First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Sampling
2.2. Hematology
2.3. Histopathology
2.4. Virological Analysis via Cell Culture
2.4.1. Cell Culture
2.4.2. Sample Processing
2.4.3. Virus Screening and Isolation
2.5. Electron Microscopy
2.6. Molecular and Gene Sequence Analyses
2.6.1. Nucleic Acid Extraction
2.6.2. Endpoint PCR Analyses
2.6.3. Gene Sequence Analysis
2.6.4. Nanopore Sequencing and Genomic Analyses
2.6.5. Phylogenetic Analyses
2.7. In Vivo Assessment of Isolated Herpesvirus Virulence to Juvenile Lake Sturgeon
2.7.1. Origin of Fish for Virus Exposure Experiments
2.7.2. Preparation of Virus Inoculum for Exposure Experiments
2.7.3. Pilot Exposure Experiments
2.7.4. Replicated Immersion Exposure Experiment
3. Results
3.1. Gross Findings in Adult Great Lakes Lake Sturgeon
3.2. Hematology
3.3. Histopathology
3.4. Cell Culture
3.5. Electron Microscopy
3.6. PCR, Gene-Sequencing, and Phylogenetic Analyses
3.6.1. Sanger Sequencing and Phylogenetic Analyses
3.6.2. Nanopore Sequencing and Genomic Analyses
3.7. In Vivo Challenge Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay-Chimielewski, E.; Whelan, G. Lake Sturgeon Rehabilitation Strategy; Michigan Department of Natural Resources Special Report; Michigan Department of Natural Resources: Lansing, MI, USA, 1997; Volume 18.
- Crouse, D.T. The consequences of delayed maturation in a human dominated world. In Life in the Slow Lane: Ecology and Conservation of Long-Lived Marine Animals; Musick, J.A., Ed.; American Fisheries Society: Bethesda, MD, USA, 1999; Volume 23, pp. 195–202. [Google Scholar]
- Hayes, D.; Caroffino, D. Michigan’s Lake Sturgeon Rehabilitation Strategy; Michigan Department of Natural Resources Special Report; Michigan Department of Natural Resources: Lansing, MI, USA, 2012; Volume 62.
- Kawato, Y.; Subramaniam, K.; Nakajima, K.; Waltzek, T.; Whittington, R. Iridoviral diseases: Red sea bream iridovirus and white sturgeon iridovirus. In Fish Viruses and Bacteria: Pathobiology and Protection; Woo, P.T.K., Cipriano, R.C., Eds.; CABI: Wallingford, UK, 2017; Volume 12, p. 147. [Google Scholar]
- Mugetti, D.; Pastorino, P.; Menconi, V.; Pedron, C.; Prearo, M. The old and the new on viral diseases in sturgeon. Pathogens 2020, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigarré, L.; Lesne, M.; Lautraite, A.; Chesneau, V.; Leroux, A.; Jamin, M.; Boitard, P.M.; Toffan, A.; Prearo, M.; Labrut, S.; et al. Molecular identification of iridoviruses infecting various sturgeon species in Europe. J. Fish Dis. 2017, 40, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Yu-ping, H.; Di, W. A review of sturgeon Virosis. J. For. Res. 2005, 16, 79–82. [Google Scholar] [CrossRef]
- Kurobe, T.; MacConnell, E.; Hudson, C.; McDowell, T.S.; Mardones, F.O.; Hedrick, R.P. Iridovirus infections among Missouri River sturgeon: Initial characterization, transmission, and evidence for establishment of a carrier state. J. Aquat. Anim. Health 2011, 23, 9–18. [Google Scholar] [CrossRef]
- Waltzek, T.B.; Miller, D.L.; Gray, M.J.; Drecktrah, B.; Briggler, J.T.; Macconnell, B.; Hudson, C.; Hopper, L.; Friary, J.; Yun, S.C.; et al. New disease records for hatchery-reared sturgeon, I, expansion of Frog Virus 3 host range into Scaphirhynchus albus. Dis. Aquat. Org. 2014, 111, 219–227. [Google Scholar] [CrossRef]
- Raverty, S.; Hedrick, R.; Henry, J.; Saksida, S. Diagnosis of sturgeon iridovirus infection in farmed white sturgeon in British Columbia. Can. Vet. J. 2003, 44, 327–328. [Google Scholar]
- Hedrick, R.; Groff, J.; McDowell, T.; Wingfield, W. An Iridovirus infection of the integument of the white sturgeon Acipenser transmontanus. Dis. Aquat. Org. 1990, 8, 39–44. [Google Scholar] [CrossRef]
