Identification and Characterization of Sex-Biased miRNAs in the Golden Pompano (Trachinotus blochii)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Sample Collection
2.2. RNA Extraction, miRNA Library Construction and Sequencing
2.3. Identification of miRNA
2.4. Identification of the Differentially Expressed miRNAs
2.5. Prediction and Functional Annotation of the DEM Target Genes
2.6. Co-Expression Network Analysis
2.7. Quantitative Real-Time PCR (qPCR) Analysis
2.8. Statistical Analysis
3. Results
3.1. miRNA Sequencing
3.2. Micro RNA Identification and Novel miRNA Prediction
3.3. Differentially Expressed miRNAs
3.4. Prediction of Differentially Expressed miRNA Target Genes
3.5. GO and KEGG Enrichment Analyses
3.6. miRNA-mRNA Co-Expression Network Analysis
3.7. Quantitative Real-Time PCR (qPCR) Validation
4. Discussion
4.1. Known Sex-Biased miRNAs
4.2. Novel Sex-Biased miRNAs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Li, X.Y.; Gui, J.F. Diverse and variable sex determination mechanisms in vertebrates. Sci. China Life Sci. 2018, 61, 1503–1514. [Google Scholar] [CrossRef]
- Hayashi, K.; Lopes, S.M.; Kaneda, M.; Tang, F.; Hajkova, p.; Lao, K.; O’Carroll, D.; Das, P.; Tarakhovsky, A.; Miska, E.; et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE 2008, 3, e1738. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Luense, L.J.; McGinnis, L.K.; Nothnick, W.B.; Christenson, L.K. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 2008, 149, 6207–6212. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.M.; Pang, R.T.K.; Chiu, P.C.N.; Wong, B.P.C.; Lao, K.; Lee, K.F.; Yeung, W.S.B. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc. Natl. Acad. Sci. USA 2012, 109, 490–494. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.S.; Blelloch, R. Small RNAs in germline development. Curr. Top. Dev. Biol. 2013, 102, 159–205. [Google Scholar]
- Saadeldin, I.M.; Oh, H.J.; Lee, B.C. Embryonic–maternal cross-talk via exosomes: Potential implications. Stem Cells Cloning Adv. Appl. 2015, 8, 103–107. [Google Scholar]
- Xiao, J.; Zhong, H.; Zhou, Y.; Yu, F.; Gao, Y.; Luo, Y.J.; Tang, Z.Y.; Guo, Z.B.; Guo, E.Y.; Gan, X.; et al. Identification and characterization of microRNAs in ovary and testis of Nile tilapia (Oreochromis niloticus) by using solexa sequencing technology. PLoS ONE 2014, 9, e86821. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Hostuttler, M.; Wei, H.R.; Rexroad, C.E.; Yao, J.B. Characterization of the rainbow trout egg microRNA transcriptome. PLoS ONE 2012, 7, e39649. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.W.; Morin, R.D.; Zhao, H.; Harris, R.A.; Coarfa, C.; Chen, Z.J.; Milosavljevic, A.; Marra, M.A.; Rajkovic, A. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol. Hum. Reprod. 2010, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, M.; Lowe, N.R.; Bishop, S.C.; Bron, J.E.; Taggart, J.B. Sequencing and characterisation of an extensive Atlantic salmon (Salmo salar Linnaeus) microRNA repertoire. PLoS ONE 2013, 8, e70136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Liu, W.; Liu, Q.; Li, B.; An, L.; Hao, R.; Zhao, J.; Liu, S. Coordinated microRNA and messenger RNA expression profiles for understanding sexual dimorphism of gonads and the potential roles of microRNA in the steroidogenesis pathway in Nile tilapia (Oreochromis niloticus). Theriogenology 2016, 85, 970–978. [Google Scholar] [CrossRef]
- Bizuayehu, T.T.; Babiak, J.; Norberg, B.; Fernandes, J.M.; Johansen, S.D.; Babiak, I. Sex-biased miRNA expression in Atlantic Halibut (Hippoglossus hippoglossus) brain and gonads. Sex. Dev. 2012, 6, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.F.; Yang, Y.; Zheng, H.F.; Zhang, H.T.; Chen, Y.M.; Huang, W.X.; Lin, X.W.; Tuo, C.J.; Jinag, W.T.; Luo, J.; et al. Development Report of Chinese Golden Pompano Industry; Chinese Fishery Association: Beijing, China, 2020. [Google Scholar]
