Total Replacement of Fish Meal by the Combination of Fish Residue Meal and Soy Protein from Soymilk in the Diet of Red Sea Bream (Pagrus major)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Trial 1
2.2.1. Composition of FRM and Feed Formulation
2.2.2. Experimental Setting and Sampling
2.3. Trials 2 and 3
2.3.1. Composition of FRM and Feed Formulation
2.3.2. Experimental Setting and Sampling
2.4. Biochemical Analyses
2.5. Data Calculation
2.6. Statistical Analyses
3. Results
3.1. Trial 1
3.2. Trials 2 and 3
4. Discussion
4.1. Trial 1
4.2. Trials 2 and 3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, A.; Araki, H.; Sakata, T.; Nakamori, T.; Kato, K.; Takii, K. Fish meal replacement by soy protein from soymilk in the diets of red sea bream (Pagrus major). Aquacult. Nutr. 2017, 23, 1379–1389. [Google Scholar] [CrossRef]
- Biswas, A.; Araki, H.; Sakata, T.; Nakamori, T.; Takii, K. Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red sea bream, Pagrus major. Aquaculture 2019, 506, 51–59. [Google Scholar] [CrossRef]
- Biswas, A.; Takahashi, Y.; Araki, H.; Sakata, T.; Nakamori, T.; Takii, K. Trypsin inhibitor reduction improves the utility of soy protein concentrate from soymilk in the diet of the juvenile red sea bream, Pagrus major. Aquaculture 2022, 546, 737368. [Google Scholar] [CrossRef]
- Takagi, S.; Shimeno, S.; Hosokawa, H.; Ukawa, M. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fish. Sci. 2001, 67, 1088–1096. [Google Scholar] [CrossRef]
- Deng, J.; Mai, K.; Ai, Q.; Zhang, W.; Wang, X.; Xu, W.; Liufu, Z. Effects of replacing FM with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 2006, 258, 503–513. [Google Scholar] [CrossRef]
- Biswas, A.K.; Kaku, H.; Ji, S.C.; Seoka, M.; Takii, K. Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture 2007, 267, 284–291. [Google Scholar] [CrossRef]
- Silva-Carrillo, Y.; Hernández, C.; Hardy, R.W.; González-Rodríguez, B.; Castillo- Vargasmachuca, S. The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquaculture 2012, 364–365, 180–185. [Google Scholar] [CrossRef]
- Herman, E.M.; Schmidt, M.A. The potential for engineering enhanced functional-feed soybeans for sustainable aquaculture feed. Front. Plant Sci. 2016, 7, 440. [Google Scholar] [CrossRef] [Green Version]
- Faudzi, N.M.; Yong, A.S.K.; Shapawi, R.; Senoo, S.; Biswas, A.; Takii, K. Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown-marbled grouper (Epinephelus fuscoguttatus) × giant grouper (E. lanceolatus) juvenile. Aquacult. Res. 2018, 49, 431–441. [Google Scholar] [CrossRef]
- Krogdahl, A.; Kortner, T.M.; Jaramillo-Torres, A.; Gamil, A.A.A.; Chikwati, E.; Li, Y.; Storebakken, T. Removal of three proteinaceous antinutrients from soybean does not mitigate soybean-induced enteritis in Atlantic salmon (Salmo salar L.). Aquaculture 2020, 514, 734495. [Google Scholar] [CrossRef]
- Arriaga-Hernandez, D.; Hernandez, C.; Martinez-Montano, E.; Ibarra-Castro, L.; Lizarraga-Velazquez, E.; Leyva-Lopez, N.; Chavez-Sanchez, M.C. Fish meal replacement by soybean products in aquaculture feeds for white snook, Centropomus viridis: Effect on growth, diet digestibility, and digestive capachity. Aquaculture 2021, 530, 735823. [Google Scholar] [CrossRef]
- Torrecillas, S.; Mompel, D.; Caballero, M.J.; Montero, D.; Merrifield, D.; Rodiles, A.; Izquierdo, M. Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 2017, 468, 386–398. [Google Scholar] [CrossRef]
