Towards a Genetic Linkage Map of the California Condor, an Endangered New World Vulture Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Marker Design
2.3. Marker Validation
2.4. Genotyping and Linkage Analysis
3. Results and Discussion
3.1. Marker Selection, Validation and Genotyping
3.2. Linkage Analysis
3.3. Polymorphic Marker Selection for Kinship Analyses
4. Conclusions and Expectations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BirdLife International. Gymnogyps californianus. The IUCN Red List of Threatened Species 2020: E.T22697636A181151405. Available online: https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22697636A181151405.en (accessed on 24 September 2022).
- Snyder, N.F.R.; Snyder, H.A. Biology and conservation of the California Condor. In Current Ornithology; Power, D.M., Ed.; Springer: Boston, MA, USA, 1989; Volume 6, pp. 175–267. [Google Scholar] [CrossRef]
- Walters, J.R.; Derrickson, S.R.; Fry, D.M.; Haig, S.M.; Marzluff, J.M.; Wunderle, J.M., Jr. Status of the California Condor (Gymnogyps californianus) and efforts to achieve its recovery. Auk 2010, 127, 969–1001. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T.R.; Grantham, J.; George, D.; Welch, A.; Brandt, J.; Burnett, L.J.; Sorenson, K.J.; Johnson, M.; Poppenga, R.; Moen, D.; et al. Spatiotemporal patterns and risk factors for lead exposure in endangered California condors during 15 years of reintroduction. Conserv. Biol. 2014, 28, 1721–1730. [Google Scholar] [CrossRef] [Green Version]
- Herring, G.; Eagles-Smith, C.A.; Varland, D.E. Mercury and lead exposure in avian scavengers from the Pacific Northwest suggest risks to California condors: Implications for reintroduction and recovery. Environ. Pollut. 2018, 243, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Ralls, K.; Ballou, J.D. Genetic status and management of California condors. Condor 2004, 106, 215–228. [Google Scholar] [CrossRef]
- Ralls, K.; Ballou, J.; Rideout, B.; Frankham, R. Genetic management of chondrodystrophy in California condors. Anim. Conserv. 2000, 3, 145–153. [Google Scholar] [CrossRef]
- Ryder, O.; Romanov, M.; Stremel, E.; Chemnick, L.; Ballou, J.; Ralls, K.; Mitchell, A.; Thompson, E.; Jones, K. Improving genetic management of California Condors through molecular research. Auk 2007, 124, 36BB. [Google Scholar] [CrossRef]
- Romanov, M.N.; Ryder, O.A.; Koriabine, M.; Nefedov, M.; de Jong, P.J.; Modi, W.S.; Dodgson, J.B. Genomic Resources and Tools to Investigate Factors Associated with Chondrodystrophy in California Condors. In Proceedings of the International Plant and Animal Genome XV Conference, San Diego, CA, USA, 13–17 January 2007; Scherago International: San Diego, CA, USA, 2007; p. 78. [Google Scholar]
- Romanov, M.N.; Tuttle, E.M.; Houck, M.L.; Modi, W.S.; Chemnick, L.G.; Korody, M.L.; Mork, E.M.; Otten, C.A.; Renner, T.; Jones, K.C.; et al. The value of avian genomics to the conservation of wildlife. BMC Genom. 2009, 10, S10. [Google Scholar] [CrossRef] [Green Version]
- Romanov, M.N.; Jones, K.C.; Chemnick, L.G.; Stremel-Mork, E.; Otten, C.; Da, Y.; Akhunov, E.D.; Ryder, O.A. California Condor Microsatellite-enriched Library As a Tool for Genetic and Genomic Studies in an Endangered Species. In Proceedings of the International Plant and Animal Genome XVII Conference, San Diego, CA, USA, 10–14 January 2009; Scherago International: San Diego, CA, USA, 2009; p. 107. [Google Scholar]
