Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016–2019
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Collection of Bacterial Strains
2.2. Antimicrobial Susceptibility Testing
2.3. Screening for ESBL-Producing Strains
2.4. Characterization of ESBL Genes by PCR Sequencing
2.5. Probe and Primer Design
2.6. Multiplex Quantitative PCR Amplification
2.7. Sensitivity Tests and Standard Curve
2.8. Detection of ESBL Genes Using the Novel Multiplex qPCR Method
3. Results
3.1. Antimicrobial Susceptibility and Phenotypic Identification
3.2. Genotypic Characterization of ESBL Producers
3.3. Establishment of a Novel Multiplex qPCR Method
3.4. Comparison of the Novel Multiplex qPCR Method and PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanokudom, S.; Assawakongkarat, T.; Akeda, Y.; Ratthawongjirakul, P.; Chuanchuen, R.; Chaichanawongsaroj, N. Rapid detection of extended spectrum beta-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE 2021, 16, e0248536. [Google Scholar] [CrossRef] [PubMed]
- Fulgenzio, C.; Massari, M.; Traversa, G.; Da Cas, R.; Ferrante, G.; Aschbacher, R.; Moser, V.; Pagani, E.; Vestri, A.R.; Massidda, O.; et al. Impact of Prior Antibiotic Use in Primary Care on Escherichia coli Resistance to Third Generation Cephalosporins: A Case-Control Study. Antibiotics 2021, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, M.U.; Thajuddin, N.; Ahamed, P.; Teklemariam, Z.; Jamil, K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Cardo, M.; Cara d’Anjo, M.; Leite, A. Assessing antimicrobial resistance occurrence in the Portuguese food system: Poultry, pigs and derived food, 2014-2018. Zoonoses Public Health 2022, 69, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, M.V.; Liakopoulos, A.; Brouwer, M.; Kant, A.; Pizauro, L.J.L.; Borzi, M.M.; Mevius, D.; de Avila, F.A. Occurrence and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Enterobacterales Recovered From Chicken, Chicken Meat, and Human Infections in Sao Paulo State, Brazil. Front. Microbiol. 2021, 12, 628738. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Geser, N.; Stephan, R.; Hachler, H. Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Jomehzadeh, N.; Ahmadi, K.; Javaherizadeh, H.; Afzali, M. The first evaluation relationship of integron genes and the multidrug-resistance in class A ESBLs genes in enteropathogenic Escherichia coli strains isolated from children with diarrhea in Southwestern Iran. Mol. Biol. Rep. 2021, 48, 307–313. [Google Scholar] [CrossRef]
- Hosu, M.C.; Vasaikar, S.D.; Okuthe, G.E.; Apalata, T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci. Rep. 2021, 11, 7110. [Google Scholar] [CrossRef]
- Basbas, C.; Byrne, B.A.; Chigerwe, M.; Escobar, E.D.; Hodzic, E.; Pires, A.F.A.; Pereira, R.V. Detection of Cephalosporin and Fluoroquinolone Resistance Genes via Novel Multiplex qPCR in Fecal Salmonella Isolates From Northern Californian Dairy Cattle, 2002–2016. Front. Microbiol. 2021, 12, 601924. [Google Scholar] [CrossRef]
