Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Antinutritional Factors in Feeds for Nursery Pigs and Broiler Chickens
2.1. Phytic Acid
2.2. Non-Starch Polysaccharides
3. Phytase and Xylanase Enhancing the Intestinal Health of Nursery Pigs and Broiler Chickens
3.1. Phytase
3.1.1. Characteristics and Mechanisms of Action
3.1.2. 3- and 6-Phytase
3.1.3. Supplementing Phytase beyond Traditional Levels
3.1.4. Effects of Supplementing Phytase on the Intestinal Health of Nursery Pigs and Broiler Chickens
3.2. Xylanase
3.2.1. Characteristics and Mechanisms of Action
Duration, Day of Age | Activity | % Change * | Reference ** |
---|---|---|---|
1–42 | ND 1 | Final body weight (2%), ADFI 2 (−2%), tissue protein content (14%), gizzard weight (−8%), duodenum-jejunum weight (−8%), ileal digesta viscosity (ND), ileum lactic acid bacteria (4%) | [217] |
1–25 | 0–200 FXU/kg feed | ADG 3 (12%), FCR 4 (−9%), excreta moisture (−5%), jejunum arabinose (80%), jejunum xylose (95%), ileum arabinose (88%), ileum xylose (97%), duodenum digesta viscosity (−33%), jejunum digesta viscosity (−49%) | [218] |
1–22 | 0–1000 XU/kg feed | ADG (14%), ADFI (10%), FCR (−5%), duodenum digesta viscosity (−29%), jejunum digesta viscosity (−23%), ileum digesta viscosity (−39%), jejunum weight (−16%), jejunum length (−16%), jejunum crypt depth (−13%) | [113] |
1–41 | 0–2000 U/kg feed | ADG (10%), FCR (−6%), in-vitro intrinsic viscosity (−38%) | [219] |
1–28 | 0–500 U/kg feed | Jejunum digesta viscosity (−85%) | [220] |
1–18 | ND | ADG (10%), ADFI (16%), ileum length (−30%), jejunum crypt depth (−19%) | [221] |
1–21 | 0–1000 XU/kg feed | FCR (−2%), AME 5 (3%) | [222] |
7–28 | 0–500 U/kg feed | G:F 6 (8–16%), jejunum digesta viscosity (−18%), DM 7 digestibility (27–37%) | [223] |
1–28 | 0–2500 GXU/kg feed | ADFI (9%), jejunum digesta viscosity (−11%), cecum arabinose concentration (59%) | [224] |
1–43 | 0–16,000 U/kg feed | FCR (−3%), N 8 digestibility (3%), ileal digestible energy digestibility (3%), threonine digestibility (5%), lysine digestibility (3%) | [225] |
1–24 | 0–200 FXU/kg feed | ADG (3%), G:F (4%), jejunum digesta viscosity (−21%), DM retention (10%), CP 9 retention (13%), energy retention (9%) | [226] |
1–42 | 0–2000 U/kg feed | ADG (15%), FCR (−11%), cecum Salmonella prevalence (−62%) | [227] |
1–35 | ND | Feed conversion ratio (−3%), starch digestibility (4%), fat digestibility (3%), AME retention (4%) | [228] |
1–43 | 0–16,000 BXU/kg feed | FCR (−3%) | [229] |
1–43 | 0–16,000 XU/kg feed | Serum insulin (%), serum peptide YY (61%), cecal VFA 10 (−4%) | [230] |
1–35 | 0–250 FXU/kg feed | Ileum viscosity (−20%), ileum xylose concentration (−14%), jejunum protein content (28%) | [231] |
1–32 | 0–32,000 BXU/kg feed | No effects on the evaluated parameters | [232] |
1–50 | 0–16,000 BXU/kg feed | FCR (−7%), DM digestibility (9%), ileal digestible energy (7%), N digestibility (4%), cecum temperature (4%) | [233] |
1–43 | 0–1250 XU/kg feed | ADG (7%), FCR (−5%), jejunum viscosity (−49%), cecum acetic acid concentration (35%), fat digestibility (5%), CP digestibility (4%), DM retention 3%), fat retention (6%), P 11 retention (6%), NDF 12 retention (14%), ADF 13 retention (42%), AME (2%) | [234] |
1–21 | 0–5500 U/kg feed | FCR (−7%) | [235] |
1–49 | 0–32,000 BXU/kg feed | FCR (−6%), energy digestibility (6%), gizzard weight (16%), cecum propionic acid concentration (22%), cecum caproic acid concentration (24%) | [236] |
7–21 | 0–2000 U/kg feed | AME (1%), DM retention (2%), fat digestibility (2%) | [237] |
1–42 | 0–160,000 BXU/kg feed | Gizzard weight (17%), gizzard length (19%) | [238] |
1–42 | 0–2000 XU/kg feed | FCR (−2%), ileal digestible energy (8%), starch digestibility (1%), N digestibility (5%), GE digestibility (8%), ileum total NSP 14 concentration (−26%) | [239] |
1–36 | 0–5625 XU/kg feed | ADG (2%), GE 15 digestibility (3%), CP digestibility (4%), DM digestibility (1%), RA 16 of ileal Lactobacillus (12%), cecal Lactobacillus (11%), ileal Escherichia coli (−15%), and cecal Escherichia coli (−11%), duodenum villus height (8%), jejunum villus height (10%), ileum villus height (12%) | [240] |
1–42 | 0–16,000 BXU/kg feed | FCR (−4%) | [241] |
1–41 | 0–24,000 BXU/kg feed | Mortality (−54%) | [242] |
1–42 | 0–16,000 BXU/kg feed | FCR (−3%), duodenum acetic acid concentration (12%) | [243] |
1–42 | 0–200 FXU/kg feed | FCR (−1%), jejunum digesta viscosity (−40%), ileum digesta viscosity (−58%) | [244] |
1–29 | 0–160,000 BXU/kg feed | FCR (−8%), copper digestibility (44%) | [245] |
1–30 | 0–32,000 BXU/kg feed | Ileal frutose (31%), ileal arabinose (29%), ileal galactose (33%) | [215] |
1–33 | 0–11,250 XU/kg feed | ADG (3%), FCR (−4%), DM digestibility (4%), GE digestibility (4%), ileum digesta viscosity (−12%), duodenum villus height (8%), jejunum villus height (9%) | [246] |
1–43 | 0–16,000 BXU/kg feed | ADG (5%), final body weight (6%), acetate (27%), total SCFA 17 (24%) | [214] |
Duration, Day of Age | Activity | % Change * | Reference ** |
---|---|---|---|
35–70 | 0–4000 XU/kg feed | DM 1 fecal digestibility (1%), N 2 digestibility (2%) | [247] |
7–28 | 0–5600 EXU/kg feed | No effects on the evaluated parameters | [248] |
21–56 | ND 3 | FCR 4 (−3%), CP 5 digestibility (4%), fat digestibility (2%), starch digestibility (1%), total amino acids digestibility (3%), leucine digestibility (2%), isoleucine digestibility (4%), jejunum digesta viscosity (−76%), colon digesta viscosity (−81%), jejunum acetate concentration (27%), jejunum propionate concentration (30%), total conjugated/deconjugated bile acids (33%) | [249] |
ND | 0–1500 U/kg feed | CP digestibility (2%), crude ash digestibility (2%), Ca 6 digestibility (3%), P 7 digestibility (1%), ADF 8 digestibility (9%) | [250] |
ND1 | 0–1400 LXU/kg feed | NDF 9 digestibility (36%), DM digestibility (17%), GE 10 digestibility (15%), OM 11 digestibility (15%), jejunum digesta viscosity (−14%) | [29] |
ND | 0–0.01% | ADG 12 (5%), G:F 13 (4%), DM digestibility (3%), N digestibility (4%), GE digestibility (3%), fecal Lactobacillus (1%) | [69] |
28–56 | 0–4000 XU/kg feed | DM digestibility (2%), NDF digestibility (23%), P digestibility (29%) | [251] |
21–49 | 0–4000 XU/kg feed | ADG (14%), DM digestibility (4%), CP digestibility (7%), NDF digestibility (19%), ADF digestibility (15%), Ca digestibility (22%), P digestibility (14%), fecal Lachnospiraceae (−50%) | [252] |
23–43 | 0–1500 EPU/kg feed | SCFA 14 (20%), acetate (32%), propionate (19%), total NSP 15 digestibility coefficient (15%), arabinoxylan digestibility coefficient (38%), GE digestibility coefficient (8%), duodenum villus height (11%), jejunum crypt proliferation rate (17%), jejunum claudin (57%), jejunum occludin (75%), jejunum zonula occludens 1 (80%), jejunum digesta viscosity (−26%) | [30] |
21–45 | 0–45,000 XU/kg feed | ADG (6%), jejunal digesta viscosity (−13%), jejunum mucosal MDA 16 (−17%), jejunum crypt depth (−10%), jejunum crypt cell proliferation (−15%) | [23] |
18–53 | 0–16,000 BXU/kg feed | Ileum pH (6%), colon pH (3%), CP digestibility (7%), DM digestibility (3%), Ca digestibility (16%), P digestibility (8%), colon propionic acid concentration (10%) | [253] |
21–41 | 0–1500 EPU/kg feed | ADG (7%), jejunal digesta viscosity (−14%), plasma TNF-α 17 (−36%), GE digestibility (6%), NDF digestibility (22%), duodenum crypt depth (11%) | [58] |
23–65 | 0–16,000 BXU/kg feed | Ileum Clostridiaceae (−10%), cecum Lactobacillaceae count (36%) | [254] |
21–63 | 0–16,000 XU/kg feed | ADG (9%), DM digestibility (4%), GE digestibility (3%), N digestibility (3%) and P digestibility (15%), RA 18 fecal Veillonella spp. (−33%) | [255] |
21–59 | 0–1760 XU/kg feed | Jejunal digesta viscosity (−23%), jejunum mucosal MDA (−39%), jejunum mucosal PC 19 (−15%), jejunum villus height (13%), NDF digestibility (6%), EE 20 digestibility (6%), RA of jejunum Cupriavidus (−43%), Megasphaera (−82%), Succinivibrio (73%), and Pseudomonas (63%) | [5] |
28–63 | 0–135,000 U/kg feed | ADG (18%), ADFI (−2%), G:F (20%), diarrhea rate (−61%), DM digestibility (4%), CP digestibility (6%), EE digestibility (8%), NDF digestibility (2%), ADF digestibility (7%), GE digestibility (30%), starch digestibility (27%), N digestibility (26%), jejunum villus height (15%), feces propionate concentration (41%), fecal butyrate concentration (35%), feces ammonia concentration −26%) | [256] |
3.2.2. Effects of Supplementing Xylanase on the Intestinal Health of Nursery Pigs and Broiler Chickens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, S.W.; Duarte, M.E. Understanding intestinal health in nursery pigs and the relevant nutritional strategies. Anim. Biosci. 2021, 34, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.B.; Kim, S.W. Supplemental effects of dietary nucleotides on intestinal health and growth performance of newly weaned pigs. J. Anim. Sci. 2019, 97, 4875–4882. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Duarte, M.E.; Kim, S.W. Effects of Yarrowia lipolytica supplementation on growth performance, intestinal health and apparent ileal digestibility of diets fed to nursery pigs. Anim. Biosci. 2021, 35, 605–613. [Google Scholar] [CrossRef]
- Duarte, M.E.; Kim, S.W. Intestinal microbiota and its interaction to intestinal health in nursery pigs. Anim. Nutr. 2021, 8, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Moita, V.H.C.; Duarte, M.E.; Kim, S.W. Functional roles of xylanase enhancing intestinal health and growth performance of nursery pigs by reducing the digesta viscosity and modulating the mucosa-associated microbiota in the jejunum. J. Anim. Sci. 2022, 100, skac116. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef] [PubMed]
- Moeser, A.J.; Ryan, K.A.; Nighot, P.K.; Blikslager, A.T. Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am. J. Physiol. Liver Physiol. 2007, 293, G413–G421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; van Heugten, E.; Ji, F.; Lee, C.H.; Mateo, R.D. Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs. J. Anim. Sci. 2010, 88, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Taliercio, E.; Kim, S.W. Epitopes from two soybean glycinin subunits are antigenic in pigs. J. Sci. Food Agric. 2013, 93, 2927–2932. [Google Scholar] [CrossRef]