- Booman, M.; Forster, I.; Vederas, J.C.; Groman, D.B.; Jones, S.R. Soybean meal-induced enteritis in Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) but not in pink salmon (O. gorbuscha). Aquaculture 2018, 483, 238–243. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquacult. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Yamamoto, T.; Iwashita, Y.; Matsunari, H.; Sugita, T.; Furuita, H.; Akimoto, A.; Okamatsu, K.; Suzuki, N. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture 2010, 309, 173–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.B.; Jiang, D.L.; Qin, J.G.; Wang, Y. Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus). Anim. Feed Sci. Technol. 2014, 197, 155–163. [Google Scholar] [CrossRef]
- Xuquan, X.; Weilan, Z.; Ruixue, D.; Jie, M.; Zhuojun, W.; Bin, L.; Haoming, Y.; Yuantu, Y.; Zhijun, H. Study of enzyme-hydrolyzed soybean replacing fish meal and/or chicken meal on the growth of channel catfish (Ictalurus punctatus). Aquacult. Rep. 2022, 27, 101344. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, Y.T. Lactobacillus spp. fermented soybean meal partially substitution to fish meal enhances innate immune responses and nutrient digestibility of white shrimp (Litopenaeus vannamei) fed diet with low fish meal. Aquaculture 2022, 548, 737634. [Google Scholar] [CrossRef]
- Takagi, S.; Hosokawa, H.; Shimeno, S.; Maita, M.; Ukawa, M.; Ueno, S. Utilization of soy protein concentrate in a diet for red sea bream, Pagrus major. Suisanzoshoku 1999, 47, 77–87. [Google Scholar] [CrossRef]
- Kader, M.A.; Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Nguyen, B.T.; Komilus, C.F. Effect of complete replacement of fish meal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture 2012, 350–353, 109–116. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, Y.; Dai, Y.; Gong, Y. Economic profitability of tilapia farming in China. Aquacult. Int. 2017, 25, 1253–1264. [Google Scholar] [CrossRef]
- Lasner, T.; Brinker, A.; Nielsen, R.; Rad, F. Establishing a benchmarking for fish farming-Profitability, productivity and energy efficiency of German, Danish and Turkish rainbow trout grow-out systems. Aquacult. Res. 2017, 48, 3134–3148. [Google Scholar] [CrossRef]
- Engle, C.R.; McNevin, A.; Racine, P.; Boyd, C.E.; Paungkaew, D.; Viriyatum, R.; Quoc Tinh, H.; Ngo Minh, H. Economics of sustainable intensification of aquaculture: Evidence from shrimp farms in Vietnam and Thaiand. J. World Aquacult. Soc. 2017, 48, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Greger, M.U.S. Continues to Violate World Health Organization Guidelines for BSE. 2004. Available online: http://www.organicconsumers.org/madcow/Greger.pdf (accessed on 7 March 2022).
- De las Fuentes, L.; Sanders, B.; Lorenzo, A.; Alber, S. Awarenet. Agro-Food Wastes Minimisation and Reduction Network. In Total Food: Exploiting Co-Products—Minimizing Wastes; Waldron, K., Faulds, C., Smith, A., Eds.; Institute of Food Research: Norwich, UK, 2004. [Google Scholar]
- Dave, D.; Ramakrishnan, V.V.; Trenholm, S.; Manuel, H.; Pohling, J.; Murphy, W. Omega-3 Fatty Acids from Salmon Processing Waste Produced from Newfoundland Aquaculture Industry. Canadian Aquaculture R&D Review. 2015. Available online: https://www.dfo-mpo.gc.ca/aquaculture/sci-res/rd2015/misc-eng.html (accessed on 7 March 2022).