- Shahi, S.K.; Singh, V.K.; Kumar, A. Detection of Escherichia coli and associated beta-lactamases genes from diabetic foot ulcers by multiplex PCR and molecular modeling and docking of SHV-1, TEM-1, and OXA-1 beta-lactamases with clindamycin and piperacillin-tazobactam. PLoS ONE 2013, 8, e68234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedenic, B.; Mestrovic, T. Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Diagnostics 2021, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type beta-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. IJMM 2013, 303, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- Azargun, R.; Sadeghi, M.R.; Soroush Barhaghi, M.H.; Samadi Kafil, H.; Yeganeh, F.; Ahangar Oskouee, M.; Ghotaslou, R. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect. Drug Resist. 2018, 11, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Rivoarilala, O.L.; Garin, B.; Andriamahery, F.; Collard, J.M. Rapid in vitro detection of CTX-M groups 1, 2, 8, 9 resistance genes by LAMP assays. PLoS ONE 2018, 13, e0200421. [Google Scholar] [CrossRef]
- Osman, K.M.; Kappell, A.D.; Elhadidy, M.; ElMougy, F.; El-Ghany, W.A.A.; Orabi, A.; Mubarak, A.S.; Dawoud, T.M.; Hemeg, H.A.; Moussa, I.M.I.; et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci. Rep. 2018, 8, 5859. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, K.; Zhang, Y.; Xia, L.; Zhao, L.; Guo, C.; Liu, X.; Qin, L.; Hao, Z. High Prevalence and Diversity Characteristics of blaNDM, mcr, and blaESBLs Harboring Multidrug-Resistant Escherichia coli From Chicken, Pig, and Cattle in China. Front. Cell Infect. Microbiol. 2021, 11, 755545. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Li, X.; Ma, L.; Cao, X.; Hu, W.; Zhao, L.; Jing, W.; Lan, X.; Li, Y.; et al. Genetic diversity, antimicrobial resistance and extended-spectrum beta-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J. Glob. Antimicrob. Resist. 2020, 22, 726–732. [Google Scholar] [CrossRef]
- Tong, P.; Sun, Y.; Ji, X.; Du, X.; Guo, X.; Liu, J.; Zhu, L.; Zhou, B.; Zhou, W.; Liu, G.; et al. Characterization of antimicrobial resistance and extended-spectrum beta-lactamase genes in Escherichia coli isolated from chickens. Foodborne Pathog. Dis. 2015, 12, 345–352. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sato, T.; Fukushima, Y.; Nakajima, C.; Suzuki, Y.; Takahashi, S.; Yokota, S.I. Contribution of beta-lactamase and efflux pump overproduction to tazobactam-piperacillin resistance in clinical isolates of Escherichia coli. Int. J. Antimicrob. Agents 2020, 55, 105919. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum beta-lactamases (ESBLs) in the developed world. J. Travel. Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Jiang, Z.G.; Xia, L.N.; Shen, J.Z.; Dai, L.; Wang, Y.; Huang, S.Y.; Wu, C.M. Characterization of antimicrobial resistance and molecular determinants of beta-lactamase in Escherichia coli isolated from chickens in China during 1970–2007. Vet. Microbiol. 2010, 144, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Y.; Shi, X.; Wang, S.; Ren, H.; Shen, Z.; Wang, Y.; Lin, J.; Wang, S. Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008–2014. Emerg. Microbes Infect. 2018, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Canton, R.; Gonzalez-Alba, J.M.; Galan, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soren, O.; Brinch, K.S.; Patel, D.; Liu, Y.; Liu, A.; Coates, A.; Hu, Y. Antimicrobial Peptide Novicidin Synergizes with Rifampin, Ceftriaxone, and Ceftazidime against Antibiotic-Resistant Enterobacteriaceae In Vitro. Antimicrob. Agents Chemother. 2015, 59, 6233–6240. [Google Scholar] [CrossRef] [Green Version]