- Sun, J.L.; Song, F.B.; Wang, L.; Zhang, W.W.; Chen, Y.M.; Zhou, L.; Gui, J.F.; Luo, J. Sexual size dimorphism in golden pompano (Trachinotus blochii): Potential roles of changes in energy allocation and differences in muscle metabolism. Front. Mar. Sci. 2022, 9, 1009896. [Google Scholar] [CrossRef]
- Fan, B.; Xie, D.Z.; Li, Y.W.; Wang, X.L.; Qi, X.; Li, S.S.; Meng, Z.; Chen, X.H.; Peng, J.; Yang, Y.J.; et al. A single intronic single nucleotide polymorphism in splicing site of steroidogenic enzyme hsd17b1 is associated with phenotypic sex in oyster pompano, Trachinotus anak. Proc. R. Soc. B 2021, 288, 22–45. [Google Scholar] [CrossRef]
- Song, F.B.; Gu, Y.; Chen, Y.M.; Zhang, K.X.; Shi, L.P.; Sun, J.L.; Zhang, Z.J.; Luo, J. Transcriptome analysis provides insights into differentially expressed long noncoding RNAs between the testis and ovary in golden pompano (Trachinotus blochii). Aquacult. Rep. 2021, 22, 100971. [Google Scholar] [CrossRef]
- Rayees, A.B.; Manisha, P.; Foysa, M.J.; Sanjay, K.G.; Jitendra, K.S. Role of sex-biased miRNAs in teleosts. Rev. Aquacult. 2021, 13, 269–281. [Google Scholar]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, D.C.; Yang, L.; Xiao, P.G.; Liu, M. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol. Plant. 2012, 146, 388–403. [Google Scholar] [CrossRef]
- Garmire, L.X.; Subramaniam, S. Evaluation of normalization methods in mammalian microRNA-Seq data. RNA 2012, 18, 1279–1288. [Google Scholar] [CrossRef]
- Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C. MicroRNA targets in Drosophila. Genome Biol. 2003, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene Ontology testing for RNA-seq datasets. Genome Biol. 2010, 11, 1–25. [Google Scholar]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.M.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L.P. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Kenneth, J.L.; Thomas, D.S. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆ct method. Methods 2001, 25, 402–408. [Google Scholar]
- Lai, M.S.; Cheng, Y.S.; Chen, P.R.; Tsai, S.J.; Huang, B.M. Fibroblast growth factor 9 activates akt and mapk pathways to stimulate steroidogenesis in mouse leydig cells. PLoS ONE 2014, 9, e90243. [Google Scholar] [CrossRef] [Green Version]
- Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 781–810. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tian, H.; Ru, S.G. Research progress in disrupting effects of EEDs on steroid hormone biosynthesis pathway of fish. Asian. J. Ecotoxicol. 2013, 8, 306–314. [Google Scholar]
- Young, J.C.; Wakitani, S.; Loveland, K.L. TGF-β superfamily signaling in testis formation and early male germline development. Semin. Cell Dev. Biol. 2015, 45, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Makker, A.; Goel, M.M.; Mahdi, A.A. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: An update. J. Mol. Endocrinol. 2014, 53, 103–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.P.; Wang, L.; Yang, J.; Luan, P.X.; Zhang, X.F.; Kuang, Y.Y.; Sun, X.W. Sex-biased miRNAs of yellow catfish (Pelteobagrus fulvidraco) and their potential role in reproductive development. Aquaculture 2017, 485, 73–80. [Google Scholar] [CrossRef]
- Lau, N.C.; Seto, A.G.; Kim, J.; Miyagawa, S.K.; Nakano, T.; Bartel, D.P.; Kingston, D.P. Characterization of the piRNA complex from rat testes. Science 2006, 313, 363–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.R.; Niu, X.; Huang, S.H.; Li, S.; Ran, X.Q.; Wang, J.F.; Dai, X.L. The piRNAs present in the developing testes of Chinese indigenous xiang pigs. Theriogenology 2022, 189, 92–106. [Google Scholar] [CrossRef]