- Kim, H.S.; Jung, W.G.; Myung, S.H.; Cho, S.H.; Kim, D.S. Substitution effects of fishmeal with tuna byproduct meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder (Paralichthys olivaceus). Aquaculture 2014, 431, 92–98. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Hardy, R.W.; Gatlin, D.M. Nutritional value of fisheries by-catch and by-product meals in the diet of red drum (Sciaenops ocellatus). Aquaculture 2004, 236, 485–496. [Google Scholar] [CrossRef]
- Kader, M.A.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Bulbul, M.; Honda, Y.; Mamauag, R.E.; Laining, A. Growth, nutrient utilization, oxidative condition and element composition of juvenile red sea bream Pagrus major fed with fermented soybean meal and scallop by-product blend as fishmeal replacement. Fish. Sci. 2011, 77, 119–128. [Google Scholar] [CrossRef]
- Watanabe, Y. Bycatch and discard fish in the Japanese fisheries. Dev. Food Sci. 2004, 42, 25–36. [Google Scholar] [CrossRef]
- Halver, J.E. Nutrition of salmonid fish-III. Water-soluble vitamin requirements of Chinook salmon. J. Nutr. 1957, 62, 225–243. [Google Scholar] [CrossRef]
- Araki, N.; Sakamoto, W. Correlation between ambient water temperature and scale circuli formation in red sea bream Pagrus major. Nippon Suisan Gakkaishi 1996, 62, 213–316, (In Japanese with abstract in English). [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. Vol I. Agricultural Chemicals, Contaminants, Drugs, 16th ed.; AOAC International: Arlington, VA, USA, 1995; 1298p. [Google Scholar]
- Lemaire, P.; Drai, P.; Mathieu, A.; Lemarie, S.; Carrière, S.; Giudicelli, J.; Lafaurie, M. Changes with different diets in plasma enzymes (AST, ALT, LDH, ALP) and plasma lipids (cholesterol, triglycerides) of sea-bass (Dicentrarchus labrax). Aquaculture 1991, 93, 63–75. [Google Scholar] [CrossRef]
- Hart, S.D.; Bharadwaj, A.S.; Brown, P.B. Soybean lectins and trypsin inhibitors, but not oligosaccharides or the interactions of factors, impact weight gain of rainbow trout (Oncorhynchus mykiss). Aquaculture 2010, 306, 310–314. [Google Scholar] [CrossRef]
- Corsetti, J.P.; Cox, C.; Schulz, T.J.; Arvan, D.A. Combined serum amylase and lipase determinations for diagnosis of suspected acute pancreatitis. Clin. Chem. 1993, 39, 2495–2499. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Nabeya, Y. Enterohepatic circulation: Focusing on bile acid cycle. Surg. Metab. Nutr. 2013, 47, 41–43. [Google Scholar]