- Clouthier, S.; VanWalleghem, E.; Copeland, S.; Klassen, C.; Hobbs, G.; Nielsen, O.; Anderson, E. A New species of Nucleo-Cytoplasmic Large DNA Virus (NCLDV) associated with mortalities in Manitoba lake sturgeon Acipenser fulvescens. Dis. Aquat. Org. 2013, 102, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, R.; McDowell, T.; Groff, J.; Yun, S.; Wingfield, W. Isolation of an epitheliotropic herpesvirus from white sturgeon Acipenser transmontanus. Dis. Aquat. Organ. 1991, 11, 49–56. [Google Scholar] [CrossRef]
- Watson, L.R.; Yun, S.C.; Groff, J.M.; Hedrick, R.P. Characteristics and pathogenicity of a novel herpesvirus isolated from adult and subadult white sturgeon Acipenser transmontanus. Dis. Aquat. Org. 1995, 22, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, M.P.; Hedrick, R.P.; Johnson, W.O.; Gardner, I.A. Mortality and recovery of runt white sturgeon (Acipenser transmontanus) in a commercial farm in California, USA. Prev. Vet. Med. 2000, 43, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.; Richey, C.; Stevens, B.; Yun, S.; Kenelty, K.; Reichley, S.; Griffin, M.; Kurobe, T.; Camus, A. Co-infection of acipenserid herpesvirus 2 (AciHV-2) and Streptococcus iniae in cultured white sturgeon Acipenser transmontanus. Dis. Aquat. Org. 2017, 124, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Doszpoly, A.; Kalabekov, I.M.; Breyta, R.; Shchelkunov, I.S. Isolation and characterization of an atypical Siberian sturgeon herpesvirus strain in Russia: Novel North American acipenserid herpesvirus 2 strain in Europe? J. Fish Dis. 2017, 40, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Doszpoly, A.; Shchelkunov, I. Partial genome analysis of Siberian sturgeon alloherpesvirus suggests its close relation to AciHV-2. Short Communication. Acta Vet. Hung. 2010, 58, 269–274. [Google Scholar] [CrossRef]
- Kelley, G.O.; Waltzek, T.B.; McDowell, T.S.; Yun, S.C.; LaPatra, S.E.; Hedrick, R.P. Genetic relationships among herpes-like viruses isolated from sturgeon. J. Aquat. Anim. Health 2005, 17, 297–303. [Google Scholar] [CrossRef]
- Kurobe, T.; Kelley, G.O.; Waltzek, T.B.; Hedrick, R.P. Revised phylogenetic relationships among herpesviruses isolated from sturgeons. J. Aquat. Anim. Health 2008, 20, 96–102. [Google Scholar] [CrossRef]
- LaPatra, S.E.; Groff, J.M.; Keith, I.; Hogans, W.E.; Groman, D. Case Report: Concurrent herpesviral and presumptive iridoviral infection associated with disease in cultured shortnose sturgeon, Acipenser brevirostrum (L.), from the Atlantic coast of Canada. J. Fish Dis. 2014, 37, 141–147. [Google Scholar] [CrossRef]
- Walker, L.; Subramaniam, K.; Viadana, P.H.O.; Vann, J.A.; Marquenski, S.; Godard, D.; Kieran, E.; Frasca Jr., S.; Popov, V.L.; Kerr, K.; et al. Characterization of an alloherpesvirus from wild like sturgeon Acipenser fulvescens in Wisconsin (USA). Dis. Aquat. Org. 2022, 149, 83–96. [Google Scholar] [CrossRef]
- Phillips, K.; Noyes, A.; Shen, L.; Whelan, G. Model Program for Fish Health Management in the Great Lakes; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Grant, K.R. Fish Hematology and Associated Disorders. Vet. Clin. Exot. Anim. 2015, 18, 83–103. [Google Scholar] [CrossRef]
- Prophet, E.; Mills, B.; Arrington, J. Laboratory Methods in Histotechnology, 1st ed.; American Registry of Pathology: Silver Spring, MD, USA, 1992. [Google Scholar]
- Fijan, N.; Sulimanovic, D.; Bearzotti, M.; Muzinic, D.; Zwillenberg, L.O.; Chilmonczyk, S.; Vautherot, J.F.; Kinkelin, P.de. Some properties of the Epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Ann. Rev. Virol. 1983, 134, 207–220. [Google Scholar] [CrossRef]
- Lannan, C.N.; Winton, J.R.; Fryer, J.L. Fish cell lines: Establishment and characterization of nine cell lines from salmonids. In Vitro 1984, 20, 671–676. [Google Scholar] [CrossRef]
- Hedrick, R.P.; McDowell, T.S.; Rosemark, R.; Aronstein, D.; Lannan, C.N. Two cell lines from white sturgeon. Trans. Am. Fish Soc. 1991, 120, 528–534. [Google Scholar] [CrossRef]