- Romanov, M.N.; Koriabine, M.; Nefedov, M.; de Jong, P.J.; Ryder, O.A. Construction of a California condor BAC library and first-generation chicken-condor comparative physical map as an endangered species conservation genomics resource. Genomics 2006, 88, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, T.; Houck, M.L.; O’Brien, P.C.; Ferguson-Smith, M.A.; Ryder, O.A.; Chowdhary, B.P. Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: Comparison with chicken (Gallus gallus) macrochromosomes. Cytogenet. Genome Res. 2002, 98, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Modi, W.S.; Romanov, M.; Green, E.D.; Ryder, O. Molecular cytogenetics of the California condor: Evolutionary and conservation implications. Cytogenet. Genome Res. 2009, 127, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Moran, B.M.; Thomas, S.M.; Judson, J.M.; Navarro, A.; Davis, H.; Sidak-Loftis, L.; Korody, M.; Mace, M.; Ralls, K.; Callicrate, T.; et al. Correcting parentage relationships in the endangered California Condor: Improving mean kinship estimates for conservation management. Ornithol. Appl. 2021, 123, duab017. [Google Scholar] [CrossRef]
- Ryder, O.A.; Thomas, S.; Judson, J.M.; Romanov, M.N.; Dandekar, S.; Papp, J.C.; Sidak-Loftis, L.C.; Walker, K.; Stalis, I.H.; Mace, M.; et al. Facultative parthenogenesis in California condors. J. Hered. 2021, 112, 569–574. [Google Scholar] [CrossRef]
- Romanov, M.N.; Price, J.A.; Dodgson, J.B. Integration of animal linkage and BAC contig maps using overgo hybridization. Cytogenet. Genome Res. 2003, 102, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Ryder, O.; Chemnick, L.G.; Thomas, S.; Martin, J.; Romanov, M.; Ralls, K.; Ballou, J.D.; Mace, M.; Ratan, A.; Miller, W.; et al. Supporting California Condor Conservation Management through Analysis of Species-wide Whole Genome Sequence Variation. In Proceedings of the International Plant and Animal Genome XXII Conference, San Diego, CA, USA, 11–15 January 2014; Scherago International: San Diego, CA, USA, 2014. [Google Scholar]
- Ryder, O.; Miller, W.; Ralls, K.; Ballou, J.D.; Steiner, C.C.; Mitelberg, A.; Romanov, M.; Chemnick, L.G.; Mace, M.; Schuster, S. Whole Genome Sequencing of California Condors Is Now Utilized for Guiding Genetic Management. In Proceedings of the International Plant and Animal Genome XXIV Conference, San Diego, CA, USA, 8–13 January 2016; Scherago International: San Diego, CA, USA, 2016. [Google Scholar]
- Robinson, J.A.; Bowie, R.C.K.; Dudchenko, O.; Aiden, E.L.; Hendrickson, S.L.; Steiner, C.C.; Ryder, O.A.; Mindell, D.P.; Wall, J.D. Genome-wide diversity in the California condor tracks its prehistoric abundance and decline. Curr. Biol. 2021, 31, 2939–2946.e5. [Google Scholar] [CrossRef] [PubMed]
- Romanov, M.N. California condors benefit from genome studies. CRES Rep. 2005, Winter Issue, 3. [Google Scholar]
- Lewin, H.A.; Larkin, D.M.; Pontius, J.; O’Brien, S.J. Every genome sequence needs a good map. Genome Res. 2009, 19, 1925–1928. [Google Scholar] [CrossRef] [Green Version]
- Dodgson, J.B.; Romanov, M.N.; Rondelli, C.M. Integration of Chicken Linkage and Physical Maps and Sequence Alignment Using Overgo Hybridization. In Proceedings of the International Plant and Animal Genome XII Conference, San Diego, CA, USA, 10–14 January 2004; Scherago International: San Diego, CA, USA, 2004; p. 59. [Google Scholar]
- Romanov, M.N.; Daniels, L.M.; Dodgson, J.B.; Delany, M.E. Integration of the cytogenetic and physical maps of chicken chromosome 17. Chromosome Res. 2005, 13, 215–222. [Google Scholar] [CrossRef]
- NCBI Assembly: ASM1813914v2; Gymnogyps californianus (California condor). Available online: https://www.ncbi.nlm.nih.gov/assembly/GCF_018139145.2/ (accessed on 8 November 2022).