- Kader, M.A.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Bulbul, M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture 2010, 308, 136–144. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; El Basuini, M.F.; Olivier, A.; Zaineldin, A.I. Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish Immun. 2018, 75, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Murashita, K.; Matsunari, H.; Furuita, H.; Rønnestad, I.; Oku, H. Effects of dietary soybean meal on the digestive physiology of red seabream Pagrus major. Aquaculture 2018, 493, 219–228. [Google Scholar] [CrossRef]
- Takagi, S.; Murata, H.; Goto, T.; Ichiki, T.; Endo, M.; Hatate, H.; Yoshida, T.; Sakai, T.; Yamashita, H.; Ukawa, M. Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 2006, 72, 1191–1199. [Google Scholar] [CrossRef]
- Clarke, A. Is there a universal temperature dependence of metabolism? Func. Ecol. 2004, 18, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A.; Fraser, K.P.P. Why does metabolism scale with temperature? Func. Ecol. 2004, 18, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Imsland, A.K.; Sunde, L.M.; Folkvord, A.; Stefansson, S.O. The interaction of temperature and fish size on growth of juvenile turbot. J. Fish Biol. 1996, 49, 926–940. [Google Scholar] [CrossRef]
- Andersen, N.G.; Riis-Vestergaard, J. The effects of food consumption rate, body size and temperature on net food conversion efficiency in saithe and whiting. J. Fish Biol. 2003, 62, 395–412. [Google Scholar] [CrossRef]
- Handeland, S.O.; Imsland, A.K.; Stefansson, S.O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 2008, 283, 36–42. [Google Scholar] [CrossRef]
- Nytrø, A.V.; Vikingstad, E.; Foss, A.; Hangstad, T.A.; Reynolds, P.; Eliassen, G.; Elvegård, T.A.; Falk-Petersen, I.B.; Imsland, A.K. The effect of temperature and fish size on growth of juvenile lumpfish (Cyclopterus lumpus L.). Aquaculture 2014, 434, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Chen, H. Effects of water temperature and fish size on growth and bioenergetics of cobia (Rachycentron canadum). Aquaculture 2014, 426–427, 172–180. [Google Scholar] [CrossRef]
Contribution (%) | Breakdown ‡ | ||
---|---|---|---|
Round Fish | Residue | ||
(Discard) | (Byproduct) | ||
Anchovy (Engraulis japonicus) | 64.3 | 64.3 (100) * | 0.00 (0.00) |
Jack mackerel (Trachurus japonicus) | 15.3 | 0.44 (2.90) | 14.86 (97.1) |
Mackerel (Scomber japonicus) | 10.4 | 0.22 (2.10) | 10.18 (97.9) |
Round herring (Etrumeus teres) | 5.7 | 0.30 (5.30) | 5.40 (94.7) |
Others | 4.3 | 0.00 (0.00) | 4.30 (100) |
