State of the Art and Future Prospects of Virtual and Augmented Reality in Veterinary Medicine: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Search Strategy
2.3. Inclusion Criteria
2.4. Study Selection
3. Results
3.1. Literature Overview
3.2. Geographical Contribution
3.3. Topics of Included Articles
3.4. Annual Distribution of Included Articles
3.5. Relevance to Veterinary Medicine
3.5.1. VR/AR in Veterinary Medicine
3.5.2. VR/AR in Human Medicine Using Animal Models
3.5.3. Other VR/AR Projects Using Animal Models
3.6. Methodology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, L.N.; Smeak, D.D.; Lord, L.K. Frequency of use and proficiency in performance of surgical skills expected of entry-level veterinarians by general practitioners. J. Am. Vet. Med. Assoc. 2012, 240, 1345–1354. [Google Scholar] [CrossRef]
- Smeak, D.D.; Hill, L.N.; Lord, L.K.; Allen, L.C.V. Expected frequency of use and proficiency of core surgical skills in entry-level veterinary practice: 2009 ACVS core surgical skills diplomate survey results. Vet. Surg. 2012, 41, 853–861. [Google Scholar] [CrossRef]
- Hunt, J.A.; Heydenburg, M.; Anderson, S.L.; Thompson, R.R. Does virtual reality training improve veterinary students’ first canine surgical performance? Vet. Rec. 2020, 186, 562. [Google Scholar] [CrossRef] [PubMed]
- Langebæk, R.; Eika, B.; Tanggaard, L.; Jensen, A.L.; Berendt, M. Emotions in veterinary surgical students: A qualitative study. J. Vet. Med. Educ. 2012, 39, 312–321. [Google Scholar] [CrossRef]
- Hart, L.A.; Wood, M.W.; Weng, H.-Y. Mainstreaming alternatives in veterinary medical education: Resource development and curricular reform. J. Vet. Med. Educ. 2005, 32, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, T.F.; Li, Y.; Lim, J.S.; Gunasekeran, D.V.; Teo, Z.L.; Ng, W.Y.; Ting, D.S.W. Metaverse and Virtual Health Care in Ophthalmology: Opportunities and Challenges. Asia-Pac. J. Ophthalmol. 2022, 11, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Benlamri, R. Augmented reality, virtual reality and new age technologies demand escalates amid COVID-19. In Novel AI and Data Science Advancements for Sustainability in the Era of COVID-19; Elsevier: Amsterdam, The Netherlands, 2022; pp. 89–111. [Google Scholar]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef] [Green Version]
- Biocca, F.; Delaney, B. Immersive virtual reality technology. Commun. Age Virtual Real. 1995, 15, 10–5555. [Google Scholar]
- Seth, A.; Vance, J.M.; Oliver, J.H. Virtual reality for assembly methods prototyping: A review. Virtual Real. 2011, 15, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Englund, C.; Olofsson, A.D.; Price, L. Teaching with technology in higher education: Understanding conceptual change and development in practice. High. Educ. Res. Dev. 2017, 36, 73–87. [Google Scholar] [CrossRef]
- Tang, F.M.K.; Lee, R.M.F.; Szeto, R.H.L.; Cheng, J.K.K.; Choi, F.W.T.; Cheung, J.C.T.; Ngan, O.M.Y.; Lau, A.S.N. A Simulation Design of Immersive Virtual Reality for Animal Handling Training to Biomedical Sciences Undergraduates. Front. Educ. 2021, 6, 239. [Google Scholar] [CrossRef]
- Ahir, K.; Govani, K.; Gajera, R.; Shah, M. Application on virtual reality for enhanced education learning, military training and sports. Augment. Hum. Res. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Song, H.; Chen, F.; Peng, Q.; Zhang, J.; Gu, P. Improvement of user experience using virtual reality in open-architecture product design. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 2264–2275. [Google Scholar] [CrossRef]
- Aguilar-Salinas, P.; Gutierrez-Aguirre, S.F.; Avila, M.J.; Nakaji, P. Current status of augmented reality in cerebrovascular surgery: A systematic review. Neurosurg. Rev. 2022, 45, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, D.; Zaed, I.; Safa, A.; Jelmoni, A.J.M.; Composto, A.; Bisoglio, A.; Schmeizer, K.; Becker, A.C.; Pizzi, A.; Cardia, A. Augmented Reality in Neurosurgery, State of Art and Future Projections. A Systematic Review. Front. Surg. 2022, 9, 864792. [Google Scholar] [CrossRef]