- Hirano, T.; Iwasaki, Y.W.; Lin, Z.Y.; Imamura, M.; Seki, N.M.; Sasaki, E.; Saito, K.; Okano, H.; Siomi, M.C.; Siomi, H. Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA 2014, 20, 1223–1237. [Google Scholar] [CrossRef] [Green Version]
- Miles, J.R.; Mcdaneld, T.G.; Wiedmann, R.T.; Cushman, R.A.; Echternkamp, S.E.; Vallet, J.L.; Smith, T. MicroRNA expression profile in bovine cumulus–oocyte complexes during late oogenesis. Reprod. Fertil. Dev. 2009, 21, 186. [Google Scholar] [CrossRef]
- Fagegaltier, D.; König, A.; Gordon, A.; Lai, E.C.; Gingeras, T.R.; Hannon, G.J.; Shcherbata, H.R. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics 2014, 198, 647–668. [Google Scholar] [CrossRef] [Green Version]
- He, P.P.; Wei, P.Y.; Chen, X.H.; Lin, Y.; Peng, J.X. Identifification and characterization of microRNAs in the gonad of Trachinotus ovatus using Solexa sequencing. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 30, 312–320. [Google Scholar]
- Xu, Z. Expression Analysis of mRNAs and miRNAs in Gonads of Symphysodon Aequifasciatus; Shanghai Ocean University: Shanghai, China, 2018. [Google Scholar]
- Ramsey, M.; Shoemaker, C.; Crews, D. Gonadal expression of sf1 and aromatase during sex determination in the red-eared slider turtle (Trachemys scripta), a reptile with temperature-dependent sex determination. Differentiation 2007, 75, 978–991. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.M.; Qiang, J.; Zhu, J.H.; Li, H.X.; Tao, Y.F.; He, J.; Xu, P.; Dong, Z.J. Transcriptional inhibition of steroidogenic factor 1 in vivo in Oreochromis niloticus increased weight and suppressed gonad development. Gene 2022, 809, 146023. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Yang, Q.; Chen, Y.; Liu, Q.; Wang, W.W.; Song, J.; Zheng, Y.; Liu, W.Z. Integrated analysis of mRNA and miRNA-Seq in the ovary of rare minnow Gobiocypris Rarus in response to 17α-Methyltestosterone. Front. Genet. 2021, 12, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Y.; Zhang, Y.; Shi, B.Y.; Lu, H.; Zhang, L.; Zhang, W. Foxo3b but not foxo3a activates cyp19a1a in Epinephelus coioides. J. Mol. Endocrinol. 2016, 56, 337–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.Z.; Chen, W.J.; Wang, D.S.; Zhou, L.Y.; Sakai, F.; Guan, G.J.; Nagahama, Y. Gata4 is involved in the gonadal development and maturation of the teleost fish tilapia, Oreochromis niloticus. J. Reprod. Dev. 2012, 58, 237–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.X.; Zhang, W.; Du, X.X.; Jiang, J.J.; Wang, C.L.; Wang, X.B.; Zhang, Q.Q.; He, Y. Molecular characterization and functional analysis of the gata4 in tongue sole (Cynoglossus semilaevis). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 193, 1–8. [Google Scholar] [CrossRef]
- Gecaj, R.M.; Schanzenbach, C.I.; Kirchner, B.; Pfaffl, M.W.; Riedmaier, I.; Cullen, R.Y.; Berisha, B. The dynamics of microRNA transcriptome in Bovine corpus luteum during its formation, function, and regression. Front. Genet. 2017, 8, 213–229. [Google Scholar] [CrossRef]
- Vainio, S.; Heikkila, M.; Kispert, A.; Chin, N.; McMahon, A.P. Female development in mammals is regulated by Wnt4 signalling. Nature 1999, 397, 405–409. [Google Scholar] [CrossRef]
- Zayed, Y.; Qi, X.; Peng, C. Identifification of novel microRNAs and characterization of microRNA expression profifiles in zebrafifish ovarian follicular cells. Front. Endocrinol. 2019, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Yang, C. Study on the Mechanism of Methylation Regulation of miR-130b in Chemotherapy Resistance of Ovarian Cancer; Huazhong University of Science and Technology: Wuhan, China, 2011. [Google Scholar]
- Zhang, J.; Liu, W.; Jin, Y.; Jia, P.; Jia, K.; Yi, M. MiR-202-5p is a novel germ plasm-specific microRNA in zebrafish. Sci. Rep. 2017, 7, 7055. [Google Scholar] [CrossRef] [Green Version]