Proximate composition (%, dry matter basis) | |||
Crude protein | 73.9 | ||
Ether extract | 8.3 | ||
Crude ash | 16.4 |
Ingredients (%) | C | RM20 | RM40 | RM60 | RM80 |
---|---|---|---|---|---|
Fish meal 1 | 13.50 | ||||
Fish residue meal 2 | 13.50 | 28.50 | 43.00 | 57.50 | |
SPC 3 | 46.00 | 46.00 | 34.00 | 22.50 | 11.00 |
Corn gluten meal | 11.50 | 11.50 | 8.50 | 5.50 | 2.50 |
Fish oil | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
α-Starch | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Vitamin mixture 4 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Mineral mixture 4 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
Soybean lecithin | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Cellulose | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Taurine | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Phytase 5 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Proximate composition (dry matter basis) | |||||
Crude protein (%) | 48.6 | 48.1 | 49.5 | 50.7 | 52.2 |
Ether extract (%) | 14.3 | 14.0 | 15.4 | 16.6 | 17.4 |
Crude ash (%) | 11.6 | 11.7 | 13.0 | 14.1 | 15.8 |
Crude sugar (%) | 14.0 | 13.8 | 10.8 | 8.6 | 6.0 |
Gross energy (MJ/kg) | 21.8 | 21.8 | 21.9 | 21.9 | 21.7 |
FRM1 | FRM2 | FRM3 | |
---|---|---|---|
Round fish (discard) 1 | 65 | 30 | 0 |
Residue (byproduct) 2 | 35 | 70 | 100 |
Proximate composition (dry matter basis) | |||
Crude protein (%) | 74.4 | 68.9 | 64.6 |
Ether extract (%) | 10.5 | 13.2 | 9.4 |
Crude ash (%) | 13.4 | 16.5 | 22.7 |
Gross energy (MJ/kg) | 16.5 | 16.6 | 14.4 |
Ingredients (%) | RM1 | RM2 | RM3 | C * |
---|---|---|---|---|
FRM1 a | 28.5 | |||
FRM2 a | 28.5 | |||
FRM3 a | 28.5 | |||
SPC b | 34.0 | 34.0 | 34.0 | |
Corn gluten meal | 8.5 | 8.5 | 8.5 | |
Fish oil | 10.0 | 10.0 | 10.0 | |
α- Starch | 3.0 | 3.0 | 3.0 | |
Vitamin mixture c | 3.0 | 3.0 | 3.0 | |
Mineral mixture c | 9.0 | 9.0 | 9.0 | |
Soybean lecithin | 2.0 | 2.0 | 2.0 | |
Chromic oxide (Cr2O3) | 0.5 | 0.5 | 0.5 | |
Taurine | 1.0 | 1.0 | 1.0 | |
Cellulose | 0.5 | 0.5 | 0.5 | |
Phytase (FTU/kg) d | 1000 | 1000 | 1000 | |
Proximate composition (dry matter basis) | ||||
Crude protein (%) | 49.8 | 48.0 | 47.5 | 54.1 |
Ether extract (%) | 17.9 | 18.9 | 17.4 | 14.7 |
Crude ash (%) | 12.9 | 13.9 | 15.6 | 11.3 |
Crude sugar (%) | 16.4 | 16.9 | 13.9 | 16.0 |
Gross energy (MJ/kg) | 17.9 | 18.0 | 16.9 | 17.3 |
Ingredients | Diets | ||||||
---|---|---|---|---|---|---|---|
FRM1 | FRM2 | FRM3 | RM1 | RM2 | RM3 | C | |
Indispensable amino acids | |||||||