- Watson, L.R.; Groff, M.J.; Hedrick, R.P. Replication, and pathogenesis of white sturgeon iridovirus (WSIV) in experimentally infected white sturgeon Acipenser transmontanus juveniles and sturgeon cell lines. Dis. Aquat. Org. 1998, 32, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique; John Wiley & Sons: Hoboken, NJ, USA, 2005; p. 642. [Google Scholar]
- Gardell, A.M.; Qin, Q.; Rice, R.H.; Li, J.; Kültz, D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS ONE 2014, 9, e95919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AFS-FHS (American Fisheries Society-Fish Health Section) FHS Blue Book: Suggested Procedures for the Detection and Identification of Certain Finfish and Shellfish Pathogens, 2020 Edition. Available online: https://units.fisheries.org/fhs/fish-health-section-blue-book-2020/ (accessed on 1 June 2022).
- Boonthai, T.; Loch, T.P.; Standish, I.; Faisal, M. Susceptibility of representative Great Lakes fish species to the North Carolina strain of spring viremia of carp virus (SVCV). J. Anim. Health 2017, 29, 214–224. [Google Scholar] [CrossRef]
- Hanson, L.A.; Rudis, M.R.; Vasquez-Lee, M.; Montgomery, R.D. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virol. J. 2006, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User friendly biological sequence alignment editor and analysis program for Windows 98/98/NT. Nucl Acids Symp Ser. 1999, 41, 95–98. [Google Scholar]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef] [Green Version]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Davison, A.J.; Kurobe, T.; Gatherer, D.; Cunningham, C.; Korf, I.; Fukuda, H.; Hedrick, R.P.; Waltzek, T.B. Comparative genomics of carp herpesviruses. J. Virol. 2013, 87, 2908–2922. [Google Scholar] [CrossRef] [Green Version]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossman, J.A.; Scribner, K.T.; Davis, C.A.; Forsythe, P.S.; Baker, E.A. Survival and growth of lake sturgeon during early life stages as a function of rearing environment. Trans. Am. Fish. Soc. 2014, 143, 104–116. [Google Scholar] [CrossRef]
- Bauman, J.M.; Baker, E.A.; Marsh, T.L.; Scribner, K.T. Effects of rearing density on total length and survival of lake sturgeon free embryos. N. Am. J. Aquac. 2015, 77, 444–448. [Google Scholar] [CrossRef]
- Bauman, J.M.; Woodward, B.M.; Baker, E.A.; Marsh, T.L.; Scribner, K.T. Effects of family, feeding frequency, and alternate food type on body size and survival of hatchery-produced and wild-caught lake sturgeon larvae. N. Am. J. Aquac. 2016, 78, 136–144. [Google Scholar] [CrossRef]
- Bauman, J. Investigations of Aquaculture Methodologies to Enhance Success of Lake Sturgeon Streamside Rearing Facilities. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2015. [Google Scholar]
- Crossman, J.; Forsythe, P.; Baker, E.; Scribner, K. Hatchery rearing environment and age affect survival and movements of stocked juvenile lake sturgeon. Fish Manag. Ecol. 2011, 18, 132–144. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- DiVincenti, L.; Wyatt, J.; Priest, H.; Dittman, D.; Klindt, R.; Gordon, D.; Preston, A.; Smith, T.; Bowman, C. Reference intervals for select hematologic and plasma biochemical analytes of wild Lake Sturgeon (Acipenser fulvescens) from the St. Lawrence River in New York. Vet. Clin. Pathol. 2013, 42, 19–26. [Google Scholar] [CrossRef]
- Cassle, S.E.; Yanong, R.P.E.; Pouder, D.B.; Rodriguez, C.; Mylniczenko, N.; Thompson, P.M.; Stilwell, N.K.; Heym, K.J.; Harmon, T.; Stacy, N.I. Reference intervals for blood analytes of adult aquarium housed Russian sturgeon Acipenser gueldenstaedtii. J. Aquat. Anim. Health 2020, 33, 33–43. [Google Scholar] [CrossRef]
