. 1), 11–21. [Google Scholar]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chiou, J. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients 2021, 13, 2878. [Google Scholar] [CrossRef]
- Catry, E.; Bindels, L.B.; Tailleux, A.; Lestavel, S.; Neyrinck, A.M.; Goossens, J.F.; Lobysheva, I.; Plovier, H.; Essaghir, A.; Demoulin, J.B.; et al. Targeting the gut microbiota with inulin-type fructans: Preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 2018, 67, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Dos Reis, S.A.; da Conceição, L.L.; Rosa, D.D.; Dias, M.M.d.S.; Peluzio, M.d.C.G. Mecanismos utilizados por los fructanos tipo inulina para mejorar el perfil lipídico. Nutr. Hosp. 2015, 31, 528–534. [Google Scholar]
- Deng, P.; Hoffman, J.B.; Petriello, M.C.; Wang, C.Y.; Li, X.S.; Kraemer, M.P.; Morris, A.J.; Hennig, B. Dietary inulin decreases circulating ceramides by suppressing neutral sphingomyelinase expression and activity in mice. J. Lipid Res. 2020, 61, 45–53. [Google Scholar] [CrossRef]
- Herosimczyk, A.; Lepczyński, A.; Ożgo, M.; Barszcz, M.; Jaszczuk-Kubiak, E.; Pierzchała, M.; Tuśnio, A.; Skomiał, J. Hepatic proteome changes induced by dietary supplementation with two levels of native chicory inulin in young pigs. Livest. Sci. 2017, 203, 54–62. [Google Scholar] [CrossRef]
- Lepczynski, A.; Herosimczyk, A.; Ozgo, M.; Skomial, J.; Taciak, M.; Barszcz, M.; Berezecka, N. Dietary supplementation with dried chicory root triggers changes in the blood serum proteins engaged in the clotting process and the innate immune response in growing pigs. J. Physiol. Pharmacol. 2015, 66, 47–55. [Google Scholar]
- Lepczyński, A.; Herosimczyk, A.; Ożgo, M.; Marynowska, M.; Pawlikowska, M.; Barszcz, M.; Taciak, M.; Skomiał, J. Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs—A proteomic study. J. Anim. Physiol. Anim. Nutr. 2017, 101, 12595. [Google Scholar] [CrossRef]
- Herosimczyk, A.; Lepczyński, A.; Ożgo, M.; Skomiał, J.; Dratwa-Chałupnik, A.; Tuśnio, A.; Taciak, M.; Barszcz, M. Differentially expressed proteins in the blood serum of piglets in response to a diet supplemented with inulin. Pol. J. Vet. Sci. 2015, 18, 541–548. [Google Scholar] [CrossRef]
- Boisvert, W.A.; Black, A.S.; Curtiss, L.K. ApoA1 reduces free cholesterol accumulation in atherosclerotic lesions of ApoE-deficient mice transplanted with ApoE-expressing macrophages. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Hashikawa, N.; Ido, M.; Morita, Y.; Hashikawa-Hobara, N. Effects from the induction of heat shock proteins in a murine model due to progression of aortic atherosclerosis. Sci. Rep. 2021, 11, 7025. [Google Scholar] [CrossRef]
- Pink, M.; Verma, N.; Rettenmeier, A.W.; Schmitz-Spanke, S. CBB Staining protocol with higher sensitivity and mass spectrometric compatibility. Electrophoresis 2010, 31, 593–598. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nygard, A.-B.; Jørgensen, C.B.; Cirera, S.; Fredholm, M. Selection of reference genes for gene expression studies in pig tissues using SYBR green QPCR. BMC Mol. Biol. 2007, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Biwer, L.A.; Askew-Page, H.R.; Hong, K.; Milstein, J.; Johnstone, S.R.; Macal, E.; Good, M.E.; Bagher, P.; Sonkusare, S.K.; Isakson, B.E. Endothelial calreticulin deletion impairs endothelial function in aged mice. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1041–H1048. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.X.; Lin, Y.F.; Chen, C.L.; Huang, M.S.; Hsiao, M.; Liang, P.H. Chaperonin-containing TCP-1 promotes cancer chemoresistance and metastasis through the AKT-GSK3β-β-Catenin and xiap-survivin pathways. Cancers 2020, 12, 3865. [Google Scholar] [CrossRef] [PubMed]