Arginine | 6.0 | 8.0 | 6.0 | 7.0 | 11.0 | 10.0 | 6.0 |
Histidine | 67.0 | 72.0 | 33.0 | 17.0 | 25.0 | 11.0 | 31.0 |
Isoleucine | 8.0 | 11.0 | 12.0 | 2.0 | 4.0 | 4.0 | 4.0 |
Leucine | 17.0 | 26.0 | 13.0 | 5.0 | 9.0 | 9.0 | 10.0 |
Lysine | 10.0 | 13.0 | 9.0 | 4.0 | 6.0 | 5.0 | 6.0 |
Methionine | 9.0 | 10.0 | 11.0 | 3.0 | 4.0 | 5.0 | 5.0 |
Phenylalanine | 12.0 | 18.0 | 23.0 | 6.0 | 11.0 | 12.0 | 10.0 |
Threonine | 5.0 | 7.0 | 6.0 | 2.0 | 3.0 | 2.0 | 5.0 |
Valine | 11.0 | 15.0 | 16.0 | 3.0 | 6.0 | 6.0 | 6.0 |
Dispensable amino acids | |||||||
Alanine | 23.0 | 31.0 | 31.0 | 7.0 | 13.0 | 13.0 | 15.0 |
Aspartic acid | 5.0 | 7.0 | 5.0 | 2.0 | 4.0 | 3.0 | 4.0 |
Cystine | 1.0 | 1.0 | 2.0 | 0.0 | 0.0 | 1.0 | 0.0 |
Glutamic acid | 19.0 | 25.0 | 26.0 | 8.0 | 14.0 | 13.0 | 11.0 |
Glycine | 8.0 | 12.0 | 11.0 | 2.0 | 4.0 | 4.0 | 5.0 |
Proline | 4.0 | 6.0 | 6.0 | 1.0 | 3.0 | 3.0 | 4.0 |
Serine | 3.0 | 5.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
Tyrosine | 5.0 | 7.0 | 5.0 | 1.0 | 3.0 | 2.0 | 3.0 |
Taurine | 1.0 | 1.0 | 1.0 | 2.0 | 2.0 | 2.0 | 1.0 |
Initial | Final | |||||
---|---|---|---|---|---|---|
C | RM20 | RM40 | RM60 | RM80 | ||
Mean weight (g) | 18.9 ± 0.1 | 69.3 ± 3.6 | 72.1 ± 9.5 | 78.3 ± 4.7 | 71.2 ± 10.5 | 76.3 ± 6.7 |
Survival (%) | 98.3 ± 2.9 | 96.7 ± 5.8 | 100.0 ± 0.0 | 98.3 ± 2.9 | 98.3 ± 2.9 | |
SGR (%/day) | 2.37 ± 0.09 | 2.43 ± 0.24 | 2.58 ± 0.12 | 2.39 ± 0.28 | 2.53 ± 0.16 | |
DFR (%) | 2.67 ± 0.07 | 2.67 ± 0.06 | 2.76 ± 0.03 | 2.83 ± 0.26 | 2.70 ± 0.03 | |
FCR | 1.31 ± 0.11 | 1.28 ± 0.12 | 1.25 ± 0.09 | 1.34 ± 0.15 | 1.25 ± 0.10 | |
Condition factor | 3.60 ± 0.12 | 3.52 ± 0.23 | 3.35 ± 0.07 | 3.38 ± 0.35 | 3.60 ± 0.03 |
Initial | Final | |||||
---|---|---|---|---|---|---|
C | RM20 | RM40 | RM60 | RM80 | ||
Proximate composition | ||||||
Moisture (%) | 71.3 ± 0.2 | 65.0 ± 0.2 | 65.3 ± 1.4 | 65.2 ± 1.2 | 63.2 ± 2.0 | 63.9 ± 2.0 |
Crude protein (%) | 17.6 ± 1.3 | 17.6 ± 0.3 | 17.2 ± 0.1 | 16.7 ± 0.5 | 17.3 ± 0.1 | 16.9 ± 0.8 |
Ether extract (%) | 5.7 ± 0.1 | 12.7 ± 0.6 | 13.6 ± 1.6 | 13.4 ± 0.6 | 14.8 ± 1.4 | 13.7 ± 1.1 |
Crude ash (%) | 4.6 ± 0.2 | 4.1 ± 0.0 | 3.6 ± 0.2 | 4.0 ± 0.4 | 4.0 ± 0.5 | 4.3 ± 0.3 |
Gross energy (MJ/kg) | 6.1 ± 0.2 | 8.9 ± 0.4 | 9.6 ± 0.9 | 8.8 ± 0.9 | 9.0 ± 1.4 | 9.1 ± 1.7 |
Relative organ weight (%) | ||||||
Viscera | 8.03 ± 0.78 | 8.33 ± 0.36 | 8.26 ± 0.78 | 8.87 ± 0.59 | 8.81 ± 0.67 | |
Liver | 1.82 ± 0.26 | 2.08 ± 0.14 | 2.12 ± 0.31 | 1.96 ± 0.15 | 1.73 ± 0.10 | |
Stomach | 0.72 ± 0.05 | 0.65 ± 0.05 | 0.67 ± 0.02 | 0.67 ± 0.06 | 0.65 ± 0.15 | |