- Davison, A.J.; Sauerbier, W.; Dolan, A.; Addison, C.; McKinnell, R.G. Genomic studies of the Lucke tumor herpesvirus (RaHV-1). J. Cancer Res. Clin. Oncol. 1999, 125, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J.; Cunningham, C.; Sauerbier, W.; McKinnell, R.G. Genome sequences of two frog herpesviruses. J. Gen. Virol. 2006, 87, 3509–3514. [Google Scholar] [CrossRef] [PubMed]
- Origgi, F.C.; Schmidt, B.R.; Lohmann, P.; Otten, P.; Akdesir, E.; Gaschen, V.; Aguilar-Bultet, L.; Wahli, T.; Sattler, U.; Stoffel, M.H. Ranid herpesvirus 3 and proliferative dermatitis in free-ranging wild common frogs (Rana temporaria). Vet. Pathol. 2017, 54, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Origgi, F.C.; Schmidt, B.R.; Lohmann, P.; Otten, P.; Meier, R.K.; Pisano, S.R.; Moore-Jones, G.; Tecilla, M.; Sattler, U.; Wahli, T.; et al. Bufonid herpesvirus 1 (BfHV1) associated dermatitis and mortality in free ranging common toads (Bufo bufo) in Switzerland. Sci. Rep. 2018, 8, 14737. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Wu, W.C.; Shi, M. Discovery and Characterization of Actively Replicating DNA and Retro-Transcribing Viruses in Lower Vertebrate Hosts Based on RNA Sequencing. Viruses 2021, 13, 1042. [Google Scholar] [CrossRef]
- van Beurden, S.J.; Bossers, A.; Voorbergen-Laarman, M.H.; Haenen, O.L.; Peters, S.; Abma-Henkens, M.H.; Peeters, B.P.; Rottier, P.J.; Engelsma, M.Y. Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J. Gen. Virol. 2010, 91, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Hirono, I.; Kurokawa, K.; Fukuda, H.; Nahary, R.; Eldar, A.; Davison, A.J.; Waltzek, T.B.; Bercovier, H.; Hedrick, R.P. Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J. Virol. 2007, 81, 5058–5065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doszpoly, A.; Kovács, E.R.; Bovo, G.; LaPatra, S.E.; Harrach, B.; Benkő, M. Molecular confirmation of a new herpesvirus from catfish (Ameiurus melas) by testing the performance of a novel PCR method, designed to target the DNA polymerase gene of alloherpesviruses. Arch. Virol. 2008, 153, 2123–2127. [Google Scholar] [CrossRef]
- Davison, A.J. Channel catfish virus: A new type of herpesvirus. Virology 1992, 186, 9–14. [Google Scholar] [CrossRef]
- Subramaniam, K.; Venugopalan, A.; Davison, A.J.; Griffin, M.J.; Ford, L.; Waltzek, T.B.; Hanson, L. Complete genome sequence of an Ictalurid herpesvirus 1 strain isolated from blue catfish (Ictalurus furcatus). Microbiol. Resour. Announc. 2019, 8, e00082-19. [Google Scholar] [CrossRef] [Green Version]
- Borzák, R.; Haluk, T.; Bartha, D.; Doszpoly, A. Complete genome sequence and analysis of ictalurid herpesvirus 2. Arch. Virol. 2018, 163, 1083–1085. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, R.N.; Polchana, J.; Kanchanakhan, S.; Davison, A.J.; Waltzek, T.B.; Subramaniam, K. Genome sequence of a novel alloherpesvirus isolated from glass catfish (Kryptopterus bicirrhis). Genome Announc. 2018, 6, e00403-18. [Google Scholar] [CrossRef]
- Du, K.; Stöck, M.; Kneitz, S.; Klopp, C.; Woltering, J.M.; Adolfi, M.C.; Feron, R.; Prokopov, D.; Makunin, A.; Kichigin, I.; et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020, 4, 841–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamek, M.; Syakuri, H.; Harris, S.; Rakus, K.L.; Brogden, G.; Matras, M.; Irnazarow, I.; Steinhagen, D. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.). Vet. Microbiol. 2013, 162, 456–470. [Google Scholar] [CrossRef]
- Faisal, M.; Loch, T.P.; Shavalier, M.; Van Deuren, M.G.; Standish, I.; Winters, A.; Glenney, G.; Aho, J.; Wolgamood, M.; VanAmberg, J.; et al. Resurgence of salmonid herpesvirus-3 infection (epizootic epitheliotropic disease) in hatchery-propagated lake trout in Michigan. J. Aquat. Anim. Health 2019, 31, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef]