- Pike, S.E.; Yao, L.; Jones, K.D.; Cherney, B.; Appella, E.; Sakaguchi, K.; Nakhasi, H.; Teruya-Feldstein, J.; Wirth, P.; Gupta, G.; et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 1998, 188, 2349–2356. [Google Scholar] [CrossRef]
- Androwiki, A.C.D.; Camargo, L.d.L.; Sartoretto, S.; Couto, G.K.; Ribeiro, I.M.R.; Veríssimo-Filho, S.; Rossoni, L.V.; Lopes, L.R. Protein disulfide isomerase expression increases in resistance arteries during hypertension development. Effects on Nox1 NADPH oxidase signaling. Front. Chem. 2015, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, H.-J.; Liu, C.-A.; Huang, B.; Tseng, A.H.; Wang, D.L. Shear-induced endothelial mechanotransduction: The interplay between Reactive Oxygen Species (ROS) and Nitric Oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 2014, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Herosimczyk, A.; Lepczyński, A.; Ożgo, M.; Barszcz, M.; Marynowska, M.; Tuśnio, A.; Taciak, M.; Markulen, A.; Skomiał, J. Proteome changes in ileal mucosa of young pigs resulting from different levels of native chicory inulin in the diet. J. Anim. Feed Sci. 2018, 27, 229–237. [Google Scholar] [CrossRef]
- Lepczyński, A.; Herosimczyk, A.; Barszcz, M.; Ożgo, M.; Michałek, K.; Grabowska, M.; Tuśnio, A.; Szczerbińska, D.; Skomiał, J. Diet supplemented either with dried chicory root or chicory inulin significantly influence kidney and liver mineral content and antioxidative capacity in growing pigs. Animal 2021, 15, 100129. [Google Scholar] [CrossRef]
- Shih, Y.-C.; Chen, C.-L.; Zhang, Y.; Mellor, R.L.; Kanter, E.M.; Fang, Y.; Wang, H.-C.; Hung, C.-T.; Nong, J.-Y.; Chen, H.-J.; et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ. Res. 2018, 122, 1052–1068. [Google Scholar] [CrossRef]
- Cheng, S.H.; Yeh, C.F.; Fang, Y.; Yang, K.C. Endoplasmic reticulum protein thioredoxin domain containing 5 (TXNDC5) is a novel mediator of endothelial dysfunction and atherosclerosis. Eur. Heart J. 2018, 39, P593. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Hu, M.; Shen, M.; Kassiri, Z. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, P.; Lee, D.; Richard, M.A.; Tekola-Ayele, F.; Tayo, B.O.; Ware, E.; Sung, Y.J.; Salako, B.; Ogunniyi, A.; Gu, C.C.; et al. Rare coding variants associated with blood pressure variation in 15,914 individuals of african ancestry. J. Hypertens. 2017, 35, 1381–1389. [Google Scholar] [CrossRef]
- Sleptsov, A.A.; Nazarenko, M.S.; Lebedev, I.N.; Skriabin, N.A.; Frolov, A.V.; Popov, V.A.; Barbarash, L.S.; Puzyrev, V.P. Somatic genome variations in vascular tissues and peripheral blood leukocytes in patients with atherosclerosis. Genetika 2014, 50, 986–995. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Q.; Yan, C.; Du, J. COL6A1 Knockdown suppresses cell proliferation and migration in human aortic vascular smooth muscle cells. Exp. Ther. Med. 2019, 18, 1977–1984. [Google Scholar] [CrossRef]