Intestine | 1.51 ± 0.45 | 1.31 ± 0.18 | 1.30 ± 0.20 | 1.18 ± 0.03 | 1.22 ± 0.18 |
C | RM20 | RM40 | RM60 | RM80 | |
---|---|---|---|---|---|
Protein | 28.4 ± 0.5 | 28.0 ± 1.6 | 26.9 ± 1.8 | 25.4 ± 4.2 | 26.0 ± 2.5 |
Gross energy | 35.4 ± 1.0 | 39.2 ± 5.5 | 35.4 ± 4.7 | 11.2 | 37.4 ± 8.4 |
C | RM20 | RM40 | RM60 | RM80 | |
---|---|---|---|---|---|
Hematocrit (%) | 28.0 ± 7.2 | 30.2 ± 2.6 | 30.8 ± 1.4 | 30.1 ± 1.4 | 33.8 ± 2.5 |
Plasma constituents | |||||
Total protein (g/dL) | 4.8 ± 0.5 | 4.9 ± 0.4 | 5.4 ± 0.2 | 5.1 ± 0.2 | 5.2 ± 0.4 |
AST (U/L) | 31.3 ± 12.6 | 30.3 ± 13.8 | 29.7 ± 14.3 | 16.2 ± 5.7 | 72.3 ± 53.6 |
ALT (U/L) | 3.3 ± 0.3 | 3.0 ± 1.0 | 3.8 ± 1.9 | 2.2 ± 1.0 | 8.8 ± 5.6 |
Triglyceride (mg/dL) | 252 ± 44 | 259 ± 104 | 271 ± 42 | 299 ± 34 | 221 ± 32 |
Total cholesterol (mg/dL) | 267.3 ± 17.6 b | 272.3 ± 19.0 b | 295.0 ± 32.5 ab | 340.7 ± 20.7 a | 312.7 ± 26.5 ab |
Glucose (mg/dL) | 65.3 ± 7.3 | 63.3 ± 2.8 | 64.7 ± 14.6 | 61.3 ± 2.5 | 65.3 ± 11.0 |
Alkaline phosphatase (U/L) | 376 ± 143 | 258 ± 53 | 446 ± 209 | 267 ± 129 | 360 ± 125 |
Amylase (U/L) | 12.0 ± 8.5 | 14.0 ± 6.9 | 15.2 ± 5.0 | 10.8 ± 1.6 | 9.0 ± 5.8 |
RM1 | RM2 | RM3 | C | |
---|---|---|---|---|
Trial 2 (water temperature 21.2 to 31.2 °C) | ||||
Initial mean weight (g) | 28.3 ± 0.1 | 28.1 ± 0.6 | 28.1 ± 0.1 | 28.0 ± 0.1 |
Final mean weight (g) | 113.6 ± 0.7 | 111.4 ± 0.7 | 107.4 ± 3.1 | 112.4 ± 1.5 |
SGR (%/day) | 2.48 ± 0.02 | 2.44 ± 0.02 | 2.41 ± 0.06 | 2.49 ± 0.01 |
DFR (%) | 3.00 ± 0.03 ab | 3.00 ± 0.03 ab | 3.07 ± 0.03 a | 2.86 ± 0.03 b |
FCR | 1.40 ± 0.05 ab | 1.42 ± 0.02 ab | 1.47 ± 0.08 b | 1.33 ± 0.02 a |
Survival (%) | 99.0 ± 0.5 | 99.0 ± 0.5 | 98.3 ± 1.0 | 99.3 ± 0.3 |
Trial 3 (water temperature 11.7 to 17.2 °C) | ||||
Initial mean weight (g) | 210.1 ± 0.7 | 210.3 ± 0.1 | 210.1 ± 0.3 | 209.5 ± 0.8 |
Final mean weight (g) | 289.6 ± 5.8 | 270.4 ± 10.6 | 279.5 ± 6.1 | 269.8 ± 2.0 |
SGR (%/day) | 0.38 ± 0.01 | 0.30 ± 0.05 | 0.34 ± 0.03 | 0.30 ± 0.01 |
DFR (%) | 0.57 ± 0.00 a | 0.57 ± 0.01 a | 0.62 ± 0.01 b | 0.64 ± 0.00 b |
FCR | 1.51 ± 0.12 | 1.94 ± 0.18 | 1.85 ± 0.15 | 2.12 ± 0.17 |
PRE (%) | 20.9 ± 1.6 | 16.6 ± 8.1 | 16.7 ± 5.2 | 9.0 ± 0.8 |
ERE (%) | 9.4 ± 1.1 | 2.0 ± 9.3 | 4.3 ± 2.1 | 1.2 ± 0.5 |
Condition factor | 2.4 ± 0.0 | 2.5 ± 0.0 | 2.5 ± 0.1 | 2.4 ± 0.0 |
Survival (%) | 100.0 ± 0.0 a | 96.0 ± 0.0 ab | 96.0 ± 0.0 ab | 94.0 ± 1.4 b |
Initial | Final | ||||
---|---|---|---|---|---|
RM1 | RM2 | RM3 | C | ||
Proximate composition | |||||