- Deng, Z.; Duarte, M.E.; Jang, K.B.; Kim, S.W. Soy protein concentrate replacing animal protein supplements and its impacts on intestinal immune status, intestinal oxidative stress status, nutrient digestibility, mucosa-associated microbiota, and growth performance of nursery pigs. J. Anim. Sci. 2022, 100, skac255. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.T.; Duarte, M.E.; Holanda, D.M.; Kim, S.W. Friend or Foe? Impacts of Dietary Xylans, Xylooligosaccharides, and Xylanases on Intestinal Health and Growth Performance of Monogastric Animals. Animals 2021, 11, 609. [Google Scholar] [CrossRef]
- Ptak, A.; Bedford, M.R.; Światkiewicz, S.; Zyła, K.; Józefiak, D. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS ONE 2015, 10, e0119770. [Google Scholar] [CrossRef] [Green Version]
- Moita, V.H.C.; Duarte, M.E.; Kim, S.W. Supplemental effects of phytase on modulation of mucosa-associated microbiota in the jejunum and the impacts on nutrient digestibility, intestinal morphology, and bone parameters in broiler chickens. Animals 2021, 11, 3351. [Google Scholar] [CrossRef] [PubMed]
- Petry, A.L.; Patience, J.F.; Koester, L.R.; Huntley, N.F.; Bedford, M.R.; Schmitz-Esser, S. Xylanase modulates the microbiota of ileal mucosa and digesta of pigs fed corn-based arabinoxylans likely through both a stimbiotic and prebiotic mechanism. PLoS ONE 2021, 16, e0246144. [Google Scholar] [CrossRef] [PubMed]
- Böhme, H. Enzymes in farm animal nutrition. Anim. Feed Sci. Technol. 2001, 91, 241–242. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 7th. ed.; W.H. Freeman Co.: New York, NY, USA, 2017; p. 2. [Google Scholar]
- Ravindran, V. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 2013, 22, 628–636. [Google Scholar] [CrossRef]
- Choct, M. Enzymes for the feed industry: Past, present and future. Worlds. Poult. Sci. J. 2006, 62, 5–16. [Google Scholar] [CrossRef]
- Slominski, B.A. Recent advances in research on enzymes for poultry diets. Poult. Sci. 2011, 90, 2013–2023. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Karadas, F.; Pirgozliev, V.; Pappas, A.C.; Acamovic, T.; Bedford, M.R. Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.; Zhou, F.X.; Dutra, W.M.; Kim, S.W. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim. Nutr. 2019, 5, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.G.; Porres, J.M. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 2003, 25, 1787–1794. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, D.; Hughes, R.J.; Moore, R.J. Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease. Appl. Microbiol. Biotechnol. 2014, 98, 4301–4310. [Google Scholar] [CrossRef]
- Mach, N.; Berri, M.; Estellé, J.; Levenez, F.; Lemonnier, G.; Denis, C.; Leplat, J.-J.; Chevaleyre, C.; Billon, Y.; Doré, J.; et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 2015, 7, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, Y.; Liu, S.; Huang, J.; Zhai, Z.; He, C.; Ding, J.; Wang, J.; Wang, H.; Fan, W.; et al. The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. PLoS ONE 2015, 10, e0117441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passos, A.A.; Park, I.; Ferket, P.; von Heimendahl, E.; Kim, S.W. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Anim. Nutr. 2015, 1, 19–23. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Chen, H.; Kim, S.W.; Jha, R. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed Sci. Technol. 2018, 245, 77–90. [Google Scholar] [CrossRef]
- Rodica, C.; Adrian, C.; Julean, C. Biochemical Aspects of Non-Starch Polysaccharides. Anim. Sci. Biotechnol. 2010, 43, 368–375. [Google Scholar]
- Kiarie, E.; Romero, L.F.; Nyachoti, C.M. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 2013, 26, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Selle, P.H.; Ravindran, V. Phytate-degrading enzymes in pig nutrition. Livest. Sci. 2008, 113, 99–122. [Google Scholar] [CrossRef]
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef]
- McCance, R.A.; Widdowson, E.M. Mineral metabolism of healthy adults on white and brown bread dietaries. J. Physiol. 1942, 101, 44–85. [Google Scholar] [CrossRef]
- McCance, R.A.; Walsham, C.M. The Digestibility and Absorption of the Calories, Proteins, Purines, Fat and Calcium in Wholemeal Wheaten Bread. Br. J. Nutr. 1948, 2, 26–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsted, J.A.; Ronaghy, H.A.; Abadi, P.; Haghshenass, M.; Amirhakemi, G.H.; Barakat, R.M.; Reinhold, J.G. Zinc deficiency in man. The Shiraz experiment. Am. J. Med. 1972, 53, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Costa-Bauza, A. Key Aspects of Myo-Inositol Hexaphosphate (Phytate) and Pathological Calcifications. Molecules 2019, 24, 4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, R.; Tyler, C. The reaction between phytate and protein. J. Agric. Sci. 1954, 44, 324–326. [Google Scholar] [CrossRef]
- Singh, M.; Krikorian, A.D. Inhibition of trypsin activity in vitro by phytate. J. Agric. Food Chem. 1982, 30, 799–800. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Cheryan, M. Effects of Phytic Acid, Divalent Cations, and Their Interactions on α-Amylase Activity. J. Food Sci. 1984, 49, 516–519. [Google Scholar] [CrossRef]
- Reddy, N.R.; Sathe, S.K.; Salunkhe, D.K. Phytates in Legumes and Cereals. In Advances in Food Research; Academic Press: Cambridge, MA, USA, 1982; Volume 28, pp. 1–92. [Google Scholar]
- Pallauf, J.; Rimbach, G. Nutritional significance of phytic acid and phytase. Arch. Tierernaehrung 1997, 50, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Cap, U.P.; Stark, C.; Carolina, N. Feed manufacturing to lower feed cost. Allen D. Leeman Swine Conf. 2012, 39, 127–133. [Google Scholar]
- Hölzel, C.S.; Müller, C.; Harms, K.S.; Mikolajewski, S.; Schäfer, S.; Schwaiger, K.; Bauer, J. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environ. Res. 2012, 113, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Misiura, M.M.; Filipe, J.A.N.; Walk, C.L.; Kyriazakis, I. How do pigs deal with dietary phosphorus deficiency? Br. J. Nutr. 2020, 124, 256–272. [Google Scholar] [CrossRef] [Green Version]
- Cheryan, M.; Rackis, J.J. Phytic acid interactions in food systems. C R C Crit. Rev. Food Sci. Nutr. 1980, 13, 297–335. [Google Scholar] [CrossRef]
- Angel, R.; Tamim, N.M.; Applegate, T.J.; Dhandu, A.S.; Ellestad, L.E. Phytic acid chemistry: Influence on phytin-phosphorus availability and phytase efficacy. J. Appl. Poult. Res. 2002, 11, 471–480. [Google Scholar] [CrossRef]
- Yi, Z.; Kornegay, E.T. Sites of phytase activity in the gastrointestinal tract of young pigs. Anim. Feed Sci. Technol. 1996, 61, 361–368. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ruckebusch, J.P.; Knap, I.; Guggenbuhl, P.; Fru-Nji, F. Phytate-free nutrition: A new paradigm in monogastric animal production. Anim. Feed Sci. Technol. 2016, 222, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Knabe, D.A.; Hong, K.J.; Easter, R.A. Use of carbohydrases in corn–soybean meal-based nursery diets1. J. Anim. Sci. 2003, 81, 2496–2504. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, K.E.B. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Dalsgaard, S.; Knudsen, K.E.E.B.; Yu, S.; Lærke, H.N. Compositional profile and variation of Distillers Dried Grains with Solubles from various origins with focus on non-starch polysaccharides. Anim. Feed Sci. Technol. 2014, 197, 130–141. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Lærke, H.N.; Bach Knudsen, K.E.; Stein, H.H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains1. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.E.; Pethick, D.W.; Mullan, B.P.; Hampson, D.J. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr. 2001, 86, 487–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Bakker, G.C.M.; Dekker, R.A.; Jongbloed, R.; Jongbloed, A.W. Non-starch polysaccharides in pig feeding. Vet. Q. 1998, 20, 59–64. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Kim, S.W. Effects of supplemental xylanase on health of the small intestine in nursery pigs fed diets with corn distillers’ dried grains with solubles. J. Anim. Sci. 2020, 98, skaa185. [Google Scholar] [CrossRef]
- Choct, M. Feed non-starch polysaccharides for monogastric animals: Classification and function. Anim. Prod. Sci. 2015, 55, 1360. [Google Scholar] [CrossRef]
- Linhardt, R.J. Polysaccharides I: Structure, Characterization and Use. Advances in Polymer Science, 186 Edited by Thomas Heinze (Friedrich-Schiller-Universität Jena, Germany). Springer: Berlin, Heidelberg, New York. 2005. xii + 282 pp. $249.00. ISBN 3-540-26112-5. J. Am. Chem. Soc. 2006, 128, 6268. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Köhnke, T.; Östlund, Å.; Brelid, H. Adsorption of arabinoxylan on cellulosic surfaces: Influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 2011, 12, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Hoebler, C.; Guillon, F.; Darcy-Vrillon, B.; Vaugelade, P.; Lahaye, M.; Worthington, E.; Duée, P.H.; Barry, J.L. Supplementation of pig diet with algal fibre changes the chemical and physicochemical characteristics of digesta. J. Sci. Food Agric. 2000, 80, 1357–1364. [Google Scholar] [CrossRef]
- Gutierrez, N.A.; Serão, N.V.L.; Kerr, B.J.; Zijlstra, R.T.; Patience, J.F. Relationships among dietary fiber components and the digestibility of energy, Dietary fiber, And amino acids and energy content of nine corn coproducts fed to growing pigs. J. Anim. Sci. 2014, 92, 4505–4517. [Google Scholar] [CrossRef] [PubMed]
- Petry, A.L.; Patience, J.F. Xylanase supplementation in corn-based swine diets: A review with emphasis on potential mechanisms of action. J. Anim. Sci. 2020, 98, skaa318. [Google Scholar] [CrossRef] [PubMed]
- Tervilä-Wilo, A.; Parkkonen, T.; Morgan, A.; Hopeakoski-Nurminen, M.; Poutanen, K.; Heikkinen, P.; Autio, K. In vitro digestion of wheat microstructure with xylanase and cellulase from Trichoderma reesei. J. Cereal Sci. 1996, 24, 215–225. [Google Scholar] [CrossRef]
- O’Neill, H.V.M.; Liu, N.; Wang, J.P.; Diallo, A.; Hill, S. Effect of xylanase on performance and apparent metabolisable energy in starter broilers fed diets containing one maize variety harvested in different regions of China. Asian-Australas. J. Anim. Sci. 2012, 25, 515–523. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Pearson Education Limited: Harlow, UK, 2011; ISBN 0582219272. [Google Scholar]
- Lan, R.; Li, T.; Kim, I. Effects of xylanase supplementation on growth performance, nutrient digestibility, blood parameters, fecal microbiota, fecal score and fecal noxious gas emission of weaning pigs fed corn-soybean meal-based diet. Anim. Sci. J. 2017, 88, 1398–1405. [Google Scholar] [CrossRef]