- Moore, L.; Fan, D.; Basu, R.; Kandalam, V.; Kassiri, Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail. Rev. 2012, 17, 693–706. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Z.; Li, G.; Li, B.; Xie, W.; Xiang, D. Fibulin-3 may improve vascular health through inhibition of MMP-2/9 and oxidative stress in spontaneously hypertensive rats. Mol. Med. Rep. 2016, 13, 3805–3812. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145, 396–406. [Google Scholar] [CrossRef]
- Hong, Y.-H.; Nishimura, Y.; Hishikawa, D.; Tsuzuki, H.; Miyahara, H.; Gotoh, C.; Choi, K.-C.; Feng, D.D.; Chen, C.; Lee, H.-G.; et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005, 146, 5092–5099. [Google Scholar] [CrossRef] [Green Version]
- Schiffers, P.M.H.; Henrion, D.; Boulanger, C.M.; Colucci-Guyon, E.; Langa-Vuves, F.; van Essen, H.; Fazzi, G.E.; Lévy, B.I.; de Mey, J.G.R. Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivaska, J.; Vuoriluoto, K.; Huovinen, T.; Izawa, I.; Inagaki, M.; Parker, P.J. PKCε-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 2005, 24, 3834–3845. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.; Henttinen, T.; Merinen, M.; Marttila–Ichihara, F.; Eriksson, J.E.; Jalkanen, S. Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 2006, 8, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Ivaska, J.; Pallari, H.M.; Nevo, J.; Eriksson, J.E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 2007, 313, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.I.; Kang, H.; Dave, J.M.; Mendoza, E.A.; Su, S.C.; Maxwell, S.A.; Bayless, K.J. Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation. Angiogenesis 2012, 15, 287–303. [Google Scholar] [CrossRef]
- Ridge, K.M.; Eriksson, J.E.; Pekny, M.; Goldman, R.D. Roles of vimentin in health and disease. Genes Dev. 2022, 36, 391–407. [Google Scholar] [CrossRef]
- Zhang, J.; Henrion, D.; Ebrahimian, T.; Benessiano, J.; Colucci-Guyon, E.; Langa, F.; Lévy, B.I.; Boulanger, C.M. Increased contribution of l-arginine–nitric oxide pathway in aorta of mice lacking the gene for vimentin. J. Cardiovasc. Pharmacol. 2001, 38, 552–560. [Google Scholar] [CrossRef]
- Langlois, B.; Belozertseva, E.; Parlakian, A.; Bourhim, M.; Gao-Li, J.; Blanc, J.; Tian, L.; Coletti, D.; Labat, C.; Ramdame-Cherif, Z.; et al. Vimentin knockout results in increased expression of sub-endothelial basement membrane components and carotid stiffness in mice. Sci. Rep. 2017, 7, 11628. [Google Scholar] [CrossRef] [Green Version]
- Mott, R.E.; Helmke, B.P. Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am. J. Physiol. Cell Physiol. 2007, 293, C1616–C1626. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Drozdov, I.; Shroff, R.; Beltran, L.E.; Shanahan, C.M. Prelamin a accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ. Res. 2013, 112, 300543. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Cui, Z.; Zhu, Y. The role of caveolae in endothelial dysfunction. Med. Rev. 2021, 1, 78–91. [Google Scholar] [CrossRef]