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Ellegren, H. Polymerase-chain reaction (PCR) analysis of microsatellites—A new approach to studies of genetic relationships in birds. Auk 1992, 109, 886–895. [Google Scholar] [CrossRef]
- Primmer, C.R.; Møller, A.P.; Ellegren, H. Resolving genetic relationships with microsatellite markers: A parentage testing system for the swallow Hirundo rustica. Mol. Ecol. 1995, 4, 493–498. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Garbe, J.; Da, Y. Locusmap User Manual; Version 2.1; Department of Animal Science, University of Minnesota: Falcon Heights, MN, USA, 2003. [Google Scholar]
- Lander, E.S.; Green, P. Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad. Sci. USA 1987, 84, 2363–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.; Li, Z.; Sun, Y.; Aluko, O.O.; Wu, X.; Wang, Q.; Liu, G. MG2C: A user-friendly online tool for drawing genetic maps. Mol. Hort. 2021, 1, 16. [Google Scholar] [CrossRef]
Chick # | Father # | Mother # | Sex | Chondrodystrophy Carrier |
---|---|---|---|---|
4 | unknown | unknown | Male | No |
10 | unknown | unknown | Female | No |
11 | unknown | unknown | Female | No |
12 | unknown | unknown | Female | No |
13 | unknown | unknown | Female | No |
20 | unknown | unknown | Male | No |
21 | 2 | 11 | Male | No |
25 | 3 | 12 | Male | No |
Marker | Forward Primer | Reverse Primer | No. of Alleles |
---|---|---|---|
151F * | GCTTCTCCAGAGAGCTCCAA | GCTCTTCAGCAGCTTTTGCT | 5 |
103D | CCCATGGAATGGGAAAATAA | CATTTGCATCATGCTCAGGT | 4 |
133H * | CAGAAATGCGCTTTGTGTGT | GCCTGTTGGGATGACTCCTA | 4 |
100A | GTCATCCTCCTCCCTTCCTC | CCAGCATCATCAGTCACGTC | 3 |
144A * | TATCGGAGGGCAGAGGACTA | TGCCTTCACTACTAAATATGGCTTT | 3 |
156A * | CATTTCGTGGAAGCCAAAAC | TCCTTTCCCTACAGCCCTTT | 3 |
109D *† | CGTGTCCTGCTGCATCTAAC | GAGGGAGAAAACAGGCAGTG | 3 |
125G *† | GCCTATCATTTAGGCACAGAGA | GCCTGGGTATTCAGATGGAA | 3 |
101H† | CGTGTACACCTGCCTTTCCT | ATGGAGAGATGGGATGCAAG | 3 |
132H | GAGCTTTCCAGACGTTGAGG | GATGCAAGAAAAGCGACACA | 3 |
66A† | AAAGGTGCGTGGTTCTGG | CTGGGGTCACAAAGAGGTTC | 2 |
98A | TGGCACTGTGACTAAAGCAAA | TGAAAGGCAGTCAGCAGAGA | 2 |
135A | CCCAAAAACTGATGAACAACG | ACAGGACCTTCTATGCCAAA | 2 |
9Fb† | TCGCCTTTTACTGCTGACTTC | AAGAGGAGGAGAGGCTACACG | 2 |
195F | AACCTGGGTTTGAGTCATCG | ATGGTGCTGTGAAACTGTGC | 2 |
129H† | TCCTTGCTGGACTGACCTCT | AACTGGTCCGTCGATAGTGG | 2 |
CH262-13G5_1 | GTTCGTCCCCCTCATTTCTT | GGCGGCTTAGATGTGCAG | 2 |
CH262-87L14_2† | TCTTCTGCATCGCTGTGTTC | TCCCTGTCAGCTTACACTGCT | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanov, M.N.; Da, Y.; Chemnick, L.G.; Thomas, S.M.; Dandekar, S.S.; Papp, J.C.; Ryder, O.A. Towards a Genetic Linkage Map of the California Condor, an Endangered New World Vulture Species. Animals 2022, 12, 3266. https://doi.org/10.3390/ani12233266
Romanov MN, Da Y, Chemnick LG, Thomas SM, Dandekar SS, Papp JC, Ryder OA. Towards a Genetic Linkage Map of the California Condor, an Endangered New World Vulture Species. Animals. 2022; 12(23):3266. https://doi.org/10.3390/ani12233266
Chicago/Turabian StyleRomanov, Michael N., Yang Da, Leona G. Chemnick, Steven M. Thomas, Sugandha S. Dandekar, Jeanette C. Papp, and Oliver A. Ryder. 2022. "Towards a Genetic Linkage Map of the California Condor, an Endangered New World Vulture Species" Animals 12, no. 23: 3266. https://doi.org/10.3390/ani12233266
APA StyleRomanov, M. N., Da, Y., Chemnick, L. G., Thomas, S. M., Dandekar, S. S., Papp, J. C., & Ryder, O. A. (2022). Towards a Genetic Linkage Map of the California Condor, an Endangered New World Vulture Species. Animals, 12(23), 3266. https://doi.org/10.3390/ani12233266