Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Laboratory Diagnostics
2.2.1. ACTH
2.2.2. Amino Acid Concentrations
2.3. Statistical Analysis
2.4. Ethical Statement
3. Results
3.1. Study Population
3.2. Amino Acid Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brosnahan, M.M.; Paradis, M.R. Assessment of clinical characteristics, management practices, and activities of geriatric horses. J. Am. Vet. Med. Assoc. 2003, 223, 99–103. [Google Scholar] [CrossRef] [PubMed]
- McGowan, T.W.; Pinchbeck, G.; Phillips, C.J.; Perkins, N.; Hodgson, D.R.; McGowan, C.M. A survey of aged horses in Queensland, Australia. Part 2: Clinical signs and owners’ perceptions of health and welfare. Aust. Vet. J. 2010, 88, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Ireland, J.L.; Clegg, P.D.; McGowan, C.M.; McKane, S.A.; Chandler, K.J.; Pinchbeck, G.L. Disease prevalence in geriatric horses in the United Kingdom: Veterinary clinical assessment of 200 cases. Equine Vet. J. 2012, 44, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Van der Kolk, J.; Kalsbeek, H.; Van Garderen, E.; Wensing, T.; Breukink, H. Equine pituitary neoplasia: A clinical report of 21 cases (1990–1992). Vet. Rec. 1993, 133, 594–597. [Google Scholar]
- Couëtil, L.; Paradis, M.R.; Knoll, J. Plasma adrenocorticotropin concentration in healthy horses and in horses with clinical signs of hyperadrenocorticism. J. Vet. Intern. Med. 1996, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, M.; Taylor, F.; Mair, T.; Murphy, D.; Watson, T.; Love, S. Diagnosis of hyperadrenocorticism in the horse. Equine Vet. Educ. 1992, 4, 131–134. [Google Scholar] [CrossRef]
- Hart, K.A.; Goff, J.P.; McFarlane, D.; Breuhaus, B.; Frank, N.; De Laat, M.A.; McGowan, C.M.; Toribio, R.E.; Bauman, D.E.; Collier, R.J.; et al. Endocrine and Metabolic Disease. In Large Animal Internal Medicine, 6th ed.; Smith, B.P., van Metre, D.C., Pusterla, N., Eds.; Elsevier LTD: Oxford, UK, 2019. [Google Scholar]
- Orth, D.N.; Holscher, M.A.; Wilson, M.G.; Nicholson, W.E.; Plue, R.E.; Mount, C.D. Equine Cushing’s disease: Plasma immunoreactive proopiolipomelanocortin peptide and cortisol levels basally and in response to diagnostic tests. Endocrinology 1982, 110, 1430–1441. [Google Scholar] [CrossRef]
- Horowitz, M.; Neal, L.; Watson, J. Characteristics of plasma adrenocorticotropin, β-endorphin and α-melanocyte stimulating hormone as diagnostic tests for pituitary pars intermedia dysfunction in the horse. J. Vet. Intern. Med. 2003, 17, 386. [Google Scholar]
- McFarlane, D.; Breshears, M.A.; Cordero, M.; Hill, K.; Carmichael, R.; Maxwell, L.K. Comparison of plasma ACTH concentration, plasma α-MSH concentration, and overnight dexamethasone suppression test for diagnosis of PPID. Proc. ACVIM 2012, 30, 253. [Google Scholar]
- Arlt, W.; Stewart, P.M. Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol. Metab. Clin. 2005, 34, 293–313. [Google Scholar] [CrossRef]