- Chidambaram, S.; Stifano, V.; Demetres, M.; Teyssandier, M.; Palumbo, M.C.; Redaelli, A.; Olivi, A.; Apuzzo, M.L.J.; Pannullo, S.C. Applications of augmented reality in the neurosurgical operating room: A systematic review of the literature. J. Clin. Neurosci. 2021, 91, 43–61. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, M.-G.; Kim, J.-S. Spine Surgery Assisted by Augmented Reality: Where Have We Been? Yonsei Med. J. 2022, 63, 305. [Google Scholar] [CrossRef]
- Thavarajasingam, S.G.; Vardanyan, R.; Arjomandi Rad, A.; Thavarajasingam, A.; Khachikyan, A.; Mendoza, N.; Nair, R.; Vajkoczy, P. The use of augmented reality in transsphenoidal surgery: A systematic review. Br. J. Neurosurg. 2022, 36, 1–15. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Z.; Jiang, S.; Zhuo, J.; Zhu, T.; Ma, S. Surgical Navigation System for Hypertensive Intracerebral Hemorrhage Based on Mixed Reality. J. Digit. Imaging 2022, 35, 1–14. [Google Scholar] [CrossRef]
- Bernardo, A. Virtual reality and simulation in neurosurgical training. World Neurosurg. 2017, 106, 1015–1029. [Google Scholar] [CrossRef]
- Arjomandi Rad, A.; Vardanyan, R.; Thavarajasingam, S.G.; Zubarevich, A.; Van den Eynde, J.; Sá, M.P.B.O.; Zhigalov, K.; Sardiari Nia, P.; Ruhparwar, A.; Weymann, A. Extended, virtual and augmented reality in thoracic surgery: A systematic review. Interact. Cardiovasc. Thorac. Surg. 2022, 34, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, N.; Wang, B.; Lv, X. Trends in the use of augmented reality, virtual reality, and mixed reality in surgical research: A global bibliometric and visualized analysis. Indian J. Surg. 2022, 84, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Canda, A.E.; Aksoy, S.F.; Altinmakas, E.; Koseoglu, E.; Falay, O.; Kordan, Y.; Çil, B.; Balbay, M.D.; Esen, T. Virtual reality tumor navigated robotic radical prostatectomy by using three-dimensional reconstructed multiparametric prostate MRI and 68Ga-PSMA PET/CT images: A useful tool to guide the robotic surgery? BJUI Compass 2020, 1, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Iskander, M.; Ogunsola, T.; Ramachandran, R.; McGowan, R.; Al-Aswad, L.A. Virtual reality and augmented reality in ophthalmology: A contemporary prospective. Asia-Pac. J. Ophthalmol. 2021, 10, 244–252. [Google Scholar] [CrossRef]
- Cevallos, N.; Zukotynski, B.; Greig, D.; Silva, M.; Thompson, R.M. The Utility of Virtual Reality in Orthopedic Surgical Training. J. Surg. Educ. 2022, 79, 1516–1525. [Google Scholar] [CrossRef]
- Wong, K.C.; Sun, Y.E.; Kumta, S.M. Review and Future/Potential Application of Mixed Reality Technology in Orthopaedic Oncology. Orthop. Res. Rev. 2022, 14, 169. [Google Scholar] [CrossRef]
- Gil, M.J.V.; Gonzalez-Medina, G.; Lucena-Anton, D.; Perez-Cabezas, V.; Ruiz-Molinero, M.D.C.; Martín-Valero, R. Augmented reality in physical therapy: Systematic review and meta-analysis. JMIR Ser. Games 2021, 9, e30985. [Google Scholar]
- Jung, Y.G.; Chang, H.J.; Jo, E.S.; Kim, D.H. The Effect of a Horse-Riding Simulator with Virtual Reality on Gross Motor Function and Body Composition of Children with Cerebral Palsy: Preliminary Study. Sensors 2022, 22, 2903. [Google Scholar] [CrossRef]
- Hameed, B.M.Z.; Somani, S.; Keller, E.X.; Balamanigandan, R.; Mahapatra, S.; Pietropaolo, A.; Tonyali, Ş.; Juliebø-Jones, P.; Naik, N.; Mishra, D. Application of Virtual Reality, Augmented Reality, and Mixed Reality in Endourology and Urolithiasis: An Update by YAU Endourology and Urolithiasis Working Group. Front. Surg. 2022, 9, 866946. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 6, e1000097. [Google Scholar]