- Venugopalan, A.; Griffin, M.J.; Wise, D.J.; White, D.; Ford, L.; López-Porras, A.; Camus, A.C.; Hanson, L.A. Virulence and immunogenicity of blue catfish alloherpesvirus in channel, blue and blue x channel hybrid catfish. J. Fish Dis. 2021, 44, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- DeHaan, P.W.; Libants, S.V.; Elliott, R.F.; Scribner, K.T. Genetic population structure of remnant lake sturgeon populations in the upper Great Lakes basin. Trans. Am. Fish. Soc. 2006, 135, 1478–1492. [Google Scholar] [CrossRef] [Green Version]
- Welsh, A.B.; Elliot, R.F.; Scribner, K.T.; Quinlan, H.R.; Baker, E.A.; Eggold, B.T.; Holtgren, M.; Krueger, C.C.; May, B. Genetic Guidelines for the Stocking of Lake Sturgeon (Acipenser fulvescens) in the Great Lakes Basin; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Scribner, K.T.; Brenden, T.; Elliott, R.; Donofrio, M.; Bott, K.; Kanefsky, J.; Homola, J.; Tsehey, I.; Bence, J.; Baker, E.; et al. Mixed stock analysis of genetic compositions of lake sturgeon (Acipenser fulvescens) mixtures in Lake Michigan: Hierarchical spatial heterogeneity and evidence of improving recruitment in Wisconsin spawning populations. Can. J. Fish Aquat. Sci. 2022, 79, 652–669. [Google Scholar] [CrossRef]
- April, J.; Hanner, R.H.; Dion-Côté, A.M.; Bernatchez, L. Glacial cycles as anallopatric speciation pump in north-eastern American freshwater fishes. Mol. Ecol. 2013, 22, 409–422. [Google Scholar] [CrossRef]
- Loch, T.P.; Scribner, K.; Tempelman, R.; Whelan, G.; Faisal, M. Bacterial infections of Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to gamete collecting weirs in Michigan. J. Fish Dis. 2011, 35, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Loch, T.P.; Kumar, R.; Xu, W.; Faisal, M. Carnobacterium maltaromaticum infections in feral Oncorhynchus spp. (Family Salmonidae) in Michigan. J. Microbiol. 2011, 49, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.H.; Dixon, B.; Whitehouse, L.M. The interception of stress, sex and immunity in fishes. Immunogenetics 2021, 73, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, B.S.; Rees, C.B.; Binkowski, F.P.; Goetz, F.W. Characterization and evaluation of sex-specific expression of suppressors of cytokine signaling (SOCS)-1 and -3 in juvenile yellow perch (Perca flavescens) treated with lipopolysaccharide. Fish Shellfish. Immunol. 2012, 33, 468–481. [Google Scholar] [CrossRef]
- Hou, Y.; Suzuki, Y.; Aida, K. Changes in immunoglobulin producing cells in response to gonadal maturation in rainbow trout. Fish Sci. 1999, 65, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Pickering, A.D.; Pottinger, T.G. Lymphocytopenia and interrenal activity during sexual maturation in the brown trout, Salmo trutta L. J. Fish Biol. 1987, 30, 41–50. [Google Scholar] [CrossRef]
- Rivers, T.M. Viruses and Koch’s Postulates. J. Bacteriol. 1937, 33, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.S. A new bacterial disease of fresh-water fishes. Fish Bull. 1922, 38, 261–280. [Google Scholar]
- LaFrentz, B.R.; Králova, S.; Burbick, C.R.; Alexander, T.L.; Phillips, C.W.; Griffin, M.J.; Waldbieser, G.C.; García, J.C.; de Alexandre Sebastião, F.; Soto, E.; et al. The fish pathogen Flavobacterium columnare represents four distinct species: Flavobacterium columnare, Flavobacterium covae sp. nov., Flavobacterium davisii sp. nov. and Flavobacterium oreochromis sp. nov., and emended description of Flavobacterium columnare. Syst. Appl. Microbiol. 2022, 45, 126293. [Google Scholar]
- Bullock, G.L.; Hsu, T.C.; Shotts, E.B., Jr. Columnaris disease of fishes. Fish Disease Leaflet 1986, 72, 9. [Google Scholar]
- Hanson, L.; Dishon, A.; Kotler, M. Herpesviruses that infect fish. Viruses 2011, 3, 2160–2191. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Chapter 2.3.6: Infection with Koi Herpesvirus in Manual of Diagnostic Testing for Aquatic Animals. Available online: https://www.woah.org/en/disease/koi-herpesvirus-disease (accessed on 1 July 2022).