- Tiley, H.A.; Geor, R.J.; McCutcheon, L.J. Effects of dexamethasone on glucose dynamics and insulin sensitivity in healthy horses. Am. J. Vet. Res. 2007, 68, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Haffner, J.; Eiler, H.; Hoffman, R.; Fecteau, K.; Oliver, J. Effect of a single dose of dexamethasone on glucose homeostasis in healthy horses by using the combined intravenous glucose and insulin test. J. Anim. Sci. 2009, 87, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Firshman, A.M.; Valberg, S.J.; Karges, T.L.; Benedict, L.E.; Annandale, E.J.; Seaquist, E.R. Serum creatine kinase response to exercise during dexamethasone-induced insulin resistance in Quarter Horses with polysaccharide storage myopathy. Am. J. Vet. Res. 2005, 66, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Cartmill, J.; Thompson, D., Jr.; Storer, W.; Crowley, J.; Huff, N.; Waller, C. Effect of dexamethasone, feeding time, and insulin infusion on leptin concentrations in stallions. J. Anim. Sci. 2005, 83, 1875–1881. [Google Scholar] [CrossRef]
- Bailey, S.R.; Menzies-Gow, N.J.; Harris, P.A.; Habershon-Butcher, J.L.; Crawford, C.; Berhane, Y.; Boston, R.C.; Elliott, J. Effect of dietary fructans and dexamethasone administration on the insulin response of ponies predisposed to laminitis. J. Am. Vet. Med. Assoc. 2007, 231, 1365–1373. [Google Scholar] [CrossRef]
- Tiley, H.A.; Geor, R.J.; McCutcheon, L.J. Effects of dexamethasone administration on insulin resistance and components of insulin signaling and glucose metabolism in equine skeletal muscle. Am. J. Vet. Res. 2008, 69, 51–58. [Google Scholar] [CrossRef]
- Sandow, C.; Fugler, L.A.; Leise, B.; Riggs, L.; Monroe, W.T.; Totaro, N.; Belknap, J.; Eades, S. Ex vivo effects of insulin on the structural integrity of equine digital lamellae. Equine Vet. J. 2019, 51, 131–135. [Google Scholar] [CrossRef]
- de Laat, M.A.; Pollitt, C.C.; Kyaw-Tanner, M.T.; McGowan, C.M.; Sillence, M.N. A potential role for lamellar insulin-like growth factor-1 receptor in the pathogenesis of hyperinsulinaemic laminitis. Vet. J. (Lond. Engl. 1997) 2013, 197, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Lane, H.E.; Burns, T.A.; Hegedus, O.C.; Watts, M.R.; Weber, P.S.; Woltman, K.A.; Geor, R.J.; McCutcheon, L.J.; Eades, S.C.; Mathes, L.E.; et al. Lamellar events related to insulin-like growth factor-1 receptor signalling in two models relevant to endocrinopathic laminitis. Equine Vet. J. 2017, 49, 643–654. [Google Scholar] [CrossRef]
- Stokes, S.M.; Stefanovski, D.; Bertin, F.-R.; Medina-Torres, C.E.; Belknap, J.K.; van Eps, A.W. Plasma amino acid concentrations during experimental hyperinsulinemia in 2 laminitis models. J. Vet. Intern. Med. 2021, 35, 1589–1596. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Minaker, K.L.; Young, V.R.; Rowe, J.W. Insulin dose-dependent reductions in plasma amino acids in man. Am. J. Physiol. 1986, 250, E13–E17. [Google Scholar] [CrossRef] [PubMed]
- Urschel, K.L.; Escobar, J.; McCutcheon, L.J.; Geor, R.J. Insulin infusion stimulates whole-body protein synthesis and activates the upstream and downstream effectors of mechanistic target of rapamycin signaling in the gluteus medius muscle of mature horses. Domest. Anim. Endocrinol. 2014, 47, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Hillier, T.A.; Fryburg, D.A.; Jahn, L.A.; Barrett, E.J. Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am. J. Physiol. 1998, 274, E1067–E1074. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, K.L.; Lee, J.L.; Dreyer, H.C.; Dhanani, S.; Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Sheffield-Moore, M.; Rasmussen, B.B.; Volpi, E. Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. J. Clin. Endocrinol. Metab. 2010, 95, 3848–3857. [Google Scholar] [CrossRef] [PubMed]