- Fernández-Hernando, C.; Yu, J.; Suárez, Y.; Rahner, C.; Dávalos, A.; Lasunción, M.A.; Sessa, W.C. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 2009, 10, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Wang, S.-H.; Kuan, I.-I.; Tseng, W.-K.; Chen, M.-F.; Wu, J.-C.; Chen, Y.-L. OxLDL upregulates caveolin-1 expression in macrophages: Role for caveolin-1 in the adhesion of OxLDL-treated macrophages to endothelium. J. Cell. Biochem. 2009, 107, 460–472. [Google Scholar] [CrossRef]
- He, X.; Drelich, A.; Yu, S.; Chang, Q.; Gong, D.; Zhou, Y.; Qu, Y.; Yuan, Y.; Su, Z.; Qiu, Y.; et al. Exchange protein directly activated by CAMP plays a critical role in regulation of vascular fibrinolysis. Life Sci. 2019, 221, 1–12. [Google Scholar] [CrossRef]
- Li, J.; Cechova, S.; Wang, L.; Isakson, B.E.; Le, T.H.; Shi, W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am. J. Physiol. Renal Physiol. 2019, 316, 1141–1150. [Google Scholar] [CrossRef]
Ingredient Composition % | C | IN | CR |
---|---|---|---|
Wheat | 46.84 | 46.84 | 45.84 |
Barley | 20 | 20 | 20 |
Corn starch | 3.0 | 1.0 | - |
Full-fat soya bean | 5.9 | 5.9 | 5.9 |
Whey | 9.7 | 9.7 | 9.7 |
Fish meal | 4.0 | 4.0 | 4.0 |
Spray-dried blood plasma | 4.0 | 4.0 | 4.0 |
Soya bean oil | 3.4 | 3.4 | 3.4 |
Calcium formate | 0.3 | 0.3 | 0.3 |
Limestone | 0.5 | 0.5 | 0.5 |
Dicalcium phosphate | 0.6 | 0.6 | 0.6 |
Sodium chloride | 0.07 | 0.07 | 0.07 |
L-lysine | 0.61 | 0.61 | 0.61 |
DL-methionine | 0.23 | 0.23 | 0.23 |
L-threonine | 0.26 | 0.26 | 0.26 |
L-tryptophan | 0.09 | 0.09 | 0.09 |
Mineral-vitamin premix 1 | 0.04 | 0.04 | 0.04 |
Aroma | 0.01 | 0.01 | 0.01 |
Inulin 2 | - | 2 | - |
Dried chicory root 3 | - | - | 4 |
Gene | Name | NCBI No. | Primer Sequence |
---|---|---|---|
RPL4 1 | ribosomal protein L4 | 100038029 | F: CAAGAGTAACTACAACCTTC R: GAACTCTACGATGAATCTTC |
ACTB 1 | Beta—actin | 414396 | F: CACGCCATCCTGCGTCTGGA R: AGCACCGTGTTGGCGTAGAG |
RCN2 | reticulocalbin 2 | 100153840 | F: AGATGCTGATGGCAGTCTTGA R: CAGTCATTCTGCAACACTCACC |
FFAR2 | free fatty acid receptor 2 | 100126285 | F: GGACCCATCACAAGAAGCCA R: CTCTCCCCTCCAGCTCTGAT |
TXNDC5 | thioredoxin domain containing 5 | 100156354 | F: CGTCCTCCATGCTGTTGTACT R: CTGTGCCCTCTCTGCATGTT |
SOD1 | superoxide dismutase 1 | 397036 | F: CATTCCATCATTGGCCGCAC R: TGGGGACCTTTAGAAACCAGG |
SOD2 | superoxide dismutase 2 | 100154319 | F: CTTGCAGATTGCCGCTTGTT R: CTCGTCTTCCTCACCTCACG |
COL6A1 | collagen alpha—1 (VI) chain | 100623720 | F: GCCTGGTCTACACCTCACG R: GCTCCTCAAAGGGACGACG |
COL6A2 | collagen type VI alpha—2 chain | 100101552 | F: CATCAGAAGTCCATGGCTGC R: TGAAGACTCTCAAGCAGCCA |
EFEMP1 | EGF containing fibulin extracellular matrix protein 1 | 100512046 | F: TGGAGGCAGTTTGTAGAGGG R: GTGCTGGCAGATGATCAAGG |
MMP2 | matrix metallopeptidase 2 | 397391 | F: AGTGTGTCCTTCAGCACGAA R: ATGCCATCCTAACGTGGCTG |
TIMP3 | TIMP metallopeptidase inhibitor 3 | 396775 | F: CCACATCCTCATTGAGCTGC R: TTCATGCCAGCTTCTCTCCA |
VIM | vimentin | 100522394 | F: TCAGTTTCACCCATGCGTCC R: TACGCACCAAAGCAAGTCAC |
Spot No. | Accession No. | Protein Name | Gene Name | Ratio | SequenceCoverage % | MASCOT Score | Theoretical pI/Mw | Experimental pI/Mw | |
---|---|---|---|---|---|---|---|---|---|
IN/C | CR/C | ||||||||
Stress response-related proteins | |||||||||
5 | NP_001167604 | Calreticulin precursor | CALR | 0.51 | 0.71 | 29 | 83 | 4.32/48.43 | 4.7/69.9 |