- Adballah, M.; Espinel, Y.; Calvet, L.; Pereira, B.; Le Roy, B.; Bartoli, A.; Buc, E. Augmented reality in laparoscopic liver resection evaluated on an ex-vivo animal model with pseudo-tumours. Surg. Endosc. 2022, 36, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, V.; Berg, C.; Hultgren, J. Reliability of remote post-mortem veterinary meat inspections in pigs using augmented-reality live-stream video software. Food Control 2021, 125, 107940. [Google Scholar] [CrossRef]
- Araujo, S.E.A.; Delaney, C.P.; Seid, V.E.; Imperiale, A.R.; Bertoncini, A.B.; Nahas, S.C.; Cecconello, I. Short-duration virtual reality simulation training positively impacts performance during laparoscopic colectomy in animal model: Results of a single-blinded randomized trial. Surg. Endosc. 2014, 28, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
- Bassil, A.; Rubod, C.; Borghesi, Y.; Kerbage, Y.; Schreiber, E.S.; Azaïs, H.; Garabedian, C. Operative and diagnostic hysteroscopy: A novel learning model combining new animal models and virtual reality simulation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 211, 42–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, M.; Hellström, M.; Göthlin, J.; Reznick, R.; Lönn, L. Endovascular training with animals versus virtual reality systems: An economic analysis. J. Vasc. Interv. Radiol. 2008, 19, 233–238. [Google Scholar] [CrossRef]
- Cassidy, D.J.; Coe, T.M.; Jogerst, K.M.; McKinley, S.K.; Sell, N.M.; Sampson, M.; Park, Y.S.; Petrusa, E.; Goldstone, R.N.; Hashimoto, D.A. Transfer of virtual reality endoscopy training to live animal colonoscopy: A randomized control trial of proficiency vs. repetition-based training. Surg. Endosc. 2022, 36, 1–10. [Google Scholar] [CrossRef]
- Christ, R.; Guevar, J.; Poyade, M.; Rea, P.M. Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality. PLoS ONE 2018, 13, e0195866. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, I.; Kazmierczak, E.; Stern, L. Comparison of oral surgery task performance in a virtual reality surgical simulator and an animal model using objective measures. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5114–5117. [Google Scholar]
- Lee, S.; Lee, J.; Lee, A.; Park, N.; Song, S.; Seo, A.; Lee, H.; Kim, J.-I.; Eom, K. Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine. Vet. J. 2013, 196, 197–202. [Google Scholar] [CrossRef]
- Lee, S.P.; Cheok, A.D.; James, T.K.S.; Debra, G.P.L.; Jie, C.W.; Chuang, W.; Farbiz, F. A mobile pet wearable computer and mixed reality system for human–poultry interaction through the internet. Pers. Ubiquitous Comput. 2006, 10, 301–317. [Google Scholar] [CrossRef]
- Li, Z.-C.; Niu, G.; Li, K.; Zhan, H.-L.; Xie, Y.-Q.; Wang, L. Augmented reality using 3D shape model for ultrasound-guided percutaneous renal access: A pig model study. In Proceedings of the 7th 2014 Biomedical Engineering International Conference, Fukuoka, Japan, 26–28 November 2014; pp. 1–4. [Google Scholar]
- Li, C.; Zheng, Y.; Yuan, Y.; Li, H. Augmented reality navigation-guided pulmonary nodule localization in a canine model. Transl. Lung Cancer Res. 2021, 10, 4152. [Google Scholar] [CrossRef]
- Luo, H.; Yin, D.; Zhang, S.; Xiao, D.; He, B.; Meng, F.; Zhang, Y.; Cai, W.; He, S.; Zhang, W. Augmented reality navigation for liver resection with a stereoscopic laparoscope. Comput. Methods Programs Biomed. 2020, 187, 105099. [Google Scholar] [CrossRef]
- Peng, M.; Yu, L.; Zhou, Y.; Yang, Y.; Luo, Q.; Cheng, X. Augmented reality-assisted localization of solitary pulmonary nodules for precise sublobar lung resection: A preliminary study using an animal model. Transl. Lung Cancer Res. 2021, 10, 4174. [Google Scholar] [CrossRef]
- Schütz, A.; Kurz, K.; Busch, G. Virtual farm tours—Virtual reality glasses and tablets are suitable tools to provide insights into pig husbandry. PLoS ONE 2022, 17, e0261248. [Google Scholar] [CrossRef]
- Seo, J.H.; Smith, B.M.; Cook, M.; Malone, E.; Pine, M.; Leal, S.; Bai, Z.; Suh, J. Anatomy builder VR: Applying a constructive learning method in the virtual reality canine skeletal system. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Los Angeles, CA, USA, 18–22 March 2017; pp. 245–252. [Google Scholar]