- ATCC Virology Culture Guide. Available online: https://www.atcc.org/resources/culture-guides/virology-culture-guide (accessed on 12 July 2022).
Cumulative Mortality (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Fish Age (Weeks) | Mean Weight (g) | Tank Type | Water Temperature (°C) | Exposure Route | TCID50/mL | Duration (Days) | Exposed | Mock-Exposed |
10.5 weeks | 1.2 | FT | 11 ± 2 | IC Injection | 7.65 | 295 | 80% | 20% |
10.5 weeks | 1.2 | FT | 11 ± 2 | IC Injection | 3.83 | 295 | 0% | 20% |
23.2 weeks | 2.1 | FT | 11 ± 2 | Immersion | 6.40 × 105 | 202 | 20% | 0% |
23.2 weeks | 2.1 | FT | 11 ± 2 | Immersion | 3.20 × 105 | 202 | 0% | 0% |
24 weeks | 2.1 | RC | 22 ± 1 | IC Injection | 7.65 × 104 | 208 | 20% | 20% |
Site | Lake Sturgeon Sampled | Total Length (cm) | Weight (kg) | Girth (cm) | Lesion Prevalence | PCV | PCV w/Skin Lesions |
---|---|---|---|---|---|---|---|
Black River Year 1 (LH) | 137 | 148.6 (112–192) | 24.5 (9.8–58.6) | 57 (39–90) | 6.6% | 33.6% σ = 5.5 | 33.3% σ = 8.7 |
Females | 26 | 154.1 (140–192) | 40.3 (22.4–58.6) | 73.1 (52–90) | 15.4% | 30.7% σ = 6.0 | 26.0% σ = 11.3 |
Males | 111 | 147.55 (112–168) | 20.8 (9.8–44.5) | 53.2 (39–83) | 4.5% | 34.5% σ = 5.3 | 35.2% σ = 5.7 |
Black River Year 2 (LH) | 79 | 150.45 (117–190) | 26.62 (13.6–49.7) | 55.05 (25–82) | 15.2% | 37.6% σ = 7.9 | 34.4% σ = 5.9 |
Females | 25 | 160 (137–190) | 33.3 (18.2–49.7) | 63.8 (49–82) | 24.0% | 35.7% σ = 7.4 | 37.0% σ = 3.6 |
Males | 54 | 145.9 (117–166) | 23.0 (13.6–38.2) | 51 (25–70) | 11.1% | 38.2% σ = 8.1 | 32.7% σ = 6.4 |
St. Clair River Year 1 (LE) | 76 | 102.9 (27.2–176.1) | 15.4 (0.6–29.9) | 42.6 (9.5–78.1) | 1.1% | 25.6% σ = 7.6 | 38.0% |
Sample ID | Site | Year | Sequence Origin | Cloned? | Sequence Length (bp) | % Similarity to LSHV # | % Similarity to LSHV ± | % Similarity to AciHV-1 * | Accession Number |
---|---|---|---|---|---|---|---|---|---|
C2019 LSC TIS 2 | St. Clair River | 2019 | Skin Lesion | Yes | 473 | 98.7 | 98.7 | 81.0 | OP737376 |
2019 LSC TIS 2 | Skin Lesion | No | 473 | 97.0 | 96.8 | 81.0 | OP737367 | ||
C2019 BLA TIS 6 | Black River | 2019 | Skin Lesion | Yes | 473 | 100 | 100 | 82.0 | OP737377 |
2019 BLA TIS 6 | Skin Lesion | No | 473 | 99.6 | 99.6 | 81.6 | OP737364 | ||
C2019 BLA TIS 16 | Skin Lesion | Yes | 473 | 98.9 | 98.9 | 81.2 | OP737378 | ||
2019 BLA TIS 16 | Skin Lesion | No | 477 | 97.3 | 96.2 | 79.0 | OP737365 | ||
2019 BLA TIS 41 | Skin Lesion | No | 474 | 99.0 | 99.0 | 81.2 | OP737366 | ||
2020 BLA TC 2 | Black River | 2020 | Cultured cells | No | 458 | 98.5 | 98.3 | 80.4 | OP737370 |
2020 BLA TC 7 | Cultured cells | No | 473 | 98.5 | 98.5 | 81.6 | OP737371 | ||