10 | NP_001230356 | T-complex protein 1 subunit alpha | TCP1 | 0.45 | 0.52 | 28 | 98 | 5.71/60.83 | 6.2/62.6 |
9 | P19378 | Heat shock cognate 71 kDa protein | HSPA8 | 0.70 | 0.70 | 25 | 71 | 5.24/70.99 | 5.9/67.1 |
21 | NP_001182041 | Protein disulfide—isomerase A3 precursor | PDIA3 | 0.70 | 0.63 | 34 | 108 | 5.93/57.28 | 6.5/56.2 |
12 | Q4VIT4 | 0.55 | 0.48 | 23 | 64 | 6.23/57.14 | 7.2/59.9 | ||
11 | Protein disulfide isomerase A3 | 1.29 | 1.71 | 20 | 62 | 6.23/57.14 | 6.9/58.9 | ||
17 | XP_020955819 | Thioredoxin domain-containing protein 5 | TXNDC | 2.58 | 1.60 | 33 | 135 | 5.94/48.70 | 5.9/54.3 |
15 | AAA30983 | Alpha—1 acid glycoprotein, partial | ORM1 | 0.35 | 0.36 | 36 | 81 | 5.83/21.11 | 4.3/53.0 |
16 | 0.45 | 0.50 | 36 | 94 | 5.83/21.11 | 4.5/51.8 | |||
6 | P08835 | Serum albumin | ALB | 1.32 | 0.60 | 25 | 72 | 6.08/71.64 | 5.2/71.0 |
Cell junction and cytoskeletal proteins | |||||||||
8 | P02543 | Vimentin | VIM | 0.30 | 1.30 | 28 | 62 | 5.06/53.69 | 5.5/70.6 |
3 | XP_005671131 | Vinculin isoform X3 | VCL | 0.65 | 0.72 | 31 | 121 | 5.83/117.25 | 6.5/116.2 |
18 | NP_001127815 | Actin related protein 3 | ACTR3 | 0.52 | 0.67 | 35 | 85 | 5.61/47.85 | 6.1/51.4 |
4 | Q3ZD69 | Prelamin A/C | LMNA | 0.64 | 0.78 | 56 | 333 | 6.73/74.40 | 7.3/75.0 |
20 | ANH21174 | Septin 8 | SEPT8 | 0.63 | 0.57 | 35 | 100 | 5.67/56.22 | 6.3/55.7 |
24 | P19620 | Annexin A2 | ANXA2 | 1.86 | 1.27 | 57 | 200 | 6.49/38.76 | 7.3/35.5 |
23 | Q6NZI2 | Caveolae—associated protein 1 | CAVIN1 | 0.60 | 0.57 | 17 | 62 | 5.51/43.45 | 4.8/35.0 |
Collagen formation, and matrix metalloproteinases | |||||||||
1 | XP_020926753 | Collagen alpha—1 (VI) chain | COL6A1 | 2.04 | 1.34 | 12 | 79 | 5.23/109.69 | 5.4/192.6 |
2 | XP_020938158 | Collagen alpha—2 (VI) chain | COL6A2 | 0.46 | 1.06 | 24 | 123 | 6.13/110.44 | 6.0/169.9 |
7 | XP_013851600 | EGF-containing fibulin-like extracellular matrix protein 1 isoform X1 | EFEMP1 | 0.58 | 0.34 | 29 | 81 | 5.16/52.30 | 5.3/70.4 |
Other proteins | |||||||||
22 | XP_020950937 | Alpha—enolase isoform X1 | ENO1 | 1.05 | 0.71 | 36 | 87 | 6.44/47.60 | 6.7/50.3 |
13 | P31943 | Heterogeneous nuclear ribonucleoprotein H | HNRNPH1 | 0.39 | 0.59 | 27 | 66 | 5.89/49.48 | 7.2/57.5 |
19 | Q6Q7J2 | Rab GDP dissociation inhibitor beta | GDI2 | 0.54 | 0.49 | 37 | 84 | 6.31/50.75 | 6.2/55.7 |
14 | XP_020953684 | Reticulocalbin—2 isoform X3 | RCN2 | 0.61 | 0.52 | 35 | 87 | 4.18/36.21 | 4.1/57.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marynowska, M.; Herosimczyk, A.; Lepczyński, A.; Barszcz, M.; Konopka, A.; Dunisławska, A.; Ożgo, M. Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources. Animals 2022, 12, 3147. https://doi.org/10.3390/ani12223147
Marynowska M, Herosimczyk A, Lepczyński A, Barszcz M, Konopka A, Dunisławska A, Ożgo M. Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources. Animals. 2022; 12(22):3147. https://doi.org/10.3390/ani12223147
Chicago/Turabian StyleMarynowska, Marta, Agnieszka Herosimczyk, Adam Lepczyński, Marcin Barszcz, Adrianna Konopka, Aleksandra Dunisławska, and Małgorzata Ożgo. 2022. "Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources" Animals 12, no. 22: 3147. https://doi.org/10.3390/ani12223147