- Shimada, M.; Kurihara, K.; Tsujii, T. Prototype of an Augmented Reality System to Support Animal Surgery using HoloLens 2. In Proceedings of the 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Osaka, Japan, 7–9 March 2022; pp. 335–337. [Google Scholar]
- Vogt, S.; Wacker, F.; Khamene, A.; Elgort, D.R.; Sielhorst, T.; Niemann, H.; Duerk, J.; Lewin, J.S.; Sauer, F. Augmented reality system for MR-guided interventions: Phantom studies and first animal test. In Proceedings of the Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, San Diego, CA, USA, 15–17 February 2004; Volume 5367, pp. 100–109. [Google Scholar]
- Wilkie, N.; McSorley, G.; Creighton, C.; Sanderson, D.; Muirhead, T.; Bressan, N. Mixed reality for veterinary medicine: Case study of a canine femoral nerve block. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 6074–6077. [Google Scholar]
- Xu, X.; Mangina, E.; Kilroy, D.; Kumar, A.; Campbell, A.G. Delaying when all dogs to go to heaven: Virtual reality canine anatomy education pilot study. In Proceedings of the 2018 IEEE Games, Entertainment, Media Conference (GEM), Galway, Ireland, 15–17 August 2018; pp. 1–9. [Google Scholar]
- Zanchet, D.J.; Montero, E.F.D.S. Pig liver sectorization and segmentation and virtual reality depiction. Acta Cirúrgica Bras. 2002, 17, 381–387. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, M.; Shi, Y.; Lin, L.; Chai, G.; Zhang, Y.; Xie, L. Robot-assisted surgery for mandibular angle split osteotomy using augmented reality: Preliminary results on clinical animal experiment. Aesthetic Plast. Surg. 2017, 41, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Forsslund, J.; Sallnas, E.-L.; Palmerius, K.-J. A user-centered designed FOSS implementation of bone surgery simulations. In Proceedings of the World Haptics 2009—Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, 18–20 March 2009; pp. 391–392. [Google Scholar]
- Tang, F.M.K.; Lee, R.M.F.; Szeto, R.H.L.; Cheung, J.C.T.; Ngan, O.M.Y. Experiential learning with virtual reality: Animal handling training. Innov. Educ. 2020, 2, 1–9. [Google Scholar] [CrossRef]
Author | Animal Model | Discipline | Used Technology | Type of Study | Aim of Study |
---|---|---|---|---|---|
Adballah et al. 2021 [32] | Sheep liver | Medicine (laparoscopy) | Non-HMD-based AR | Randomized controlled trial | Test the performance of AR software in tumor resection |
Almqvist et al. 2021 [33] | Pig | Food Safety (meat hygiene) | Non-HMD-based AR | Non-randomized clinical trial | Remote post-mortem meat inspection in pigs |
Araujo et al. 2014 [34] | Swine | Medicine (laparoscopy) | Semi-immersive VR | Randomized controlled trial | Assess the effect of colectomy training with VR |
Bassil et al. 2017 [35] | Bovine | Gynecology and Obstetrics | Semi-immersive VR | Before-and-after | Assess the combination of animal models and VR simulations |
Berry et al. 2008 [36] | Swine | Medicine (endovascular surgery) | Semi-immersive VR | Case-control | Assess economic aspects of the VR simulation in endovascular surgery training |
Cassidy et al. 2022 [37] | Swine | Medicine (endoscopy) | Semi-immersive VR | Randomized controlled trial | Compare proficiency-based vs. repetition-based VR training in swine colonoscopy |
Christ et al. 2018 [38] | Canine | Veterinary Medicine (anatomy) | Non-HMD-based AR | Proof of concept | Develop a canine head anatomic model |
Hunt et al. 2020 [3] | Canine | Veterinary Medicine (surgery) | Full-immersive VR | Randomized controlled trial | Effect of VR simulation on first surgical performance |
Ioannou et al. 2015 [39] | Ovine | Dentistry | Full-immersive VR | Randomized controlled trial | Effect of VR simulation on surgical performance |
Lee et al. 2013 [40] | Canine | Veterinary Medicine | Non-HMD-based AR | Randomized controlled trial | AR intravenous injection simulator for veterinary students |