2020 BLA TC 8 | Cultured cells | No | 473 | 100 | 100 | 82.0 | OP737372 | ||
2020 BLA TIS 8 | Skin Lesion | 473 | 100 | 100 | 82.0 | OP737368 | |||
2020 BLA TC 10 | Cultured cells | No | 473 | 99.4 | 99.4 | 81.6 | OP737373 | ||
C2020 BLA TC 11 | Cultured cells | Yes | 473 | 99.8 | 99.8 | 82.0 | OP737375 | ||
C2020 BLA TIS 11 | Skin Lesion | Yes | 473 | 99.4 | 99.4 | 81.8 | OP737374 | ||
2020 BLA TC 25 | Cultured Cells | No | 473 | 99.8 | 99.8 | 81.8 | OP737369 | ||
C2020 BLA TIS 25 | Skin Lesion | Yes | 473 | 99.8 | 99.8 | 81.8 | OP737379 |
Lake Sturgeon Herpesvirus 1 | Acipenserid Herpesvirus 1 2 | |||
---|---|---|---|---|
nt | aa | nt | aa | |
DNA polymerase catalytic subunit (pol; 4638 bp; OP729413) | 92.6% | 93.4% | 79.8% | 86.4% |
DNA packaging terminase subunit 1 (ter1; 2100 bp; OP729416) | 86.8% | 92.8% | 85.7% | 92.0% |
helicase-primase helicase subunit (hel; 1575 bp; OP729411) | 83.1% | 87.5% | 81.6% | 86.3% |
helicase-primase primase subunit (pri; 2184 bp; OP729414) | 78.5% | 80.1% | 77.3% | 80.1% |
major capsid protein (mcp; 3675 bp; OP729412) | 86.3% | 89.3% | 77.3% | 82.5% |
capsid triplex protein 2 (tri2; 987 bp; OP729417) | 83.9% | 91.8% | 79.0% | 85.7% |
capsid maturation protease (pro; 1659 bp; OP729415) | 68.9% | 66.2% | 66.1% | 65.8% |
Allo37 protein (allo37; 1971 bp; OP729406) | 84.6% | 87.6% | 77.7% | 83.6% |
Allo54 protein (allo54; 1857 bp; OP729407) | 85.6% | 91.4% | 79.2% | 84.5% |
Allo56 protein (allo56; 3660 bp; OP729408) | 80.9% | 85.1% | 79.3% | 85.4% |
Allo60 protein (allo60; 1053 bp; OP729409) | 80.9% | 85.1% | 83.6% | 86.6% |
Allo64 protein (allo64; 1656 bp; OP729410) | 80.1% | 80.4% | 78.2% | 80.8% |
LSAHV1 vs. LSAHV2 | ||||
---|---|---|---|---|
Minimum Alignment | Minimum Identity | One-Way ANI 1 | One-Way ANI 2 | Two-Way ANI |
125 | 70% | 81.21% (SD: 6.62%), from 344 fragments. | 81.36% (SD: 6.49%), from 342 fragments. | 82.15% (SD: 6.96%), from 206 fragments. |
125 | 75% | 81.57% (SD: 6.41%), from 333 fragments. | 81.67% (SD: 6.30%), from 333 fragments. | 82.39% (SD: 6.80%), from 202 fragments. |
125 | 80% | 83.73% (SD: 5.53%), from 260 fragments. | 83.64% (SD: 5.51%), from 264 fragments. | 84.19% (SD: 6.13%), from 166 fragments. |
125 | 85% | 88.31% (SD: 5.05%), from 119 fragments. | 88.17% (SD: 4.99%), from 123 fragments. | 89.02% (SD: 5.64%), from 79 fragments. |
250 | 70% | 81.22% (SD: 6.61%), from 335 fragments. | 81.27% (SD: 6.51%), from 338 fragments. | 82.15% (SD: 6.96%), from 206 fragments. |
250 | 75% | 81.56% (SD: 6.42%), from 325 fragments. | 81.61% (SD: 6.30%), from 328 fragments. | 82.39% (SD: 6.80%), from 202 fragments. |