- García, M.; Lázaro, R.; Latorre, M.A.; Gracia, M.I.; Mateos, G.G. Influence of enzyme supplementation and heat processing of barley on digestive traits and productive performance of broilers. Poult. Sci. 2008, 87, 940–948. [Google Scholar] [CrossRef]
- Hayakawa, T.; Suzuki, K.; Miura, H.; Ohno, T.; Igaue, I. Myo-inositol Polyphosphate Intermediates in the Dephosphorylation of Phytic Acid by Acid Phosphatase with Phytase Activity from Rice Bran. Agric. Biol. Chem. 1990, 54, 279–286. [Google Scholar] [CrossRef]
- Konietzny, U.; Greiner, R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Technol. 2002, 37, 791–812. [Google Scholar] [CrossRef] [Green Version]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9780444513670. [Google Scholar]
- Cromwell, G.L. Phosphorus and Swine Nutrition. In Phosphorus: Agriculture and the Environment; Wiley: Hoboken, NJ, USA, 2015; pp. 607–634. [Google Scholar]
- Létourneau-Montminy, M.P.; Narcy, A.; Lescoat, P.; Magnin, M.; Bernier, J.F.; Sauvant, D.; Jondreville, C.; Pomar, C. Modeling the fate of dietary phosphorus in the digestive tract of growing pigs. J. Anim. Sci. 2011, 89, 3596–3611. [Google Scholar] [CrossRef] [Green Version]
- Adeola, O.; Sands, J.S.; Simmins, P.H.; Schulze, H. The efficacy of an Escherichia coli-derived phytase preparation. J. Anim. Sci. 2004, 82, 2657–2666. [Google Scholar] [CrossRef] [Green Version]
- De Jong, J.A.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; Stark, C.R.; Jones, C.K. Stability of four commercial phytase products under increasing thermal conditioning temperatures. Transl. Anim. Sci. 2017, 1, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, B.; Lantzsch, H.J.; Langbein, U.; Drochner, W. Determination of phytase activity in cereal grains by direct incubation. J. Anim. Physiol. Anim. Nutr. 2002, 86, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Rojas, O.J.; Stein, H.H. Processing of ingredients and diets and effects on nutritional value for pigs. J. Anim. Sci. Biotechnol. 2017, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrudula Vasudevan, U.; Jaiswal, A.K.; Krishna, S.; Pandey, A. Thermostable phytase in feed and fuel industries. Bioresour. Technol. 2019, 278, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Bedford, M.R.; Selle, P.H.; Ravindran, V. Phytate and microbial phytase: Implications for endogenous nitrogen losses and nutrient availability. Worlds. Poult. Sci. J. 2009, 65, 401–418. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Lu, H.; Cowieson, A.J.; Wilson, J.W.; Ajuwon, K.M.; Adeola, O. Extra-phosphoric effects of super dosing phytase on growth performance of pigs is not solely due to release of myo-inositol. J. Anim. Sci. 2019, 97, 3898–3906. [Google Scholar] [CrossRef]
- Moita, V.H.C.; Duarte, M.E.; Kim, S.W. 93 Efficacy of bacterial 6-phytase and its optimal supplementation level on bone parameters, nutrient digestibility, and growth performance of nursery pigs. J. Anim. Sci. 2022, 100, 36. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Wilcock, P.; Bedford, M.R. Super-dosing effects of phytase in poultry and other monogastrics. Worlds. Poult. Sci. J. 2011, 67, 225–236. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Kwakernaak, C. Comparative effects of two phytases versus increasing the inorganic phosphorus content of the diet, on nutrient and amino acid digestibility in boilers. Anim. Feed Sci. Technol. 2019, 253, 166–180. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Damodaran, S. Effect of Phytate on Solubility, Activity and Conformation of Trypsin and Chymotrypsin. J. Food Sci. 1989, 54, 695–699. [Google Scholar] [CrossRef]
- Cosgrove, D.; Irving, C. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology; Elsevier Scientific: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Sandström, B.; Sandberg, A.S. Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J. Trace Elem. Electrolytes Health Dis. 1992, 6, 99–103. [Google Scholar]
- Augspurger, N.R.; Webel, D.M.; Lei, X.G.; Baker, D.H. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J. Anim. Sci. 2003, 81, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Adeola, O.; Olukosi, O.A.; Jendza, J.A.; Dilger, R.N.; Bedford, M.R. Response of growing pigs to Peniophora lycii- and Escherichia coli -derived phytases or varying ratios of calcium to total phosphorus. Anim. Sci. 2006, 82, 637–644. [Google Scholar] [CrossRef]
- Sands, J.S.; Ragland, D.; Dilger, R.N.; Adeola, O. Responses of pigs to Aspergillus niger phytase supplementation of low-protein or high-phytin diets. J. Anim. Sci. 2009, 87, 2581–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodband, R.D.; Langbein, K.B.; Tokach, M.D.; DeRouchey, J.M.; Dritz, S.S. Influence of a superdose of phytase (Optiphos) on finishing pig performance and carcass characteristics. Kansas Agric. Exp. Stn. Res. Rep. 2013, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Guggenbuhl, P.; Calvo, E.P.; Fru, F. Effect of high dietary doses of a bacterial 6-phytase in piglets fed a corn-soybean meal diet. J. Anim. Sci. 2016, 94, 307–309. [Google Scholar] [CrossRef]
- Cambra-López, M.; Cerisuelo, A.; Ferrer, P.; Ródenas, L.; Aligué, R.; Moset, V.; Pascual, J.J. Age influence on effectiveness of a novel 3-phytase in barley-wheat based diets for pigs from 12 to 108 kg under commercial conditions. Anim. Feed Sci. Technol. 2020, 267, 114549. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Kornegay, E.T.; Radcliffe, J.S.; Denbow, D.M.; Veit, H.P.; Larsen, C.T. Comparison of genetically engineered microbial and plant phytase for young broilers. Poult. Sci. 2000, 79, 709–717. [Google Scholar] [CrossRef]
- Ravindran, V.; Selle, P.H.; Ravindran, G.; Morel, P.C.H.; Kies, A.K.; Bryden, W.L. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci. 2001, 80, 338–344. [Google Scholar] [CrossRef]
- Yan, F.; Kersey, J.H.; Waldroup, P.W. Phosphorus requirements of broiler chicks three to six weeks of age as influenced by phytase supplementation. Poult. Sci. 2001, 80, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.Q.; Abdullah, N.; Jalaludin, S.; Ho, Y.W. Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult. Sci. 2002, 81, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Viveros, A.; Brenes, A.; Arija, I.; Centeno, C. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult. Sci. 2002, 81, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Arija, I.; Centeno, C.; Pizarro, M.; Bravo, C. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Anim. Feed Sci. Technol. 2003, 110, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Shirley, R.B.; Edwards, H.M. Graded levels of phytase past industry standards improves broiler performance. Poult. Sci. 2003, 82, 671–680. [Google Scholar] [CrossRef]
- Jendza, J.A.; Dilger, R.N.; Sands, J.S.; Adeola, O. Efficacy and equivalency of an Escherichia coli-derived phytase for replacing inorganic phosphorus in the diets of broiler chickens and young pigs. J. Anim. Sci. 2006, 84, 3364–3374. [Google Scholar] [CrossRef]
- Payne, R.L.; Lavergne, T.K.; Southern, L.L. A comparison of two sources of phytase in liquid and dry forms in broilers. Poult. Sci. 2005, 84, 265–272. [Google Scholar] [CrossRef]
- Watson, B.C.; Matthews, J.O.; Southern, L.L.; Shelton, J.L. The effects of phytase on growth performance and intestinal transit time of broilers fed nutritionally adequate diets and diets deficient in calcium and phosphorus. Poult. Sci. 2006, 85, 493–497. [Google Scholar] [CrossRef]
- Powell, S.; Johnston, S.; Gaston, L.; Southern, L.L. The effect of dietary phosphorus level and phytase supplementation on growth performance, bone-breaking strength, and litter phosphorus concentration in broilers. Poult. Sci. 2008, 87, 949–957. [Google Scholar] [CrossRef]
- Rousseau, X.; Létourneau-Montminy, M.P.; Même, N.; Magnin, M.; Nys, Y.; Narcy, A. Phosphorus utilization in finishing broiler chickens: Effects of dietary calcium and microbial phytase. Poult. Sci. 2012, 91, 2829–2837. [Google Scholar] [CrossRef]
- Taheri, H.R.; Heidari, A.; Shahir, M.H. Effect of high-dose phytase supplementation in broilers from 22 to 42 days post-hatch given diets severely limited in available phosphorus. Br. Poult. Sci. 2015, 56, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Taheri, H.R.; Jabbari, Z.; Adibnia, S.; Shahir, M.H.; Hosseini, S.A. Effect of high-dose phytase and citric acid, alone or in combination, on growth performance of broilers given diets severely limited in available phosphorus. Br. Poult. Sci. 2015, 56, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Srikanthithasan, K.; Macelline, S.P.; Wickramasuriya, S.S.; Tharangani, H.; Li-Ang; Jayasena, D.D.; Heo, J.M. Effects of adding phytase from aspergillus Niger to a low phosphorus diet on growth performance, Tibia characteristics, phosphorus excretion, and meat quality of broilers 35 days after hatching. J. Poult. Sci. 2020, 57, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, V.; Gabahug, S.; Ravindran, G.; Selle, P.H.; Bryden, W.L. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 2000, 41, 193–200. [Google Scholar] [CrossRef]
- Dilger, R.N.; Onyango, E.M.; Sands, J.S.; Adeola, O. Evaluation of microbial phytase in broiler diets. Poult. Sci. 2004, 83, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Ravindran, V.; Thomas, D.G.; Birtles, M.J.; Hendriks, W.H. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br. Poult. Sci. 2004, 45, 76–84. [Google Scholar] [CrossRef]
- Onyango, E.M.; Bedford, M.R.; Adeola, O. Efficacy of an evolved Escherichia coli phytase in diets of broiler chicks. Poult. Sci. 2005, 84, 248–255. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. Supplementation of corn-soy-based diets with an Eschericia coli-derived phytase: Effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci. 2006, 85, 1389–1397. [Google Scholar] [CrossRef]