Lee et al. 2006 [41] | Poultry | Computer Science (human–poultry interaction) | HMD-based AR | Proof of concept | Developing a mixed-reality system for human–animal interactions |
Li et al. 2014 [42] | Swine | Biomedical Engineering | Non-HMD-based AR | Non-randomized clinical trial | Augmented-ultrasound-guided renal puncture in pigs |
Li et al. 2021 [43] | Canine | Medicine (Thorax Surgery) | HMD-based AR | Non-randomized clinical trial | AR navigation-guided pulmonary nodule localization in dogs |
Luo et al. 2020 [44] | Swine | Medicine (Laparoscopy) | Non-HMD-based AR | Qualitative and quantitative reporting results on usability | AR-assisted navigation system for laparoscopic liver resection in pigs |
Peng et al. 2021 [45] | Swine | Medicine (Thorax Surgery) | HMD-based AR | Non-randomized clinical trial | AR-assisted localization of pulmonary nodules in pigs |
Schütz et al. 2022 [46] | Swine husbandry | Veterinary Medicine (Swine Husbandry) | Full-immersive VR | Pilot | Using virtual farm tours to provide insights into pig farms |
Seo et al. 2017 [47] | Canine | Veterinary Medicine (Anatomy) | Full-immersive VR | Pilot | Defining learning methods in the VR canine skeletal system |
Shimada et al. 2022 [48] | Animal | Veterinary Medicine (Anatomy/Surgery) | HMD-based AR | Prototype testing | Prototype of an AR system to support animal surgery |
Tang et al. 2021 [12] | Virtual mouse | Biomedical Science | Full-immersive VR | Pilot | Using VR simulation for animal handling |
Vogt et al. 2004 [49] | Swine | Medicine/ Biomedical Engineering | HMD-based AR | Pilot | AR navigation system for MR-guided needle placement procedure in pigs |
Wilkie et al. 2020 [50] | Canine | Veterinary Medicine (Anesthesia) | HMD-based AR | Pilot | AR-guided femoral nerve block in a dog |
Xu et al. 2018 [51] | Canine | Veterinary Medicine (Anatomy) | Full-immersive VR | Pilot | Creating a VR application for teaching and examining dog anatomy in veterinary education |
Zanchet and Montero 2002 [52] | Pig Liver | Medicine (Anatomy) | Non-immersive VR | Proof of concept | Developing a VR model for the evaluation of pig liver anatomy |
Zhou et al. 2017 [53] | Canine | Dentistry | HMD-based AR | Non-randomized clinical trial | Robot-assisted mandibular drilling in the canine mandible using AR |
VR/AR in Veterinary Medicine | VR/AR in Human Medicine Using Animal Models | Other VR/AR Projects Using Animal Models |
---|---|---|
Almqvist et al. 2021 [33] | Adballah et al. 2021 [32] | Lee et al. 2006 [41] |
Christ et al. 2018 [38] | Araujo et al. 2014 [34] | Tang et al. 2021 [12] |
Hunt et al. 2020 [3] | Bassil et al. 2017 [35] | Vogt et al. 2004 [49] |
Lee et al. 2013 [40] | Berry et al. 2008 [36] | |
Schütz et al. 2022 [46] | Cassidy et al. 2022 [37] | |
Seo et al. 2017 [47] | Ioannou et al. 2015 [39] | |
Shimada et al. 2022 [48] | Li et al. 2014 [42] | |
Wilkie et al. 2020 [50] | Li et al. 2021 [43] | |
Xu et al. 2018 [51] | Luo et al. 2020 [44] | |
Peng et al. 2021 [45] | ||
Zanchet and Montero 2002 [52] | ||
Zhou et al. 2017 [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghapour, M.; Bockstahler, B. State of the Art and Future Prospects of Virtual and Augmented Reality in Veterinary Medicine: A Systematic Review. Animals 2022, 12, 3517. https://doi.org/10.3390/ani12243517
Aghapour M, Bockstahler B. State of the Art and Future Prospects of Virtual and Augmented Reality in Veterinary Medicine: A Systematic Review. Animals. 2022; 12(24):3517. https://doi.org/10.3390/ani12243517
Chicago/Turabian StyleAghapour, Masoud, and Barbara Bockstahler. 2022. "State of the Art and Future Prospects of Virtual and Augmented Reality in Veterinary Medicine: A Systematic Review" Animals 12, no. 24: 3517. https://doi.org/10.3390/ani12243517
APA StyleAghapour, M., & Bockstahler, B. (2022). State of the Art and Future Prospects of Virtual and Augmented Reality in Veterinary Medicine: A Systematic Review. Animals, 12(24), 3517. https://doi.org/10.3390/ani12243517