- Tuvdendorj, D.; Børsheim, E.; Sharp, C.P.; Zhang, X.; Barone, C.M.; Chinkes, D.L.; Wolfe, R.R. Amino Acid Availability Regulates the Effect of Hyperinsulinemia on Skin Protein Metabolism in Pigs. J. Biol. Chem. 2015, 290, 17776–17783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarlane, D. Advantages and limitations of the equine disease, pituitary pars intermedia dysfunction as a model of spontaneous dopaminergic neurodegenerative disease. Ageing Res. Rev. 2007, 6, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Figura, M.; Kuśmierska, K.; Bucior, E.; Szlufik, S.; Koziorowski, D.; Jamrozik, Z.; Janik, P. Serum amino acid profile in patients with Parkinson’s disease. PLoS ONE 2018, 13, e0191670. [Google Scholar] [CrossRef] [PubMed]
- Naushad, S.M.; Jain, J.M.N.; Prasad, C.K.; Naik, U.; Akella, R.R.D. Autistic children exhibit distinct plasma amino acid profile. NISCAIR-CSIR 2013, 50, 474–478. [Google Scholar]
- Bala, K.; Dogan, M.; Mutluer, T.; Kaba, S.; Aslan, O.; Balahoroglu, R.; Cokluk, E.; Ustyol, L.; Kocaman, S. Plasma amino acid profile in autism spectrum disorder (ASD). Eur. Rev. Med. Pharm. Sci. 2016, 20, 923–929. [Google Scholar]
- Rees, C.A.; Rostad, C.A.; Mantus, G.; Anderson, E.J.; Chahroudi, A.; Jaggi, P.; Wrammert, J.; Ochoa, J.B.; Ochoa, A.; Basu, R.K. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 2021, 118, e2101708118. [Google Scholar] [CrossRef]
- Lai, H.-S.; Lee, J.-C.; Lee, P.-H.; Wang, S.-T.; Chen, W.-J. Plasma free amino acid profile in cancer patients. Semin. Cancer Biol. 2005, 15, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Proenza, A.M.; Oliver, J.; Palou, A.; Roca, P. Breast and lung cancer are associated with a decrease in blood cell amino acid content. J. Nutr. Biochem. 2003, 14, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, C.; Muscaritoli, M.; Conversano, L.; Torelli, G.; Cascino, A. Tumor-induced changes in host metabolism: A possible marker of neoplastic disease. Nutrition (Burbank Los Angeles Cty. Calif.) 1995, 11, 595–600. [Google Scholar]
- Kawamura, I.; Moldawer, L.L.; Keenan, R.A.; Batist, G.; Bothe, A., Jr.; Bistrian, B.R.; Blackburn, G.L. Altered amino acid kinetics in rats with progressive tumor growth. Cancer Res. 1982, 42, 824–829. [Google Scholar]
- Pisters, P.W.; Pearlstone, D.B.; Toroslan, M. Protein and amino acid metabolism in cancer cachexia: Investigative techniques and therapeutic interventions. Crit. Rev. Clin. Lab. Sci. 1993, 30, 223–272. [Google Scholar] [PubMed]
- Heslin, M.J.; Newman, E.; Wolf, R.F.; Pisters, P.W.; Brennan, M.F. Effect of systemic hyperinsulinemia in cancer patients. Cancer Res. 1992, 52, 3845–3850. [Google Scholar] [PubMed]