- Pillai, P.B.; O’Connor-Dennie, T.; Owens, C.M.; Emmert, J.L. Efficacy of an Escherichia coli phytase in broilers fed adequate or reduced phosphorus diets and its effect on carcass characteristics. Poult. Sci. 2006, 85, 1737–1745. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Oduguwa, O.; Acamovic, T.; Bedford, M.R. Diets containing Escherichia coli-derived phytase on young chickens and turkeys: Effects on performance, metabolizable energy, endogenous secretions, and intestinal morphology. Poult. Sci. 2007, 86, 705–713. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; Mcelroy, A.P. Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poult. Sci. 2012, 91, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Oduguwa, O.; Acamovic, T.; Bedford, M.R. Effects of dietary phytase on performance and nutrient metabolism in chickens. Br. Poult. Sci. 2008, 49, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ru, Y.J.; Cowieson, A.J.; Li, F.D.; Cheng, X.C. Effects of Phytate and Phytase on the Performance and Immune Function of Broilers Fed Nutritionally Marginal Diets. Poult. Sci. 2008, 87, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ru, Y.J.; Li, F.D.; Wang, J.P.; Lei, X.Q. Effect of dietary phytate and phytase on proteolytic digestion and growth regulation of broilers. Arch. Anim. Nutr. 2009, 63, 292–303. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Slominski, B.A.; Jones, R.O. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult. Sci. 2010, 89, 2221–2229. [Google Scholar] [CrossRef]
- Tiwari, S.P.; Gendley, M.K.; Pathak, A.K.; Gupta, R. Influence of an enzyme cocktail and phytase individually or in combination in Ven Cobb broiler chickens. Br. Poult. Sci. 2010, 51, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Cowieson, A.J.; Adeola, O. Broiler responses to supplementation of phytase and admixture of carbohydrases and protease in maize-soyabean meal diets with or without maize Distillers’ Dried Grain with Solubles. Br. Poult. Sci. 2010, 51, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Karadas, F.; Pappas, A.; Acamovic, T.; Bedford, M.R. The effect on performance, energy metabolism and hepatic carotenoid content when phytase supplemented diets were fed to broiler chickens. Res. Vet. Sci. 2010, 89, 203–205. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Protein utilization and amino acid digestibility of canola meal in response to phytase in broiler chickens. Poult. Sci. 2011, 90, 1508–1515. [Google Scholar] [CrossRef]
- Powell, S.S.; Bidner, T.D.; Southern, L.L. Phytase supplementation improved growth performance and bone characteristics in broilers fed varying levels of dietary calcium. Poult. Sci. 2011, 90, 604–608. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Bedford, M.R.; Acamovic, T.; Mares, P.; Allymehr, M. The effects of supplementary bacterial phytase on dietary energy and total tract amino acid digestibility when fed to young chickens. Br. Poult. Sci. 2011, 52, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutherfurd, S.M.; Chung, T.K.; Thomas, D.V.; Zou, M.L.; Moughan, P.J. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 2012, 91, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Addo-Chidie, E.K.; Bedford, M.R.; Adeola, O. Evaluation of a highly soluble calcium source and phytase in the diets of broiler chickens. Poult. Sci. 2012, 91, 2255–2263. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Bedford, M.R. Energy utilisation and growth performance of chicken fed diets containing graded levels of supplementary bacterial phytase. Br. J. Nutr. 2013, 109, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Adeola, O.; Walk, C.L. Linking ileal digestible phosphorus and bone mineralization in broiler chickens fed diets supplemented with phytase and highly soluble calcium. Poult. Sci. 2013, 92, 2109–2117. [Google Scholar] [CrossRef]
- Paiva, D.M.; Walk, C.L.; McElroy, A.P. Influence of dietary calcium level, calcium source, and phytase on bird performance and mineral digestibility during a natural necrotic enteritis episode. Poult. Sci. 2013, 92, 3125–3133. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Kong, C.; Fru-Nji, F.; Ajuwon, K.M.; Adeola, O. Assessment of a bacterial 6-phytase in the diets of broiler chickens. Poult. Sci. 2013, 92, 2101–2108. [Google Scholar] [CrossRef]
- Singh, A.; Walk, C.L.; Ghosh, T.K.; Bedford, M.R.; Haldar, S. Effect of a novel microbial phytase on production performance and tibia mineral concentration in broiler chickens given low-calcium diets. Br. Poult. Sci. 2013, 54, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Ptak, A.; Maćkowiak, P.; Sassek, M.; Pruszyńska-Oszmałek, E.; Zyła, K.; Światkiewicz, S.; Kaczmarek, S.; Józefiak, D. The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poult. Sci. 2013, 92, 2124–2134. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Santos, T.T.; Bedford, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef]
- Kiarie, E.; Woyengo, T.; Nyachoti, C.M. Efficacy of new 6-phytase from buttiauxella spp. on growth performance and nutrient retention in broiler chickens fed corn soybean meal-based diets. Asian-Australas. J. Anim. Sci. 2015, 28, 1479–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekel, A.Y.; Horn, N.L.; Adeola, O. The efficacy of dietary xylanase and phytase in broiler chickens fed expeller-extracted camelina meal. Poult. Sci. 2017, 96, 98–107. [Google Scholar] [CrossRef] [PubMed]
- McCormick, K.; Walk, C.L.; Wyatt, C.L.; Adeola, O. Phosphorus utilization response of pigs and broiler chickens to diets supplemented with antimicrobials and phytase. Anim. Nutr. 2017, 3, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Cowieson, A.J.; Selle, P.H. The influence of meat-and-bone meal and exogenous phytase on growth performance, bone mineralisation and digestibility coefficients of protein (N), amino acids and starch in broiler chickens. Anim. Nutr. 2016, 2, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Manobhavan, M.; Elangovan, A.V.; Sridhar, M.; Shet, D.; Ajith, S.; Pal, D.T.; Gowda, N.K.S. Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets. J. Anim. Physiol. Anim. Nutr. 2016, 100, 93–100. [Google Scholar] [CrossRef]
- Pieniazek, J.; Smith, K.A.; Williams, M.P.; Manangi, M.K.; Vazquez-Anon, M.; Solbak, A.; Miller, M.; Lee, J.T. Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poult. Sci. 2017, 96, 370–382. [Google Scholar] [CrossRef]
- Beeson, L.A.; Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poult. Sci. 2017, 96, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, D.; Karimi, A.; Sadeghi, G.; Rostamzadeh, J.; Bedford, M.R. Effects of a high dose of microbial phytase and myo-inositol supplementation on growth performance, tibia mineralization, nutrient digestibility, litter moisture content, and foot problems in broiler chickens fed phosphorus-deficient diets. Poult. Sci. 2017, 96, 3664–3675. [Google Scholar] [CrossRef] [PubMed]
- Momeneh, T.; Karimi, A.; Sadeghi, G.; Vaziry, A.; Bedford, M.R. Evaluation of dietary calcium level and source and phytase on growth performance, serum metabolites, and ileum mineral contents in broiler chicks fed adequate phosphorus diets from one to 28 days of age. Poult. Sci. 2018, 97, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Rao, S.V.R. High doses of phytase on growth performance and apparent ileal amino acid digestibility of broilers fed diets with graded concentrations of digestible sulfur amino acids. Poult. Sci. 2018, 97, 3610–3621. [Google Scholar] [CrossRef]
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Effects of a high level of phytase on broiler performance, bone ash, phosphorus utilization, and phytate dephosphorylation to inositol. Poult. Sci. 2018, 97, 211–218. [Google Scholar] [CrossRef]
- Scholey, D.V.; Morgan, N.K.; Riemensperger, A.; Hardy, R.; Burton, E.J. Effect of supplementation of phytase to diets low in inorganic phosphorus on growth performance and mineralization of broilers. Poult. Sci. 2018, 97, 2435–2440. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Poult. Sci. 2018, 97, 1155–1162. [Google Scholar] [CrossRef]
- Walk, C.L.; Rao, S.V.R. High doses of phytase on growth performance and apparent ileal amino acid digestibility of broilers fed diets with graded concentrations of digestible lysine. J. Anim. Sci. 2019, 97, 698–713. [Google Scholar] [CrossRef]
- Ajuwon, K.M.; Sommerfeld, V.; Paul, V.; Däuber, M.; Schollenberger, M.; Kühn, I.; Adeola, O.; Rodehutscord, M. Phytase dosing affects phytate degradation and Muc2 transporter gene expression in broiler starters. Poult. Sci. 2020, 99, 981–991. [Google Scholar] [CrossRef]
- Akter, M.; Graham, H.; Iji, P.A. Response of broiler chickens to diets containing different levels of sodium with or without microbial phytase supplementation. J. Anim. Sci. Technol. 2019, 61, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Kriseldi, R.; Walk, C.L.; Bedford, M.R.; Dozier, W.A. Inositol and gradient phytase supplementation in broiler diets during a 6-week production period: 1. effects on growth performance and meat yield. Poult. Sci. 2021, 100, 964–972. [Google Scholar] [CrossRef]
- Sens, R.F.; Bassi, L.S.; Almeida, L.M.; Rosso, D.F.; Teixeira, L.V.; Maiorka, A. Effect of different doses of phytase and protein content of soybean meal on growth performance, nutrient digestibility, and bone characteristics of broilers. Poult. Sci. 2021, 100, 100917. [Google Scholar] [CrossRef]
- Marchal, L.; Bello, A.; Sobotik, E.B.; Archer, G.; Dersjant-Li, Y. A novel consensus bacterial 6-phytase variant completely replaced inorganic phosphate in broiler diets, maintaining growth performance and bone quality: Data from two independent trials. Poult. Sci. 2021, 100, 100962. [Google Scholar] [CrossRef]
- Song, T.; Yu, C.; Zhao, X.; Chen, F.; Liu, Y.; Yang, C.; Yang, Z. Effects of thermostable phytase supplemented in diets on growth performance and nutrient utilization of broilers. Anim. Sci. J. 2021, 92, e13513. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. I. Starter phase (day 1–11 post hatching). Poult. Sci. 2021, 100, 101396. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. II. Grower phase (day 12–23 post hatching). Poult. Sci. 2022, 101, 101616. [Google Scholar] [CrossRef]
- Stahl, C.H.; Roneker, K.R.; Thornton, J.R.; Lei, X.G. A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs. J. Anim. Sci. 2000, 78, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.B.; Kornegay, E.T.; Radcliffe, J.S.; Wilson, J.H.; Veit, H.P. Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J. Anim. Sci. 2000, 78, 2868–2878. [Google Scholar] [CrossRef] [PubMed]