- Merida-Vieyra, J.; De Colsa, A.; Calderon Castaneda, Y.; Arzate Barbosa, P.; Aquino Andrade, A. First Report of Group CTX-M-9 Extended Spectrum Beta-Lactamases in Escherichia coli Isolates from Pediatric Patients in Mexico. PLoS ONE 2016, 11, e0168608. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.F.; Chen, W.L.; Hung, W.Y.; Huang, I.F.; Chiou, Y.H.; Chen, Y.S.; Lee, S.S.; Hung, C.H.; Wang, J.L. Emergence of extended spectrum-beta-lactamase-producing Escherichia coli O25b-ST131: A major community-acquired uropathogen in infants. Pediatr. Infect. Dis. J. 2015, 34, 469–475. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, Z.; Chen, S.; Ma, J.; He, L.; Liu, Y.; Deng, Y.; Lei, T.; Zhao, J.; Liu, J.H. High prevalence of bla(CTX-M) extended-spectrum beta-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect. 2010, 16, 1475–1481. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Kanki, M.; Nguyen, P.D.; Le, H.T.; Ngo, P.T.; Tran, D.N.; Le, N.H.; Dang, C.V.; Kawai, T.; Kawahara, R.; et al. Prevalence, antibiotic resistance, and extended-spectrum and AmpC beta-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. [Google Scholar] [CrossRef]
- Sapugahawatte, D.N.; Li, C.; Zhu, C.; Dharmaratne, P.; Wong, K.T.; Lo, N.; Ip, M. Prevalence and Characteristics of Extended-Spectrum-beta-Lactamase-Producing and Carbapenemase-Producing Enterobacteriaceae from Freshwater Fish and Pork in Wet Markets of Hong Kong. mSphere 2020, 5, e00107-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.Z.; Ding, X.M.; Lin, X.L.; Sun, R.Y.; Lu, Y.W.; Cai, R.M.; Webber, M.A.; Ding, H.Z.; Jiang, H.X. The Emergence of Chromosomally Located blaCTX-M-55 in Salmonella From Foodborne Animals in China. Front. Microbiol. 2019, 10, 1268. [Google Scholar] [CrossRef] [PubMed]
- Szmolka, A.; Wiener, Z.; Matulova, M.E.; Varmuzova, K.; Rychlik, I. Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection. PLoS ONE 2015, 10, e0127708. [Google Scholar] [CrossRef] [Green Version]
- Nossair, M.A.; Abd El Baqy, F.A.; Rizk, M.S.Y.; Elaadli, H.; Mansour, A.M.; Abd El-Aziz, A.H.; Alkhedaide, A.; Soliman, M.M.; Ramadan, H.; Shukry, M.; et al. Prevalence and Molecular Characterization of Extended-Spectrum beta-Lactamases and AmpC beta-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022, 11, 852. [Google Scholar] [CrossRef]
- Mallik, D.; Jain, D.; Bhakta, S.; Ghosh, A.S. Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli. Antibiotics 2022, 11, 67. [Google Scholar] [CrossRef]
- Jomehzadeh, N.; Ahmadi, K.; Rahmani, Z. Prevalence of plasmid-mediated AmpC beta-lactamases among uropathogenic Escherichia coli isolates in southwestern Iran. Osong. Public Health Res. Perspect. 2021, 12, 390–395. [Google Scholar] [CrossRef]
- Deccache, Y.; Irenge, L.M.; Ambroise, J.; Savov, E.; Marinescu, D.; Chirimwami, R.B.; Gala, J.L. A qPCR and multiplex pyrosequencing assay combined with automated data processing for rapid and unambiguous detection of ESBL-producers Enterobacteriaceae. AMB Express 2015, 5, 136. [Google Scholar] [CrossRef]
Primer and Probe | Sequence (5′-3′) | Product Size (bp) |
---|---|---|
qTEM-F | CGGATGGCATGACAGTAAGA | |
qTEM-R | GTAAGTTGGCAGCAGTGTTATC | 101 |
qTEM-P | Hex-TGCAGTGCTGCCATAACCATGAGT-BHQ1 | |
qCTX-M-F | CTATGGCACCACCAAYGATA | |
qCTX-M-R | TTGAGGCTGGGTRAARTARG | 86 |
qCTX-M-P | TAMRA-ACCAGAAYCAGCGGCGCACGAY-BHQ2 | |
qSHV-F | TGGATGCCGGTGACGAA | |
qSHV-R | CAAGGTGTTTTTCGCTGACC | 90 |
qSHV-P | FAM-CTGGAGCGAAAGATCCACTATCGCCA-BHQ1 | |
TEM-F | AAACGCTGGTGAAAGTA | 822 |
TEM-R | AGCGATCTGTCTAT | |
CTX-M-1-F | GGTTAAAAAATCACTGCGTC | 850 |
CTX-M-1-R | TTGGTGACGATTTTAGCCGC | |
CTX-M-9-F | ATGGTGACAAAGAGAGTGCA | 850 |