- Kenéz, Á.; Warnken, T.; Feige, K.; Huber, K. Lower plasma trans-4-hydroxyproline and methionine sulfoxide levels are associated with insulin dysregulation in horses. BMC Vet. Res. 2018, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Delarocque, J.; Frers, F.; Feige, K.; Huber, K.; Jung, K.; Warnken, T. Metabolic changes induced by oral glucose tests in horses and their diagnostic use. J. Vet. Intern. Med. 2021, 35, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Chandler, K.J.; Mellor, D.J. A pilot study of the prevalence of disease within a geriatric horse population. In Proceedings of the 40th Congress of the British Equine Veterinary Association, Harrogate, UK, 12–15 September 2001; p. 217. [Google Scholar]
- McGowan, T.W.; Pinchbeck, G.P.; McGowan, C.M. Prevalence, risk factors and clinical signs predictive for equine pituitary pars intermedia dysfunction in aged horses. Equine Vet. J. 2013, 45, 74–79. [Google Scholar] [CrossRef]
- Ireland, J.L.; Clegg, P.D.; McGowan, C.M.; McKane, S.A.; Pinchbeck, G.L. A cross-sectional study of geriatric horses in the United Kingdom. Part 2: Health care and disease. Equine Vet. J. 2011, 43, 37–44. [Google Scholar] [CrossRef]
- Ireland, J.L.; McGowan, C.M.; Clegg, P.D.; Chandler, K.J.; Pinchbeck, G.L. A survey of health care and disease in geriatric horses aged 30 years or older. Vet. J. 2012, 192, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Paradis, M.R. Demographics of health and disease in the geriatric horse. Vet. Clin. N. Am. Equine Pract. 2002, 18, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Frank, N.; Andrews, F.M.; Sommardahl, C.S.; Eiler, H.; Rohrbach, B.W.; Donnell, R.L. Evaluation of the combined dexamethasone suppression/ thyrotropin-releasing hormone stimulation test for detection of pars intermedia pituitary adenomas in horses. J. Vet. Intern. Med. 2006, 20, 987–993. [Google Scholar] [CrossRef]
- Hart, K.; Durham, A.; Frank, N.; McGowan, C.; Schott, H.; Stewart, A. The Equine Endocrinology Group (EEG) Pituitary Pars intermedia (PPID). 2021. Available online: https://sites.tufts.edu/equineendogroup/files/2021/12/2021-PPID-Recommendations-V11-wo-insert.pdf (accessed on 24 November 2022).
- Oklu, R.; Deipolyi, A.R.; Wicky, S.; Ergul, E.; Deik, A.A.; Chen, J.W.; Hirsch, J.A.; Wojtkiewicz, G.R.; Clish, C.B. Identification of small compound biomarkers of pituitary adenoma: A bilateral inferior petrosal sinus sampling study. J. Neurointerv. Surg. 2014, 6, 541–546. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.L. Mechanism of Intestinal and Skeletal Muscle Glucose and Amino Acid Uptake in Pituitary Pars Intermedia Dysfunction; Michigan State University: East Lansing, MI, USA, 2015; Repository number 1339317990. [Google Scholar]
- Krebs, H.A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 1935, 29, 1951–1969. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, P.A.; Smith, K.; Weryk, B.; Watt, P.W.; Rennie, M.J. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett. 1988, 237, 133–136. [Google Scholar] [CrossRef] [Green Version]
- MacLennan, P.A.; Brown, R.; Rennie, M.J. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 1987, 215, 187–191. [Google Scholar] [CrossRef]
- Souba, W.W. Glutamine: A key substrate for the splanchnic bed. Annu. Rev. Nutr. 1991, 11, 285–308. [Google Scholar] [CrossRef]