- Bizuayehu, T.T.; Lanes, C.F.C.; Furmanek, T.; Karlsen, B.O.; Fernandes, J.M.O.; Johansen, S.D.; Babiak, I. Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genom. 2012, 13, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Guo, H.; Zhang, Y.; Chen, L.; Ying, D.J.; Dong, S.W. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting sox9. PLoS ONE 2011, 6, e21679. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Wu, J.; Liu, W.; Xiong, S.; Ma, W.; Zhang, J.; Wang, W.; Gui, J.F.; Mei, J. Sex-biased miRNAs in gonad and their potential roles for testis development in yellow catfish. PLoS ONE 2014, 9, e107946. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.Y.; Lin, G.; Yue, G.H. Genes for sexual body size dimorphism in hybrid tilapia (Oreochromis sp. × Oreochromis mossambicus). Aquacult. Fish 2019, 20, 322–330. [Google Scholar] [CrossRef]
- Liu, H.; Lamm, M.S.; Rutherford, K.; Black, M.A.; Godwin, J.R.; Gemmell, N.J. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol. Sex Differ. 2015, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.X.; Feng, H.W.; Wang, F.L.; Lu, B.Y.; Liu, X.Y.; Sun, L.; Wang, D.S. Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia. J. Steroid Biochem. Mol. Biol. 2019, 191, 105379. [Google Scholar] [CrossRef]
- Baron, D.; Houlgatte, R.; Fostier, A.; Guiguen, Y. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen. Comp. Endocrinol. 2008, 156, 369–378. [Google Scholar] [CrossRef]
- Bergstrom, D.E.; Young, M.; Albrecht, K.H.; Eicher, E.M. Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genetics 2000, 28, 111–124. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, L.; Guo, Y.; Yu, H.S.; Cheng, H.H.; Huang, X.; Tiersch, T.R.; Berta, P. Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol. Reprod. Dev. 2003, 66, 211–217. [Google Scholar] [CrossRef]
- Murugananthkumar, R.; Senthilkumaran, B. Expression analysis and localization of wt1, ad4bp/sf1 and gata4 in the testis of catfish, Clarias batrachus: Impact of wt1-esiRNA silencing. Mol. Cell. Endocrinol. 2016, 431, 164–176. [Google Scholar] [CrossRef]
- Shen, F.F.; Long, Y.; Li, F.Y.; Ge, G.D.; Song, G.L.; Li, Q.; Qiao, Z.G.; Cui, Z.B. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics 2020, 112, 2603–2614. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Gupta, Y.R.; Deepa, S.; Ningappa, M.; Rajanna, K.B.; Senthilkumaran, B. Gonadal transcriptome analysis of the common carp (Cyprinus carpio): Identifification of difffferentially expressed genes and SSRs. Gen. Comp. Endocrinol. 2019, 279, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.J.; Chen, J.L.; Tan, D.J.; Yang, J.; Sun, L.; Wei, J.; Conte, M.A.; Kocher, T.D.; Wang, D.S. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genom. 2018, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Song, F.; Zhang, K.; Gu, Y.; Hu, J.; Sun, J.; Wang, Z.; Zhou, L.; Luo, J. Identification and Characterization of Sex-Biased miRNAs in the Golden Pompano (Trachinotus blochii). Animals 2022, 12, 3342. https://doi.org/10.3390/ani12233342
Shi L, Song F, Zhang K, Gu Y, Hu J, Sun J, Wang Z, Zhou L, Luo J. Identification and Characterization of Sex-Biased miRNAs in the Golden Pompano (Trachinotus blochii). Animals. 2022; 12(23):3342. https://doi.org/10.3390/ani12233342
Chicago/Turabian StyleShi, Liping, Feibiao Song, Kaixi Zhang, Yue Gu, Jinghan Hu, Junlong Sun, Zhongwei Wang, Li Zhou, and Jian Luo. 2022. "Identification and Characterization of Sex-Biased miRNAs in the Golden Pompano (Trachinotus blochii)" Animals 12, no. 23: 3342. https://doi.org/10.3390/ani12233342
APA StyleShi, L., Song, F., Zhang, K., Gu, Y., Hu, J., Sun, J., Wang, Z., Zhou, L., & Luo, J. (2022). Identification and Characterization of Sex-Biased miRNAs in the Golden Pompano (Trachinotus blochii). Animals, 12(23), 3342. https://doi.org/10.3390/ani12233342