CTX-M-9-R | CCCTTCGGCGATGATTCTC | |
CTX-M-2-F | CGACGCTACCCCTGCTATT | 552 |
CTX-M-2-R | CCAGCGTCAGATTTTTCAGG | |
CTX-M-8-F | TCGCGTTAAGCGGATGATGC | 666 |
CTX-M-8-R | AACCCACGATGTGGGTAG | |
CTX-M-25-F | TTGTTGAGTCAGCGGGTTGA | 474 |
CTX-M-25-R | GCGCGACCTTCCGGCCAAAT | |
SHV-F | ATGCGTTATATTCGCCTGTG | 753 |
SHV-R | TGCTTTGTTATTCGGGCCAA |
Years | Number | ESBL Producers (%) | β-Lactam Antibiotics Resistant (%) | |
---|---|---|---|---|
ESBL Producers | None-ESBL Producers | |||
2016 | 101 | 64 (63.37%) | 64/64 (100%) | 4/37 (10.81%) |
2017 | 96 | 58 (60.42%) | 58/58 (100%) | 4/38 (10.52%) |
2018 | 112 | 74 (66.07%) | 74/74 (100%) | 8/38 (21.05%) |
2019 | 98 | 66 (67.35%) | 66/66 (100%) | 8/32 (25%) |
Total | 407 | 262 (64.37%) | 262/262 (100%) | 24/145 (16.55%) |
Beta-Lactamase Genes in E. coli | 2016 (n = 64) | 2017 (n = 58) | 2018 (n = 74) | 2019 (n = 66) | Total (n = 262) | |
---|---|---|---|---|---|---|
TEM-1 | 2 | 3 | 2 | - | 7 | |
CTX-M | 17 | 13 | 18 | 5 | 53 | |
CTX-M-1 | 3 | 2 | 5 | - | 10 | |
CTX-M-15 | 2 | - | 1 | - | 3 | |
CTX-M-55 | 7 | 8 | 4 | 3 | 22 | |
CTX-M-9 | 3 | 2 | 1 | - | 6 | |
CTX-M-14 | 2 | 1 | 5 | 1 | 9 | |
CTX-M-65 | - | - | 2 | 1 | 3 | |
CTX-M+TEM | 45 | 42 | 54 | 53 | 194 | |
CTX-M-1, TEM-1 | 12 | 11 | 9 | 5 | 37 | |
CTX-M-3, TEM-1 | - | - | 1 | 2 | 3 | |
CTX-M-15, TEM-1 | 2 | 3 | 3 | 5 | 13 | |
CTX-M-15, TEM-30 | - | - | 1 | 1 | 2 | |
CTX-M-55, TEM-1 | 23 | 18 | 27 | 23 | 91 | |
CTX-M-55, TEM-30 | 2 | 1 | 4 | 3 | 10 | |
CTX-M-9, TEM-1 | 1 | 3 | 3 | 3 | 10 | |
CTX-M-14, TEM-1 | 4 | 4 | 4 | 8 | 20 | |
CTX-M-65, TEM-1 | 1 | 2 | 2 | 3 | 8 | |
CTX-M+SHV | - | - | - | 8 | 8 | |
CTX-M-15, SHV-12 | - | - | - | 3 | 3 | |
CTX-M-55, SHV-12 | - | - | - | 4 | 4 | |
CTX-M-65, SHV-12 | - | - | - | 1 | 1 |
β-Lactamase Genes | PCR | Multiplex qPCR | ||
---|---|---|---|---|
blaCTX-M | blaTEM | blaSHV | ||
blaCTX-M alone | 53 | 53 | 0 | 0 |
blaTEM alone | 7 | 0 | 6 | 0 |
blaSHV alone | 0 | 0 | 0 | 0 |
blaCTX-M + blaTEM | 194 | 195 | 195 | 0 |
blaCTX-M + blaSHV | 8 | 8 | 0 | 8 |
blaTEM + blaSHV | 0 | 0 | 0 | 0 |
blaCTX-M + blaTEM + blaSHV | 0 | 0 | 0 | 0 |
Multiplex qPCR | PCR | Sensitivity [IC] | Specificity [IC] | PPV a [IC] | NPV b [IC] | |
---|---|---|---|---|---|---|
CTX-M | Positive | Negative | ||||
Positive | 255 | 1 | 100 [98–100] | 85 [42–99] | 99 [97–99] | 100 |
Negative | 0 | 6 | ||||
TEM | Positive | Negative | ||||
Positive | 201 | 0 | 100 [98–100] | 100 [94–100] | 100 | 100 |
Negative | 0 | 61 | ||||
SHV | Positive | Negative | ||||
Positive | 8 | 0 | 100 [63–100] | 100 [98–100] | 100 | 100 |
Negative | 0 | 254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lu, Q.; Mao, X.; Li, L.; Dou, J.; He, Q.; Shao, H.; Luo, Q. Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016–2019. Animals 2022, 12, 3191. https://doi.org/10.3390/ani12223191
Wang Z, Lu Q, Mao X, Li L, Dou J, He Q, Shao H, Luo Q. Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016–2019. Animals. 2022; 12(22):3191. https://doi.org/10.3390/ani12223191
Chicago/Turabian StyleWang, Zui, Qin Lu, Xiaohui Mao, Li Li, Junfeng Dou, Qigai He, Huabin Shao, and Qingping Luo. 2022. "Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016–2019" Animals 12, no. 22: 3191. https://doi.org/10.3390/ani12223191
APA StyleWang, Z., Lu, Q., Mao, X., Li, L., Dou, J., He, Q., Shao, H., & Luo, Q. (2022). Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016–2019. Animals, 12(22), 3191. https://doi.org/10.3390/ani12223191