Moisture (%) | 62.5 ± 4.4 | 66.1 ± 0.0 | 67.7 ± 0.3 | 66.6 ± 0.3 | 68.1 ± 0.7 |
Crude protein (%) | 17.7 ± 1.2 | 17.1 ± 0.1 | 16.4 ± 0.5 | 17.1 ± 0.7 | 15.9 ± 0.0 |
Ether extract (%) | 14.9 ± 2.6 | 11.1 ± 0.1 | 11.0 ± 1.2 | 10.9 ± 0.4 | 10.9 ± 0.1 |
Crude ash (%) | 4.8 ± 0.9 | 4.8 ± 0.0 | 4.9 ± 0.1 | 4.8 ± 0.1 | 5.0 ± 0.0 |
Gross energy (MJ/kg) | 8.58 ± 0.2 | 7.1 ± 0.1 | 6.9 ± 0.5 | 7.0 ± 0.3 | 6.8 ± 0.0 |
Relative organ weight (%) | |||||
Viscera | 10.1 ± 0.7 | 8.5 ± 0.1 | 8.5 ± 0.0 | 9.1 ± 0.6 | 8.2 ± 0.0 |
Liver | 1.7 ± 0.4 | 1.3 ± 0.0 | 1.5 ± 0.1 | 1.3 ± 0.1 | 1.5 ± 0.0 |
Stomach | 0.7 ± 0.0 | 0.8 ± 0.0 | 0.7 ± 0.1 | 0.8 ± 0.0 | 0.8 ± 0.1 |
Intestine | 1.0 ± 0.0 | 1.3 ± 0.0 | 1.3 ± 0.0 | 1.3 ± 0.0 | 1.2 ± 0.0 |
Initial | Final | ||||
---|---|---|---|---|---|
RM1 | RM2 | RM3 | C | ||
Total protein (g/dL) | 4.6 ± 0.1 | 3.9 ± 0.1 | 3.7 ± 0.1 | 3.7 ± 0.1 | 3.7 ± 0.2 |
AST (U/L) | 31.0 ± 5.7 | 39.0 ± 10.7 | 37.0 ± 6.7 | 33.8 ± 5.1 | 34.5 ± 1.0 |
ALT (U/L) | 16.0 ± 2.1 | 18.8 ± 2.5 | 18.0 ± 1.8 | 15.8 ± 0.7 | 16.5 ± 1.1 |
Triglyceride (mg/dL) | 138.0 ± 19.1 | 74.3 ± 2.0 | 72.0 ± 9.3 | 58.0 ± 5.0 | 634.0 |
Total cholesterol (mg/dL) | 175.0 ± 23.6 | 143.3 ± 2.2 ab | 164.3 ± 13.3 b | 169.5 ± 7.7 b | 112.5 ± 9.6 a |
Glucose (mg/dL) | 75.0 ± 6.5 | 39.0 ± 1.8 | 36.8 ± 0.7 | 37.5 ± 2.3 | 36.0 ± 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, A.; Takahashi, Y.; Isaka, K.; Takakuwa, F.; Tanaka, H.; Takii, K. Total Replacement of Fish Meal by the Combination of Fish Residue Meal and Soy Protein from Soymilk in the Diet of Red Sea Bream (Pagrus major). Animals 2022, 12, 3351. https://doi.org/10.3390/ani12233351
Biswas A, Takahashi Y, Isaka K, Takakuwa F, Tanaka H, Takii K. Total Replacement of Fish Meal by the Combination of Fish Residue Meal and Soy Protein from Soymilk in the Diet of Red Sea Bream (Pagrus major). Animals. 2022; 12(23):3351. https://doi.org/10.3390/ani12233351
Chicago/Turabian StyleBiswas, Amal, Yuta Takahashi, Kota Isaka, Fumiaki Takakuwa, Hideki Tanaka, and Kenji Takii. 2022. "Total Replacement of Fish Meal by the Combination of Fish Residue Meal and Soy Protein from Soymilk in the Diet of Red Sea Bream (Pagrus major)" Animals 12, no. 23: 3351. https://doi.org/10.3390/ani12233351
APA StyleBiswas, A., Takahashi, Y., Isaka, K., Takakuwa, F., Tanaka, H., & Takii, K. (2022). Total Replacement of Fish Meal by the Combination of Fish Residue Meal and Soy Protein from Soymilk in the Diet of Red Sea Bream (Pagrus major). Animals, 12(23), 3351. https://doi.org/10.3390/ani12233351