- Gentile, J.M.; Roneker, K.R.; Crowe, S.E.; Pond, W.G.; Lei, X.G. Effectiveness of an experimental consensus phytase in improving dietary phytate-phosphorus utilization by weanling pigs. J. Anim. Sci. 2003, 81, 2751–2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omogbenigun, F.O.; Nyachoti, C.M.; Slominski, B.A. The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. J. Anim. Sci. 2003, 81, 1806–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.M.; Hill, G.M.; Link, J.E.; Raney, N.E.; Tempelman, R.J.; Ernst, C.W. Pharmacological zinc and phytase supplementation enhance metallothionein mRNA abundance and protein concentration in newly weaned pigs. J. Nutr. 2004, 134, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Jondreville, C.; Hayler, R.; Feuerstein, D. Replacement of zinc sulphate by microbial phytase for piglets given a maize-soya-bean meal diet. Anim. Sci. 2005, 81, 77–83. [Google Scholar] [CrossRef]
- Revy, P.S.; Jondreville, C.; Dourmad, J.Y.; Nys, Y. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. J. Anim. Physiol. Anim. Nutr. 2006, 90, 50–59. [Google Scholar] [CrossRef]
- James, B.W.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Dritz, S.S.; Lynch, G.L. Effect of phytase dosage and source on growth performance and bone development of nursery pigs. Prof. Anim. Sci. 2008, 24, 88–94. [Google Scholar] [CrossRef]
- Pengu, R.; Delia, E.; Nepravishta, A. Microbial phytase as a way to improve growth performance of weaned piglets and to reduce phosphorus excretion. Albanian J. Agric. Sci. 2016, 15, 35–37. [Google Scholar]
- Woyengo, T.A.; Guenter, W.; Sands, J.S.; Nyachoti, C.M.; Mirza, M.A. Nutrient utilisation and performance responses of broilers fed a wheat-based diet supplemented with phytase and xylanase alone or in combination. Anim. Feed Sci. Technol. 2008, 146, 113–123. [Google Scholar] [CrossRef]
- Sands, J.S.; Ragland, D.; Baxter, C.; Joern, B.C.; Sauber, T.E.; Adeola, O. Phosphorus bioavailability, growth performance, and nutrient balance in pigs fed high available phosphorus corn and phytase. J. Anim. Sci. 2001, 79, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.B.; Southern, L.L.; Bidner, T.D. Effects of supplemental dietary phytase and pharmacological concentrations of zinc on growth performance and tissue zinc concentrations of weanling pigs. J. Anim. Sci. 2005, 83, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.M.; Link, J.E.; Hill, G.M. Dietary pharmacological or excess zinc and phytase effects on tissue mineral concentrations, metallothionein, and apparent mineral retention in the newly weaned pig. Biol. Trace Elem. Res. 2005, 105, 97–115. [Google Scholar] [CrossRef]
- Kies, A.K.; Kemme, P.A.; Šebek, L.B.J.; van Diepen, J.T.M.; Jongbloed, A.W. Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. J. Anim. Sci. 2006, 84, 1169–1175. [Google Scholar] [CrossRef]
- Veum, T.L.; Bollinger, D.W.; Buff, C.E.; Bedford, M.R. A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus. J. Anim. Sci. 2006, 84, 1147–1158. [Google Scholar] [CrossRef] [Green Version]
- Pagano, A.R.; Yasuda, K.; Roneker, K.R.; Crenshaw, T.D.; Lei, X.G. Supplemental Escherichia coli phytase and strontium enhance bone strength of young pigs fed a phosphorus-adequate diet. J. Nutr. 2007, 137, 1795–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yáñez, J.L.; Landero, J.L.; Owusu-Asiedu, A.; Cervantes, M.; Zijlstra, R.T. Growth performance, diet nutrient digestibility, and bone mineralization in weaned pigs fed pelleted diets containing thermostable phytase. J. Anim. Sci. 2013, 91, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Walk, C.L.; Srinongkote, S.; Wilcock, P. Influence of a microbial phytase and zinc oxide on young pig growth performance and serum minerals. J. Anim. Sci. 2013, 91, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.K.; Wang, D.; Piao, X.S.; Li, P.F.; Zhang, H.Y.; Shi, C.X.; Yu, S.K. Effects of Adding Super Dose Phytase to the Phosphorus-deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities. Asian-Australas. J. Anim. Sci. 2014, 27, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Li, Q.; Tian, Q.; Zhao, P.; Xu, X.; Yu, S.; Piao, X. Super high dosing with a novel Buttiauxella phytase continuously improves growth performance, nutrient digestibility, and mineral status of weaned pigs. Biol. Trace Elem. Res. 2015, 168, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Wilcock, P.; Magowan, E. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal 2015, 9, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Gourley, K.M.; Woodworth, J.C.; Derouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D. Determining the available phosphorus release of natuphos E 5,000 g phytase for nursery pigs. J. Anim. Sci. 2018, 96, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Gourley, K.M.; Woodworth, J.C.; Derouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D. Effect of high doses of natuphos E 5,000 G phytase on growth performance of nursery pigs. J. Anim. Sci. 2018, 96, 570–578. [Google Scholar] [CrossRef]
- Lee, S.A.; Dunne, J.; Febery, E.; Wilcock, P.; Mottram, T.; Bedford, M.R. Superdosing phytase reduces real-time gastric pH in broilers and weaned piglets. Br. Poult. Sci. 2018, 59, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Broomhead, J.N.; Lessard, P.A.; Raab, R.M.; Lanahan, M.B. Effects of feeding corn-expressed phytase on the live performance, bone characteristics, and phosphorus digestibility of nursery pigs. J. Anim. Sci. 2019, 97, 1254–1261. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Dusel, G. Increasing the dosing of a Buttiauxella phytase improves phytate degradation, mineral, energy, and amino acid digestibility in weaned pigs fed a complex diet based on wheat, corn, soybean meal, barley, and rapeseed meal. J. Anim. Sci. 2019, 97, 2524–2533. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Kühn, I.; Bedford, M.R.; Whitfield, H.; Brearley, C.; Adeola, O.; Ajuwon, K.M. Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs. J. Anim. Sci. 2019, 97, 3907–3919. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Woodworth, J.C.; Tokach, M.D.; Dritz, S.S.; Derouchey, J.M.; Goodband, R.D.; Bergstrom, J.R. Standardized total tract digestible phosphorus requirement of 6 to 13 kg pigs fed diets without or with phytase. Animal 2019, 13, 2473–2482. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Villca, B.; Sewalt, V.; de Kreij, A.; Marchal, L.; Velayudhan, D.E.; Sorg, R.A.; Christensen, T.; Mejldal, R.; Nikolaev, I.; et al. Functionality of a next generation biosynthetic bacterial 6-phytase in enhancing phosphorus availability to weaned piglets fed a corn-soybean meal-based diet without added inorganic phosphate. Anim. Nutr. 2020, 6, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Shin, S.; Kuehn, I.; Bedford, M.; Rodehutscord, M.; Adeola, O.; Ajuwon, K.M. Effect of phytase on nutrient digestibility and expression of intestinal tight junction and nutrient transporter genes in pigs. J. Anim. Sci. 2020, 98, skaa206. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Blavi, L.; González-Vega, C.; Liu, Y.; Hancock, D.; Vazquez-Añón, M.; Almeida, F.N.; Stein, H.H. Effects of a novel E. coli phytase expressed in Pseudomonas fluorescens on growth, bone mineralization, and nutrient digestibility in pigs fed corn-soybean meal diets. Transl. Anim. Sci. 2020, 4, txaa201. [Google Scholar] [CrossRef] [PubMed]
- Shili, C.N.; Broomhead, J.N.; Spring, S.C.; Lanahan, M.B.; Pezeshki, A. A Novel Corn-Expressed Phytase Improves Daily Weight Gain, Protein Efficiency Ratio and Nutrients Digestibility and Alters Fecal Microbiota in Pigs Fed with Very Low Protein Diets. Animals 2020, 10, 1926. [Google Scholar] [CrossRef] [PubMed]
- Vanessa Lagos, L.; Lee, S.A.; Bedford, M.R.; Stein, H.H. Reduced concentrations of limestone and monocalcium phosphate in diets without or with microbial phytase did not influence gastric pH, fecal score, or growth performance, but reduced bone ash and serum albumin in weanling pigs. Transl. Anim. Sci. 2021, 5, txab115. [Google Scholar] [CrossRef] [PubMed]
- Tous, N.; Tarradas, J.; Francesch, M.; Font-I-furnols, M.; Ader, P.; Torrallardona, D. Effects of exogenous 6-phytase (Ec 3.1.3.26) supplementation on performance, calcium and phosphorous digestibility, and bone mineralisation and density in weaned piglets. Animals 2021, 11, 1787. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.L.; Boyd, R.D.; Koehler, D.; Gould, S.A.; Li, Q.; Patience, J.F. The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Transl. Anim. Sci. 2019, 3, 419–428. [Google Scholar] [CrossRef]
- Hawthorne, J.N.; White, D.A. Myo-inositol Lipids. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 1976; Volume 33, pp. 529–573. [Google Scholar]
- Holub, B. Metabolism and Function of myo-Inositol and Inositol Phospholipids. Annu. Rev. Nutr. 1986, 6, 563–597. [Google Scholar] [CrossRef]
- Liu, N.; Ru, Y.; Wang, J.; Xu, T. Effect of dietary sodium phytate and microbial phytase on the lipase activity and lipid metabolism of broiler chickens. Br. J. Nutr. 2010, 103, 862–868. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.A.; Bedford, M.R. Inositol—An effective growth promotor? Worlds. Poult. Sci. J. 2016, 72, 743–760. [Google Scholar] [CrossRef]
- Walk, C.L.; Kühn, I.; Stein, H.H.; Kidd, M.T.; Rodehutscord, M. Phytate Destruction—Consequences for Precision Animal Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; ISBN 9789086868360. [Google Scholar]
- Walk, C.L.; Bedford, M.R.; Santos, T.S.; Paiva, D.; Bradley, J.R.; Wladecki, H.; Honaker, C.; McElroy, A.P. Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult. Sci. 2013, 92, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Duarte, M.E.; Kim, S.W. 297 Super dosing effects of corn-expressed phytase on growth performance, bone characteristics, and nutrient digestibility in nursery pigs fed diets deficient in phosphorus and calcium. J. Anim. Sci. 2017, 95, 144. [Google Scholar] [CrossRef]
- Moran, K.; Wilcock, P.; Elsbernd, A.; Zier-Rush, C.; Boyd, R.D.; van Heugten, E. Effects of super-dosing phytase and inositol on growth performance and blood metabolites of weaned pigs housed under commercial conditions. J. Anim. Sci. 2019, 97, 3007–3015. [Google Scholar] [CrossRef] [PubMed]
- Borda-Molina, D.; Vital, M.; Sommerfeld, V.; Rodehutscord, M.; Camarinha-Silva, A. Insights into Broilers’ Gut Microbiota Fed with Phosphorus, Calcium, and Phytase Supplemented Diets. Front. Microbiol. 2016, 7, 2033. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Chen, H.; Park, I.; Kim, S.W. 0931 Effects of corn-expressed phytase on growth performance and gut health of nursery pigs. J. Anim. Sci. 2016, 94, 448. [Google Scholar] [CrossRef]
- Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D.; et al. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol. 2016, 18, 4727–4738. [Google Scholar] [CrossRef]
- Nari, N.; Ghasemi, H.A.; Hajkhodadadi, I.; Farahani, A.H.H.K. Intestinal microbial ecology, immune response, stress indicators, and gut morphology of male broiler chickens fed low-phosphorus diets supplemented with phytase, butyric acid, or Saccharomyces boulardii. Livest. Sci. 2020, 234, 103975. [Google Scholar] [CrossRef]
- Karadas, F.; Pirgozliev, V.; Acamovic, T.; Bedford, M.R. The effects of dietary phytase activity on the concentration of Coenzyme Q 10 in the liver of young turkeys and broilers. Br. Poult. Abstr. 2005, 1, 1–74. [Google Scholar] [CrossRef]
- Geng, A.L.; Guo, Y.M.; Yang, Y. Reduction of ascites mortality in broilers by coenzyme Q10. Poult. Sci. 2004, 83, 1587–1593. [Google Scholar] [CrossRef]
- Surai, K.P.; Surai, P.F.; Speake, B.K.; Sparks, N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought 2. Antioxidants. Curr. Top. Nutraceutical Res. 2004, 2, 27–46. [Google Scholar]
- Dang, N.T.; Mukai, R.; Yoshida, K.I.; Ashida, H. D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci. Biotechnol. Biochem. 2010, 74, 1062–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurz, M. Use of pure xylanases in pig and poultry nutrition. Lohmann Inf. 2001, 25, 1–5. [Google Scholar]
- Bhardwaj, N.; Kumar, B.; Verma, P. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Petry, A.L.; Huntley, N.F.; Bedford, M.R.; Patience, J.F. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J. Anim. Sci. 2020, 98, skaa233. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mishra, B.; Bedford, M.R.; Jha, R. Effects of supplemental xylanase and xylooligosaccharides on production performance and gut health variables of broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 98. [Google Scholar] [CrossRef]
- Craig, A.D.; Khattak, F.; Hastie, P.; Bedford, M.R.; Olukosi, O.A. Xylanase and xylo- oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. Br. Poult. Sci. 2020, 61, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Juturu, V.; Wu, J.C. hua. Microbial exo-xylanases: A mini review. Appl. Biochem. Biotechnol. 2014, 174, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Engberg, R.M.; Hedemann, M.S.; Steenfeldt, S.; Jensen, B.B. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 2004, 83, 925–938. [Google Scholar] [CrossRef]
- Choct, M.; Kocher, A.; Waters, D.L.E.; Pettersson, D.; Ross, G. A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br. J. Nutr. 2004, 92, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, A.J.; Hruby, M.; Faurschou Isaksen, M. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br. Poult. Sci. 2005, 46, 717–724. [Google Scholar] [CrossRef]
- Murphy, T.C.; Bedford, M.R.; McCracken, K.J. 2004 Spring Meeting of the WPSA UK Branch Posters. Br. Poult. Sci. 2004, 45, S61–S62. [Google Scholar] [CrossRef]
- Parsaie, S.; Shariatmadari, F.; Zamiri, M.J.; Khajeh, K. Influence of wheat-based diets supplemented with xylanase, bile acid and antibiotics on performance, digestive tract measurements and gut morphology of broilers compared with a maize-based diet. Br. Poult. Sci. 2007, 48, 594–600. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Influence of particle size and xylanase supplementation on the performance, energy utilisation, digestive tract parameters and digesta viscosity of broiler starters. Br. Poult. Sci. 2008, 49, 455–462. [Google Scholar] [CrossRef]
- Murphy, T.C.; McCracken, J.K.; McCann, M.E.E.; George, J.; Bedford, M.R. Broiler performance and in vivo viscosity as influenced by a range of xylanases, varying in ability to effect wheat in vitro viscosity. Br. Poult. Sci. 2009, 50, 716–724. [Google Scholar] [CrossRef]
- Denstadli, V.; Westereng, B.; Biniyam, H.G.; Ballance, S.; Knutsen, S.H.; Svihus, B. Effects of structure and xylanase treatment of brewers’ spent grain on performance and nutrient availability in broiler chickens. Br. Poult. Sci. 2010, 51, 419–426. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R.; Ravindran, V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 2010, 51, 246–257. [Google Scholar] [CrossRef]
- Esmaeilipour, O.; Shivazad, M.; Moravej, H.; Aminzadeh, S.; Rezaian, M.; van Krimpen, M.M. Effects of xylanase and citric acid on the performance, nutrient retention, and characteristics of gastrointestinal tract of broilers fed low-phosphorus wheat-based diets. Poult. Sci. 2011, 90, 1975–1982. [Google Scholar] [CrossRef]
- Amerah, A.M.; Mathis, G.; Hofacre, C.L. Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella Heidelberg. Poult. Sci. 2012, 91, 943–947. [Google Scholar] [CrossRef]
- Kalmendal, R.; Tauson, R. Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet. Poult. Sci. 2012, 91, 1387–1393. [Google Scholar] [CrossRef]
- Masey O’Neill, H.V.; Mathis, G.; Lumpkins, B.S.; Bedford, M.R. The effect of reduced calorie diets, with and without fat, and the use of xylanase on performance characteristics of broilers between 0 and 42 days. Poult. Sci. 2012, 91, 1356–1360. [Google Scholar] [CrossRef]
- Singh, A.; O’Neill, H.V.M.; Ghosh, T.K.; Bedford, M.R.; Haldar, S. Effects of xylanase supplementation on performance, total volatile fatty acids and selected bacterial population in caeca, metabolic indices and peptide YY concentrations in serum of broiler chickens fed energy restricted maize-soybean based diets. Anim. Feed Sci. Technol. 2012, 177, 194–203. [Google Scholar] [CrossRef]
- Barekatain, M.R.; Choct, M.; Iji, P.A. Xylanase supplementation improves the nutritive value of diets containing high levels of sorghum distillers’ dried grains with solubles for broiler chickens. J. Sci. Food Agric. 2013, 93, 1552–1559. [Google Scholar] [CrossRef]
- Gehring, C.K.; Bedford, M.R.; Dozier, W.A. Extra-phosphoric effects of phytase with and without xylanase in corn-soybean meal-based diets fed to broilers. Poult. Sci. 2013, 92, 979–991. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Masey O’neill, H.V. Effects of exogenous xylanase on performance, nutrient digestibility and caecal thermal profiles of broilers given wheat-based diets. Br. Poult. Sci. 2013, 54, 346–354. [Google Scholar] [CrossRef]
- Kiarie, E.; Romero, L.F.; Ravindran, V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 2014, 93, 1186–1196. [Google Scholar] [CrossRef]
- Guo, S.; Liu, D.; Zhao, X.; Li, C.; Guo, Y. Xylanase supplementation of a wheat-based diet improved nutrient digestion and mRNA expression of intestinal nutrient transporters in broiler chickens infected with Clostridium perfringens. Poult. Sci. 2014, 93, 94–103. [Google Scholar] [CrossRef]
- Masey-O’neill, H.V.; Singh, M.; Cowieson, A.J. Effects of exogenous xylanase on performance, nutrient digestibility, volatile fatty acid production and digestive tract thermal profiles of broilers fed on wheat- or maize-based diet. Br. Poult. Sci. 2014, 55, 351–359. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Rose, S.P.; Pellny, T.; Amerah, A.M.; Wickramasinghe, M.; Ulker, M.; Rakszegi, M.; Bedo, Z.; Shewry, P.R.; Lovegrove, A. Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci. 2015, 94, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ortiz, G.; Sola-Oriol, D.; Martinez-Mora, M.; Perez, J.F.; Bedford, M.R. Response of broiler chickens fed wheat-based diets to xylanase supplementation. Poult. Sci. 2017, 96, 2776–2785. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Romero, L.F.; Awati, A.; Ravindran, V. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult. Sci. 2017, 96, 807–816. [Google Scholar] [CrossRef]
- Liu, W.C.; Kim, I.H. Metabolism and nutrition: Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poult. Sci. 2017, 96, 566–573. [Google Scholar] [CrossRef]
- Lee, S.A.; Dunne, J.; Febery, E.; Brearley, C.A.; Mottram, T.; Bedford, M.R. Exogenous phytase and xylanase exhibit opposing effects on real-time gizzard pH in broiler chickens. Br. Poult. Sci. 2018, 59, 568–578. [Google Scholar] [CrossRef] [Green Version]
- McCafferty, K.W.; Bedford, M.R.; Kerr, B.J.; Dozier, W.A. Effects of cereal grain source and supplemental xylanase concentrations on broiler growth performance and cecal volatile fatty acid concentrations from 1 to 40 d of age. Poult. Sci. 2019, 98, 2866–2879. [Google Scholar] [CrossRef]
- González-Ortiz, G.; dos Santos, T.T.; Vienola, K.; Vartiainen, S.; Apajalahti, J.; Bedford, M.R. Response of broiler chickens to xylanase and butyrate supplementation. Poult. Sci. 2019, 98, 3914–3925. [Google Scholar] [CrossRef]
- Arczewska-Wlosek, A.; Światkiewicz, S.; Bederska-Lojewska, D.; Orczewska-Dudek, S.; Szczurek, W.; Boros, D.; Fras, A.; Tomaszewska, E.; Dobrowolski, P.; Muszynski, S.; et al. The efficiency of xylanase in broiler chickens fed with increasing dietary levels of rye. Animals 2019, 9, 46. [Google Scholar] [CrossRef]
- Olukosi, O.A.; González-Ortiz, G.; Whitfield, H.; Bedford, M.R. Comparative aspects of phytase and xylanase effects on performance, mineral digestibility, and ileal phytate degradation in broilers and turkeys. Poult. Sci. 2020, 99, 1528–1539. [Google Scholar] [CrossRef]
- Lee, S.H.; Hosseindoust, A.; Laxman Ingale, S.; Rathi, P.C.; Yoon, S.Y.; Choi, J.W.; Kim, J.S. Thermostable xylanase derived from Trichoderma citrinoviride increases growth performance and non-starch polysaccharide degradation in broiler chickens. Br. Poult. Sci. 2020, 61, 57–62. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Schulze, H.; Schrama, J.W.; Verreth, J.A.; Verstegen, M.W.A. Feed intake, growth, digestibility of dry matter and nitrogen in young pigs as affected by dietary cation-anion difference and supplementation of xylanase 1. J. Anim. Physiol. Anim. Nutr. 2001, 85, 101–109. [Google Scholar] [CrossRef]
- Diebold, G.; Mosenthin, R.; Sauer, W.C.; Dugan, M.E.R.; Lien, K.A. Supplementation of xylanase and phospholipase to wheat-based diets for weaner pigs. J. Anim. Physiol. Anim. Nutr. 2005, 89, 316–325. [Google Scholar] [CrossRef]
- Vahjen, W.; Osswald, T.; Schäfer, K.; Simon, O. Comparison of a xylanase and a complex of non starch polysaccharide- degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch. Anim. Nutr. 2007, 61, 90–102. [Google Scholar] [CrossRef]