- Lacey, J.M.; Wilmore, D.W. Is glutamine a conditionally essential amino acid? Nutr. Rev. 1990, 48, 297–309. [Google Scholar] [CrossRef]
- Crenn, P.; Messing, B.; Cynober, L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008, 27, 328–339. [Google Scholar] [CrossRef]
- Crenn, P.; Cynober, L. Effect of intestinal resections on arginine metabolism: Practical implications for nutrition support. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 65–69. [Google Scholar] [CrossRef]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Bénazeth, S.; Cynober, L. Almost all about citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef]
- Moinard, C.; Cynober, L. Citrulline: A new player in the control of nitrogen homeostasis. J. Nutr. 2007, 137, 1621s–1625s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, R.G.; Negrão, C.E.; Krieger, M.H. Nitric oxide and the cardiovascular system: Cell activation, vascular reactivity and genetic variant. Arq. Bras. Cardiol. 2011, 96, 68–75. [Google Scholar] [PubMed]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Ardigo, D.; Stüehlinger, M.; Franzini, L.; Valtuena, S.; Piatti, P.; Pachinger, O.; Reaven, G.; Zavaroni, I. ADMA is independently related to flow-mediated vasodilation in subjects at low cardiovascular risk. Eur. J. Clin. Investig. 2007, 37, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.; Owen, W.; Yu, Y.M.; Noviski, N.; Lyons, J.; Zurakowski, D.; Tsay, R.; Ajami, A.; Young, V.R.; Castillo, L. Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J. Clin. Investig. 2000, 105, 1217–1225. [Google Scholar] [CrossRef]
- Wu, G. Intestinal mucosal amino acid catabolism. J. Nutr. 1998, 128, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.J.; Platt, D.H.; Caldwell, R.B.; Caldwell, R.W. Therapeutic use of citrulline in cardiovascular disease. Cardiovasc. Drug Rev. 2006, 24, 275–290. [Google Scholar] [CrossRef]
- Jackson, A.L. Plasma Citrulline Levels in Horses at Risk of Acute Laminitis. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2013. [Google Scholar]
- Karikoski, N.P.; Horn, I.; McGowan, T.W.; McGowan, C.M. The prevalence of endocrinopathic laminitis among horses presented for laminitis at a first-opinion/referral equine hospital. Domest. Anim. Endocrinol. 2011, 41, 111–117. [Google Scholar] [CrossRef]
- Marino, S.M.; Gladyshev, V.N. Cysteine Function Governs Its Conservation and Degeneration and Restricts Its Utilization on Protein Surfaces. J. Mol. Biol. 2010, 404, 902–916. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ma, B.-G.; Zhao, J.-T.; Zhang, H.-Y. How similar are amino acid mutations in human genetic diseases and evolution. Biochem. Biophys. Res. Commun. 2007, 362, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, D.E.; Xing, W.; Adair, B.M.; Thomas, D.J.; Gladyshev, V.N. High-throughput identification of catalytic redox-active cysteine residues. Science 2007, 315, 387–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sei, C.; Toneff, T.; Aaron, W.; Hook, V.Y.H. Regulation of ACTH levels in anterior pituitary cells during stimulated secretion: Evidence for aspartyl and cysteine proteases in the cellular metabolism of ACTH. Peptides 2003, 24, 717–725. [Google Scholar] [CrossRef] [PubMed]