250 | 80% | 83.73% (SD: 5.55%), from 253 fragments. | 83.61% (SD: 5.51%), from 259 fragments. | 84.19% (SD: 6.13%), from 166 fragments. |
250 | 85% | 88.29% (SD: 5.10%), from 116 fragments. | 88.12% (SD: 5.06%), from 119 fragments. | 89.02% (SD: 5.64%), from 79 fragments. |
500 | 70% | 81.25% (SD: 6.65%), from 306 fragments. | 81.31% (SD: 6.59%), from 305 fragments. | 82.17% (SD: 6.97%), from 204 fragments. |
500 | 75% | 81.55% (SD: 6.48%), from 298 fragments. | 81.65% (SD: 6.39%), from 296 fragments. | 82.42% (SD: 6.81%), from 200 fragments. |
500 | 80% | 83.75% (SD: 5.64%), from 231 fragments. | 83.64% (SD: 5.64%), from 234 fragments. | 84.18% (SD: 6.15%), from 165 fragments. |
500 | 85% | 88.46% (SD: 5.23%), from 104 fragments. | 88.34% (SD: 5.18%), from 106 fragments. | 89.08% (SD: 5.65%), from 78 fragments. |
750 | 70% | 81.85% (SD: 6.59%), from 253 fragments. | 81.99% (SD: 6.49%), from 255 fragments. | 82.40% (SD: 6.85%), from 198 fragments. |
750 | 75% | 82.04% (SD: 6.46%), from 249 fragments. | 82.19% (SD: 6.36%), from 251 fragments. | 82.59% (SD: 6.72%), from 195 fragments. |
750 | 80% | 83.84% (SD: 5.80%), from 202 fragments. | 83.72% (SD: 5.77%), from 210 fragments. | 84.15% (SD: 6.16%), from 164 fragments. |
750 | 85% | 88.58% (SD: 5.47%), from 92 fragments. | 88.38% (SD: 5.38%), from 97 fragments. | 89.07% (SD: 5.69%), from 77 fragments. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, A.E.; Shavalier, M.A.; Scribner, K.T.; Soto, E.; Griffin, M.J.; Waldbieser, G.C.; Richardson, B.M.; Winters, A.D.; Yun, S.; Baker, E.A.; et al. First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens). Animals 2022, 12, 3230. https://doi.org/10.3390/ani12233230
Johnston AE, Shavalier MA, Scribner KT, Soto E, Griffin MJ, Waldbieser GC, Richardson BM, Winters AD, Yun S, Baker EA, et al. First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens). Animals. 2022; 12(23):3230. https://doi.org/10.3390/ani12233230
Chicago/Turabian StyleJohnston, Amber E., Megan A. Shavalier, Kim T. Scribner, Esteban Soto, Matt J. Griffin, Geoffrey C. Waldbieser, Bradley M. Richardson, Andrew D. Winters, Susan Yun, Edward A. Baker, and et al. 2022. "First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens)" Animals 12, no. 23: 3230. https://doi.org/10.3390/ani12233230
APA StyleJohnston, A. E., Shavalier, M. A., Scribner, K. T., Soto, E., Griffin, M. J., Waldbieser, G. C., Richardson, B. M., Winters, A. D., Yun, S., Baker, E. A., Larson, D. L., Kiupel, M., & Loch, T. P. (2022). First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens). Animals, 12(23), 3230. https://doi.org/10.3390/ani12233230