- He, J.; Yin, J.; Wang, L.; Yu, B.; Chen, D. Functional characterisation of a recombinant xylanase from Pichia pastoris and effect of the enzyme on nutrient digestibility in weaned pigs. Br. J. Nutr. 2010, 103, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.; Dove, C.R.; Cline, P.M.; Owusu-Asiedu, A.; Walsh, M.C.; Azain, M. The effect of adding xylanase or β-glucanase to diets with corn distillers dried grains with solubles (CDDGS) on growth performance and nutrient digestibility in nursery pigs. Livest. Sci. 2017, 197, 46–52. [Google Scholar] [CrossRef]
- Dong, B.; Liu, S.; Wang, C.; Cao, Y. Effects of xylanase supplementation to wheat-based diets on growth performance, nutrient digestibility and gut microbes in weanling pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1491–1499. [Google Scholar] [CrossRef]
- Mejicanos, G.A.; González-Ortiz, G.; Nyachoti, C.M. Effect of dietary supplementation of xylanase in a wheat-based diet containing canola meal on growth performance, nutrient digestibility, organ weight, and short-chain fatty acid concentration in digesta when fed to weaned pigs. J. Anim. Sci. 2020, 98, skaa064. [Google Scholar] [CrossRef]
- González-Ortiz, G.; Callegari, M.A.; Wilcock, P.; Melo-Duran, D.; Bedford, M.R.; Oliveira, H.R.V.; da Silva, M.A.A.; Pierozan, C.R.; da Silva, C.A. Dietary xylanase and live yeast supplementation influence intestinal bacterial populations and growth performance of piglets fed a sorghum-based diet. Anim. Nutr. 2020, 6, 457–466. [Google Scholar] [CrossRef]
- Lu, H.; Yan, H.; Masey O’Neill, H.M.; Bradley, C.; Bedford, M.R.; Wilcock, P.; Nakatsu, C.H.; Adeola, O.; Ajuwon, K.M. Effect of timing of postweaning xylanase supplementation on growth performance, nutrient digestibility, and fecal microbial composition in weanling pigs. Can. J. Anim. Sci. 2020, 100, 27–36. [Google Scholar] [CrossRef]
- Boontiam, W.; Phaenghairee, P.; van Hoeck, V.; Vasanthakumari, B.L.; Somers, I.; Wealleans, A. Xylanase impact beyond performance: Effects on gut structure, faecal volatile fatty acid content and ammonia emissions in weaned piglets fed diets containing fibrous ingredients. Animals 2022, 12, 3043. [Google Scholar] [CrossRef]
- Ogiwara, T.; Satoh, K.; Kadoma, Y.; Murakami, Y.; Unten, S.; Atsumi, T.; Sakagami, H.; Fujisawa, S. Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res. 2002, 22, 2711–2717. [Google Scholar]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; Yu, J.; Chen, H.; He, J.; Luo, Y.; Zheng, P. Dietary ferulic acid supplementation improves antioxidant capacity and lipid metabolism in weaned piglets. Nutrients 2020, 12, 3811. [Google Scholar] [CrossRef]
- Arzola-Alvarez, C.; Hume, M.E.; Anderson, R.C.; Latham, E.A.; Ruiz-Barrera, O.; Castillo-Castillo, Y.; Olivas-Palacios, A.L.; Felix-Portillo, M.; Armendariz-Rivas, R.L.; Arzola-Rubio, A.; et al. Influence of sodium chlorate, ferulic acid, and essential oils on Escherichia coli and porcine fecal microbiota. J. Anim. Sci. 2020, 98, skaa059. [Google Scholar] [CrossRef]
- May, K.; O’Sullivan, S.E.; Brameld, J.M.; Masey O’Neill, H.V.; Parr, T.; Wiseman, J. Xylanase supplementation in feed reduces incretin and PYY levels in piglets. Proc. Nutr. Soc. 2015, 74, E294. [Google Scholar] [CrossRef] [Green Version]
- Hespell, R.B. The Genera Succinivibrio and Succinimonas. In The Prokaryotes; Springer New York: New York, NY, USA, 1992; pp. 3979–3982. [Google Scholar]
- Pu, X.; Guo, X.; Shahzad, K.; Wang, M.; Jiang, C.; Liu, J.; Zhang, X.; Zhang, S.; Cheng, L. Effects of dietary non-fibrous carbohydrate (Nfc) to neutral detergent fiber (ndf) ratio change on rumen bacteria in sheep based on three generations of full-length amplifiers sequencing. Animals 2020, 10, 192. [Google Scholar] [CrossRef] [PubMed]
Duration, Day of Age | Type | Activity, FTU/kg Feed | % Change * | Reference ** |
---|---|---|---|---|
14–35 | 3-phytase | 0–2500 | ADG 1 (16%), ADFI2 (7%), Ca 3 digestibility (12%), P 4 digestibility (16%) | [96] |
7–28 | 3-phytase | 0–1000 | ADG (5%), G:F 5 (4%), lysine digestibility (6%), arginine digestibility (5%), AME 6 (3%) | [97] |
21–40 | 3-phytase | 0–800 | ADG (2%), FCR 7 (−3%), bone ash (4%) | [98] |
1–43 | ND 8 | 0–1000 | ADG (15%), ADFI (8%), FCR (−7%), bone ash (15%), bone Ca (8%), plasma P (45%) | [99] |
1–43 | 3-phytase | 0–500 | ADG (6%), Ca retention (13%), P retention (9%), bone ash (5%), plasma Ca (−2%), plasma P (7%) | [100] |
8–22 | 3-phytase | 0–1000 | ADG (34%), G:F (16%), bone ash (14%) | [90] |
1–19 | 3-phytase | 0–600 | ADG (6%), ADFI (3%), Ca retention (8%), P retention (11%), tibia ash (2%), bone Ca (3%), bone P (2%), plasma Ca (5%), plasma P (5%) | [101] |
1–17 | 3-phytase | 0–12,000 | ADG (44%), ADFI (36%), plasma P (65%), bone ash (36%), Ca retention (15%), P retention (36%), phytate P disappearance (57%), AME (6%) | [102] |
1–42 | 3-phytase | 0–1000 | ADG (13%), ADFI (9%), G:F (5%), bone ash (9%), DM 9 digestibility (2%), energy digestibility (2%), P digestibility (14%) | [103] |
1–42 | 3-phytase | 0–750 | ADG (4%), ADFI (3%), bone ash (3%) | [104] |
1–7 | 3-phytase | 0–600 | ADG (6%), ADFI (6%), bone ash (5%) | [105] |
1–51 | 3-phytase | 0–600 | ADG (−3%), ADFI (−3%), G:F (−1%) | [106] |
22–38 | 3-phytase | 0–500 | Plasma P (7%), P retention, Ca retention (11%), bone ash (1%) | [107] |
22–42 | 3-phytase | 0–1000 | ADG (7%), G:F (8%), plasma P (48%), bone ash (11%) | [108] |
22–42 | 3-phytase | 0–4000 | ADG (17%), ADFI (7%), FCR (−10%), plasma Ca (−16%) | [109] |
1–35 | 3-phytase | 0–1000 | ADG (2%), ADFI (2%), FCR (−4%), bone Ca (31%), bone P (28%), liver weight (33%), heart weight (−25%) | [110] |
7–25 | 6-phytase | 0–800 | AME (4%), P digestibility (28%), N 10 digestibility (3%), lysine digestibility (2%), threonine digestibility (5%), DM retention (3%), P retention (10%), N retention (6%) | [111] |
1–43 | 6-phytase | 0–1000 | ADG (9%), ADFI (8%), tibia ash (7%), toe ash (8%) | [112] |
1–22 | 6-phytase | 0–500 | ADG (15%), ADFI (12%), FCR (−3%), jejunum digesta viscosity (−17%), ileum digesta viscosity (−25%), duodenum villus height (8%), jejunum crypt depth (−11%), jejunum goblet cell number (−37%) | [113] |
1–22 | 6-phytase | 0–1000 | ADG (16%), ADFI (11%), tibia ash (6%), Ca digestibility (12%), P digestibility (13%) | [114] |
1–15 | 6-phytase | 0–24,000 | ADG (37%), ADFI (13%), FCR (−28%), AME (5%), bone ash (20%), P retention (22%), phytate P digestibility (28%), lysine digestibility (2%), threonine digestibility (2%), total indispensable amino acid digestibility (4%) | [115] |
9–23 | 6-phytase | 0–10,000 | ADG (26%), bone ash (21%) | [116] |
1–22 | 6-phytase | 0–2500 | ADG (15%), ADFI (16%), AME (2%) | [117] |
1–17 | 6-phytase | 0–5000 | FCR (−4%), tibia ash (5%), gizzard proximal pH (11%), jejunum pH (2%), ileum proximal pH (1%), ileum distal pH (6%), lysine digestibility (2%), arginine digestibility (2%), valine digestibility (4%) | [118] |
1–29 | 6-phytase | 0–2500 | ADG (18%), ADFI (15%), G:F (4%), AME (1%), sialic acid concentration (−8%), threonine “metabolisability” (2%) | [119] |
1–29 | 6-phytase | 0–1000 | ADG (11%), ADFI (5%), FCR (−7%), erythrocyte-antibody complement cells (15%), CD4+ T lymphocyte subset (13%), CD8+ T lymphocyte subset (12%), Newcastle disease antibody (33%) | [120] |
7–21 | 6-phytase | 0–12,500 | ADG (23%), FCR (−15%), free retinol concentration (37%), liver coenzyme Q10 (39%) | [22] |
1–22 | 6-phytase | 0–1000 | ADG (10%), ADFI (5%), G:F (6%), proventriculus pepsin activity (11%), jejunum alanyl aminopeptidase activity (9%), duodenum methionyl-aminopeptidase gene expression (5%), duodenum ghrelin gene expression (10%) | [121] |
1–22 | 6-phytase | 0–600 | ADG (6%), bone ash (10%), P digestibility (31%), phytate P digestibility (29%), AME (4%), DM retention (4%), GE 11 retention (4%), N retention (7%), P retention (22%) | [122] |
1–22 | 6-phytase | 0–1000 | ADG (11%), DM digestibility (9%), CP 12 digestibility (7%), P digestibility (41%) | [123] |
1–22 | 6-phytase | 0–1000 | ADG (4%), DM digestibility (17%), N digestibility (9%), DM retention (9%), N retention (10%), Ca retention (23%) | [124] |
7–22 | 6-phytase | 0–12,500 | ADG (22%), G:F (16%), liver carotenoids (39%) | [125] |
8–23 | 6-phytase | 0–1500 | ADG (17%), protein gain (16%) | [126] |
1–22 | 6-phytase | 0–500 | ADG (17%), ADFI (17%), mortality (−62%), BBS 13 (40%), bone ash (9%), Ca utilization (7%), P digestibility (20%), P utilization (11%) | [127] |
7–18 | 6-phytase | 0–12,500 | ADG (27%), DM ADFI (19%), G:F (10%), AME (2%), DM digestibility (5%), carcass weight (22%), retained carcass protein (29%), retained carcass fat (36%), lysine digestibility (7%), threonine digestibility (11%) | [128] |
1–22 | 6-phytase | 0–2000 | ADG (8%), ADFI (7%), bone ash (11%), bone mineral content (20%), bone mineral density (13%), P absorption (12%), P retention (16%), Ca retention (14%), lysine digestibility (2%), threonine digestibility (10%) | [129] |
1–22 | 6-phytase | 0–2500 | ADG (17%), ADFI (17%), tibia ash (9%), bone Ca (16%), bone P (12%), Ca digestibility (45%), P digestibility (4%), N digestibility (5%), energy digestibility (4%) | [130] |
1–22 | 6-phytase | 0–2500 | ADG (18%), ADFI (13%), G:F (6%), AME intake (13%) | [131] |
15–57 | 6-phytase | 0–1000 | ADG (16%), ADFI (10%), and G:F (6%), tibia ash (18%), tibia weight (33%), Ca digestibility (15%) and P digestibility (23%) | [132] |
1–22 | 6-phytase | 0–1000 | ADG (7%), Ca digestibility (21%), P digestibility (19%) | [133] |
1–22 | 6-phytase | 0–2000 | ADG (29%), ADFI (20%), G:F (10%), bone ash (15%), P digestibility (21%), N digestibility (2%), Ca digestibility (13%), phytate digestibility (27%), P retention (25%), N retention (−5%), Ca retention (36%), phytate retention (25%) | [134] |
1–43 | 6-phytase | 0–500 | Duodenum Ca concentration (−11%), duodenum P concentration (−8%), jejunum P concentration (−9%), serum P (9%), bone ash (4%), bone Ca (7%), bone zinc (24%) | [135] |
1–43 | 6-phytase | 0–500 | ADG (2%), FCR (−2%), blood glucagon (−21%), blood glucose (6%), blood triglycerides (−17%) | [136] |
1–22 | 6-phytase | 0–1500 | ADG (10%), ADFI (5%), FCR (−4%), bone ash (4%), gizzard inositol concentration (45%), gizzard inositol hexa-phosphate concentration (−100%), gizzard inositol tri-phosphate concentration (−71%) | [137] |
1–43 | 6-phytase | 0–5000 | ADG (3%), FCR (−3%), ileum pH (7%), ileum Lactobacillus sp. (2%), ileum Streptococcus/Lactococcus (−1%), ileum total SCFA 14 (22%), ileum DL-lactic acid (15%), ileum acetic acid (34%), crop pH (−1%), crop total SCFA (48%), crop acetic acid (24%) | [13] |