Parameter | nPPID | PPID | PPIDrr | PPIDarr |
---|---|---|---|---|
ACTH (pg/mL) | 19.76 ± 6.96 | 382.85 ± 352.69 | 18.1 ± 7.88 | 154.0 ± 23.07 |
Age (years) | 15.91 ± 6.96 | 27.79 ± 6.7 | 21.25 ± 3.77 | 27.33 ± 4.16 |
nPPID | PPID | PPIDrr | PPIDarr | p | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
1mHis | 17.1 | 6.0 | 15.8 | 6.0 | 18.5 | 9.2 | 23.7 | 6.2 | 0.231 |
Ala | 205.8 | 69.0 | 215.0 | 85.1 | 164.2 | 41.7 | 213 | 70.3 | 0.595 |
Arg | 67.3 | 29.7 | 86.7 | 20.0 | 95.7 | 27.1 | 116.0 | 16.0 | 0.004 |
Asn | 35.6 | 20.3 | 68.0 | 29.1 | 33.0 | 12.2 | 78.9 | 53.1 | 0.018 |
Cit | 56.4 | 20.2 | 53.3 | 19.1 | 83.9 | 12.0 | 68.1 | 17.4 | 0.016 |
Cys | 135.6 | 81.9 | 169.8 | 32.9 | 18.7 | 7.4 | 146.4 | 115.0 | <0.001 |
GABA | 20.4 | 8.0 | 19.3 | 8.0 | 12.9 | 1.1 | 21.9 | 11.1 | 0.258 |
Gln | 239.8 | 56.1 | 334.8 | 43.9 | 286.4 | 46.0 | 337.4 | 42.363 | <0.001 |
Glu | 40.9 | 24.4 | 35.7 | 20.3 | 18.3 | 5.3 | 41.4 | 23.2 | 0.21 |
Gly | 410.2 | 161.6 | 431.9 | 119.5 | 400.8 | 146.7 | 384.4 | 90.2 | 0.92 |
His | 71.2 | 13.4 | 81.3 | 17.2 | 77.5 | 8.0 | 86.4 | 5.1 | 0.89 |
Ile | 60.6 | 16.0 | 70.2 | 19.4 | 53.2 | 15.4 | 72.9 | 11.5 | 0.113 |
Leu | 100.9 | 30.6 | 112.6 | 36.8 | 97.8 | 24.7 | 123.5 | 20.7 | 0.458 |
Orn | 59.5 | 18.1 | 57.4 | 14.3 | 64.0 | 5.5 | 55.7 | 5.2 | 0.83 |
Phe | 54.9 | 11.4 | 53.5 | 11.2 | 60.1 | 7.2 | 59.0 | 3.6 | 0.603 |
Ser | 212.4 | 64.6 | 244.2 | 68.1 | 220.9 | 34.0 | 227.1 | 20.5 | 0.419 |
Tau | 41.3 | 12.6 | 47.3 | 14.6 | 40.1 | 13.1 | 42.9 | 13.3 | 0.473 |
Trp | 50.9 | 12.8 | 52.2 | 16.3 | 56.0 | 11.5 | 72.6 | 12.5 | 0.102 |
Val | 157.4 | 52.0 | 162.7 | 49.2 | 172.7 | 26.5 | 174.8 | 42.9 | 0.88 |
nPPID | PPID | PPIDrr | PPIDarr | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Med | Min | Max | Med | Min | Max | Med | Min | Max | Med | Min | Max | ||
Asp | 8.1 | 5 | 16.5 | 5 | 5 | 20.7 | 8.1 | 5.7 | 9.9 | 8.3 | 5.0 | 16.5 | 0.304 |
Lys | 76.1 | 45.5 | 153.8 | 92.6 | 29.3 | 143.5 | 87.8 | 46.7 | 122.9 | 114.6 | 80.0 | 126.2 | 0.498 |
Pro | 76.3 | 42.8 | 308.7 | 74.0 | 35.8 | 147.1 | 68.2 | 46.6 | 104.1 | 102.2 | 78.2 | 112.7 | 0.315 |
Thr | 94.7 | 41.1 | 203.9 | 129.6 | 65.9 | 208.4 | 113.2 | 39.6 | 138.6 | 151.5 | 125.7 | 156.6 | 0.047 |
Tyr | 52.1 | 36.5 | 97.6 | 58.0 | 36.4 | 93.5 | 63.8 | 46.5 | 96.7 | 63.2 | 50.8 | 64.4 | 0.528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoeckle, S.D.; Timmermann, D.; Merle, R.; Gehlen, H. Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction. Animals 2022, 12, 3315. https://doi.org/10.3390/ani12233315
Stoeckle SD, Timmermann D, Merle R, Gehlen H. Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction. Animals. 2022; 12(23):3315. https://doi.org/10.3390/ani12233315
Chicago/Turabian StyleStoeckle, Sabita Diana, Detlef Timmermann, Roswitha Merle, and Heidrun Gehlen. 2022. "Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction" Animals 12, no. 23: 3315. https://doi.org/10.3390/ani12233315
APA StyleStoeckle, S. D., Timmermann, D., Merle, R., & Gehlen, H. (2022). Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction. Animals, 12(23), 3315. https://doi.org/10.3390/ani12233315