1–22 | 6-phytase | 0–2000 | ADG (16%), ADFI (10%), FCR (−7%), tibia ash (15%), toe ash (20%), Ca digestibility (21%), P digestibility (43%), threonine digestibility (3%), indispensable amino acid digestibility (3%), Ca retention (28%), P retention (33%), AME retention (5%) | [138] |
7–22 | 6-phytase | 0–4000 | ADG (8%), ADFI (5%), G:F (4%), jejunum villus height (14%), bone ash (7%), DM digestibility (4%), N digestibility (5%), energy digestibility (3%), P digestibility (35%), Ca retention (11%), P retention (21%) | [139] |
1–23 | 6-phytase | 0–1500 | ADG (36%), ADFI (16%), G:F (22%), bone ash (25%), P digestibility (31%), P retention (20%) | [140] |
1–37 | 6-phytase | 0–1000 | Bone ash (10%), bone potassium (−18%), bone sodium (−15%), | [141] |
1–36 | 6-phytase | 0–5000 | ADG (9%), ADFI (11%), Ca digestibility (8%), P digestibility (17%), plasma Ca (8%), plasma P (18%), P excretion (−32%), bone ash (11%), bone Ca (8%), bone P (10%) | [142] |
1–42 | 6-phytase | 0–2000 | Final body weight (32%), FCR (14%), ADFI (22%), total amino acid digestibility (6%) | [143] |
1–22 | 6-phytase | 0–1500 | ADG (14%), FCR (13%), DM digestibility (14%), N digestibility (18%), DM retention (5%), N retention (10%), gizzard inositol (36%), gizzard inositol hexaphosphate (85%), ileum inositol (40%) | [144] |
1–42 | 6-phytase | 0–6000 | ADFI (9%), FCR (4%), serum Ca (−13%), serum P (34%), serum total protein (16%), Ca digestibility (27%), P digestibility (36%), CP digestibility (6%), bone P (12%), | [145] |
1–28 | 6-phytase | 0–2500 | Ileum ash (−11%), ileum P (−21%) | [146] |
1–42 | 6-phytase | 0–2000 | ADG (3%), FCR (−3%) | [147] |
2–23 | 6-phytase | 0–1500 | ADG (7%), ileum total inositol phosphate (−41%), ileum inositol hexaphosphate (77%) | [148] |
1–36 | 6-phytase | 0–1000 | ADFI (2%), P digestibility (23%), Ca digestibility (38%) | [149] |
1–22 | 6-phytase | 0–4500 | ADG (14%), Ca digestibility (−19%), P digestibility (15%), gizzard inositol (59%), gizzard inositol hexaphosphate (−99%), gizzard inositol biphosphate (20%), ileum inositol (56%), ileum inositol hexaphosphate (−91%), ileum inositol triphosphate (71%), sodium/glucose cotransporter 11 (79%) | [150] |
5–26 | 6-phytase | 0–1000 | ADG (21%), ADFI (15%), CP digestibility (3%), lysine digestibility (2%), P digestibility (20%), Ca retention (22%), P (21%) retention | [86] |
1–42 | 6-phytase | 0–3000 | ADG (6%), FCR (−2%), carcass fat (7%) | [151] |
8–22 | 6-phytase | 0–3000 | G:F (1%), plasma myo-inositol (37%), duodenum-jejunum inositol hexaphosphate disappearance (83%), duodenum-jejunum Ca disappearance (13%), duodenum-jejunum P disappearance (37%), ileum inositol hexaphosphate disappearance (71%), ileum Ca disappearance (6%), ileum P disappearance (31%), duodenum-jejunum myo-inositol (56%), ileum myo-inositol (71%), mucin2 gene expression (83%) | [152] |
1–35 | 6-phytase | 0–500 | AME (2%), N digestibility (6%), P digestibility (16%), magnesium digestibility (76%), N retention (12%), Ca retention (21%), P retention (27%), magnesium retention (62%), sodium retention (27%), jejunum total protein content (−3%), Ca-ATPase activity (10%) | [153] |
1–42 | 6-phytase | 0–40,500 | ADG (4%), ADFI (4%), FCR (−1%), final body weight (4%), mortality (−69%), carcass yield (1%) | [154] |
1–42 | 6-phytase | 0–2500 | DM digestibility (7%), ash digestibility (4%), Ca digestibility (4%), P digestibility (6%), plasma myo-inositol (9%) | [155] |
1–42 | 6-phytase | 0–3000 | ADG (4%), FCR (−6%), BBS (12%) | [156] |
1–42 | 6-phytase | 0–8000 | ADG (4%), FCR (−2%), AME (2%), lysine digestibility (1%), methionine digestibility (2%), threonine digestibility (2%) | [157] |
1–11 | 6-phytase | 0–4000 | ADG (22%), ADFI (14%), G:F (9%), tibia ash (22%), energy digestibility (4%), N digestibility (7%), P digestibility (47%), Ca digestibility (15%), lysine digestibility (6%), methionine digestibility (5%), threonine digestibility (7%), tryptophan digestibility (7%), arginine digestibility (5%) | [158] |
1–28 | 6-phytase | 0–4000 | RA 15 of Pelomonas (−74%), Helicobacter (−92%), Pseudomonas (−85%), and Lactobacillus (56%), CP digestibility (7%), P digestibility (16%), villus height (11%), BBS (14%), bone ash (5%), bone P (5%) | [14] |
12–23 | 6-phytase | 0–4000 | ADG (20%), ADFI (11%), G:F (11%), bone ash (19%), DM digestibility (4%), energy digestibility (3%), Ca digestibility (30%), P digestibility (49%), lysine digestibility (7%), methionine digestibility (5%), threonine digestibility (12%), tryptophan digestibility (7%), DM retention (2%), Ca retention (55%), P retention (53%) | [159] |
Duration, Day of Age | Type | Activity, FTU/kg Feed | % Change * | Reference ** |
---|---|---|---|---|
42–70 | 3-phytase | 0–1200 | ADG 1 (14%), G:F 2 (8%), inorganic plasma P 3 (6%) | [160] |
28–63 | 3-phytase | 0–2500 | ADG (21%), Ca 4 digestibility (20%), P digestibility (60%) | [161] |
15–38 | 3-phytase | 0–400 | ADG (20%), G:F (12%), bone ash (15%) | [90] |
21–56 | 3-phytase | 0–1250 | ADG (34%), ADFI 5 (19%), G:F (18%) | [162] |
18–46 | 3-phytase | 0–500 | Stomach phytate hydrolysis (75%), ileum phytate hydrolysis (15%), rectum phytate hydrolysis (15%), bone ash (19%), P digestibility (40%), histidine digestibility (7%) | [163] |
18–32 | 3-phytase | 0–500 | ADG (15%), plasma P (89%), liver P (6%) | [164] |
27–46 | 3-phytase | 0–750 | ADFI (8%), plasma zinc, (54%), plasma alkaline phosphatase activity (67%), bone zinc (43%), liver zinc (26%) | [165] |
27–46 | 3-phytase | 0–700 | ADG (22%), ADFI (14%), G:F (22%), plasma zinc (71%), plasma P (10%), alkaline phosphatase activity (71%), bone ash (9%), bone zinc (48%), bone P (2%) | [166] |
31–59 | 3-phytase | 0–1000 | ADG (17%), bone ash (6%), Ca digestibility (23%), P digestibility (68%) | [103] |
18–46 | 3-phytase | 0–350 | ADG (6%), ADFI (6%), G:F (4%), bone ash (4%), bending moment (16%) | [167] |
28–70 | 3-phytase | 0–750 | ADG (6%), final body weight (5%) | [168] |
ND 6 | 6-phytase | 0–500 | Ca digestibility (13%), P digestibility (40%) | [169] |
ND | 6-phytase | 0–600 | ADG (11%), body weight (7%), plasma P (24%) | [170] |
18–37 | 6-phytase | 0–500 | G:F (1%), no changes in other parameters | [171] |
20–34 | 6-phytase | 0–500 | Plasma zinc (5%), Ca retention (4%), P retention (3%) | [172] |
28–71 | 6-phytase | 0–15,000 | ADG (28%), ADFI (22%), G:F (9%), ash digestibility (25%), Ca digestibility (25%), P digestibility (60%) | [173] |
30–58 | 6-phytase | 0–12,500 | ADG (34%), ADFI (17%), G:F (22%), BBS 7 (51%), ash content (47%), P absorption (63%), Ca absorption (46%), N 8 absorption (36%) | [174] |
42–84 | 6-phytase | 0–2000 | Femur strength yield-bending moment (12%), femur strength strain (17%), femur strength maximum bending moment (3%), femur zinc content (17%) | [175] |
26–47 | 6-phytase | 0–500 | ADG (17%), G:F (11%), CP 9 digestibility (9%), P digestibility (16%), bone ash (6%), bone P (4%) | [176] |
21–63 | 6-phytase | 0–2500 | ADG (2%), final body weight (1%), serum P (5%), serum zinc (60%) | [177] |
28–56 | 6-phytase | 0–20,000 | ADG (22%), ADFI (14%), G:F (9%), BBS (43%), bone ash weight (28%), DM 10 digestibility (4%), GE digestibility (4%), CP digestibility (5%), Ca digestibility (36%), P digestibility (49%), inositol hexaphosphate digestibility (86%), lysine digestibility (5%), threonine digestibility (6%), valine digestibility (5%) | [178] |
35–63 | 6-phytase | 0–20,000 | ADG (22%), FCR 11 (−11%), DM digestibility (2%), GE 12 digestibility (2%), CP digestibility (4%), Ca digestibility (37%), P digestibility (52%), BBS (37%), bone ash (32%), bone Ca (35%), plasma P (14%) | [179] |
28–48 | 6-phytase | 0–2500 | ADG (20%), P fecal digestibility (23%), plasma copper (−21%) | [180] |
40–61 | 6-phytase | 0–1000 | ADG (15%), ADFI (56%), G:F (10%), bone weight (24%), bone ash (15%) | [181] |
21–63 | 6-phytase | 0–4000 | ADG (7%), G:F (3%), bone ash (10%) | [182] |
28–70 | 6-phytase | 0–2500 | ADFI (−9%), FCR (−8%), stomach pH (−20%) | [183] |
21–62 | 6-phytase | 0–4000 | ADG (21%), ADFI (25%), P digestibility (54%), BBS (28%), bone ash (14%) | [184] |
32–41 | 6-phytase | 0–2000 | AID 13 (27%) and ATTD 14 (46%) of P, ATTD of Ca (16%), N digestibility (11%), inositol hexaphosphate digestibility (53%), lysine digestibility (8%), threonine digestibility (8%), valine digestibility (9%) | [185] |
21–70 | 6-phytase | 0–2000 | ADG (35%), ADFI (17%), G:F (11%), P digestibility (26%), Ca digestibility (14%), Ca absorption (37%), P absorption (32%), plasma myo-inositol (39%), duodenum myo-inositol (68%), ileum myo-inositol (87%), inositol hexaphosphate hydrolysis (98%) | [186] |
ND | 6-phytase | 0–2000 | ADG (7%), ADFI (6%), G:F (1%) | [187] |
21–42 | 6-phytase | 0–1000 | ADG (27%), ADFI (13%), BBS (48%), bone ash (22%), bone Ca (17%), bone P (25%) | [188] |
31–59 | 6-phytase | 0–3000 | ADG (13%), AID (48%) and ATTD (31%) of P, GLUT2 15 gene expression (55%), ASCT2 16 gene expression (37%), CLDN3 17 gene expression (41%), duodenum-jejunum Inositol hexaphosphate (−92%), ileum inositol hexaphosphate (−95%), duodenum-jejunum myo-inositol (67%), ileum myo-inositol (80%) | [189] |
ND | 6-phytase | 0–500 | ADG (18%), G:F (9%), bone ash (4%) | [190] |
35–77 | 6-phytase | 0–4000 | ADG (45%), bone mineral density (15%), bone mineral content (17%), fecal Lachnospiraceae (ND), fecal Succinvibrio (ND), fecal Bifidobacterium (ND) | [191] |
ND | 6-phytase | 0–16,000 | Stomach pH (−16%), fecal score (−14%), diarrhea frequency (−41%) | [192] |
26–68 | 6-phytase | 0–500 | ADG (22%), ADFI (15%), Ca digestibility (25%), P digestibility (78%), bone ash (18%) | [193] |
21–66 | 6-phytase | 0–5000 | ADG (20%), BBS (33%), bone ash (9%), P bone content (12%), CP digestibility (3%), EE 18 digestibility (11%), P digestibility (6%) | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moita, V.H.C.; Kim, S.W. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals 2022, 12, 3322. https://doi.org/10.3390/ani12233322
Moita VHC, Kim SW. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals. 2022; 12(23):3322. https://doi.org/10.3390/ani12233322
Chicago/Turabian StyleMoita, Vitor Hugo C., and Sung Woo Kim. 2022. "Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens" Animals 12, no. 23: 3322. https://doi.org/10.3390/ani12233322
APA StyleMoita, V. H. C., & Kim, S. W. (2022). Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals, 12(23), 3322. https://doi.org/10.3390/ani12233322