Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Heat Tolerance
3. Beef Tenderness
3.1. Calpains and Calpastatin
3.2. Muscle Properties of Bos Indicus versus Bos Taurus
3.3. The Conversion of Muscle to Meat
3.4. Mitochondria
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Crouse, J.D.; Cundiff, L.V.; Koch, R.M.; Koohmaraie, M.; Seideman, S.C. Comparisons of Bos indicus and Bos taurus inheritance for carcass beef characteristics and meat palatability. J. Anim. Sci. 1989, 67, 2661–2668. [Google Scholar] [CrossRef]
- Elzo, M.A.; Johnson, D.D.; Wasdin, J.G.; Driver, J.D. Carcass and meat palatability breed differences and heterosis effects in an Angus-Brahman multibreed population. Meat Sci. 2012, 90, 87–92. [Google Scholar] [CrossRef]
- Sherbeck, J.A.; Tatum, J.D.; Field, T.G.; Morgan, J.B.; Smith, G.C. Effect of phenotypic expression of Brahman breeding on marbling and tenderness Traits. J. Anim. Sci. 1996, 74, 304–309. [Google Scholar] [CrossRef]
- Beatty, D.T.; Barnes, A.; Taylor, E.; Pethick, D.; McCarthy, M.; Maloney, S.K. Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci. 2006, 84, 972–985. [Google Scholar] [CrossRef] [Green Version]
- Davila, K.M.S.; Hamblen, H.; Hansen, P.J.; Dikmen, S.; Oltenacu, P.A.; Mateescu, R.G. Genetic parameters for hair characteristics and core body temperature in a multibreed Brahman—Angus herd1. J. Anim. Sci. 2019, 97, 3246–3252. [Google Scholar] [CrossRef]
- Dikmen, S.; Mateescu, R.G.; Elzo, M.A.; Hansen, P.J. Determination of the optimum contribution of Brahman genetics in an Angus-Brahman multibreed herd for regulation of body temperature during hot weather. J. Anim. Sci. 2018, 96, 2175–2183. [Google Scholar] [CrossRef]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Ravagnolo, O.; Misztal, I. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Webster, A.J.F. The energetic efficiency of metabolism. Proc. Nutr. Soc. 1981, 40, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Hawryluk, B.; McKinney, M.; Gingerich, C.; Bell, L.; Ramos, P.M.; Scheffler, T. Organ and cellular contributions to heat production in Brahman and Angus steers. J. Anim. Sci. 2021, 99, 422–423. [Google Scholar] [CrossRef]
- Rolfe, D.F.S.; Brown, G.C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 1997, 77, 731–758. [Google Scholar] [CrossRef] [Green Version]
- Gomes, R.A.; Busato, K.C.; Ladeira, M.M.; Johnson, K.A.; Galvão, M.C.; Rodrigues, A.C.; Chizzotti, M.L. Energy and protein requirements for Angus and Nellore young bulls. Livest. Sci. 2017, 195, 67–73. [Google Scholar] [CrossRef]
- Elzo, M.A.; Lamb, G.C.; Johnson, D.D.; Thomas, M.G.; Misztal, I.; Rae, D.O.; Martinez, C.A.; Wasdin, J.G.; Driver, J.D. Genomic-polygenic evaluation of Angus-Brahman multibreed cattle for feed efficiency and postweaning growth using the illumina 3K chip. J. Anim. Sci. 2012, 90, 2488–2497. [Google Scholar] [CrossRef] [Green Version]
- Purslow, P.P. New developments on the role of intramuscular connective tissue in meat toughness. Annu. Rev. Food Sci. Technol. 2014, 5, 133–153. [Google Scholar] [CrossRef]
- Platter, W.J.; Tatum, J.D.; Belk, K.E.; Chapman, P.L.; Scanga, J.A.; Smith, G.C. Relationships of consumer sensory ratings, marbling score, and shear force value to consumer acceptance of beef strip loin steaks. J. Anim. Sci. 2003, 81, 2741–2750. [Google Scholar] [CrossRef] [Green Version]
- Huff-Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Cundiff, L.V.; Koch, R.M. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J. Anim. Sci. 1994, 72, 3145–3151. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Seideman, S.C.; Schollmeyer, J.E.; Dutson, T.R.; Crouse, J.D. Effect of post-mortem storage on Ca++-dependent proteases, their inhibitor and myofibril fragmentation. Meat Sci. 1987, 19, 187–196. [Google Scholar] [CrossRef]
- Geesink, G.H.; Kuchay, S.; Chishti, A.H.; Koohmaraie, M. Μ-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci. 2006, 84, 2834–2840. [Google Scholar] [CrossRef] [Green Version]
- Goll, D.E.; Thompson, V.F.; Li, H.; Wei, W.E.I.; Cong, J. The calpain system. Physiol. Rev. 2003, 83, 731–801. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Savell, J.W.; Cross, H.R.; Lunt, D.K.; Smith, S.B. Mechanisms associated with the variation in tenderness of meat from Brahman and Hereford cattle. J. Anim. Sci. 1990, 68, 4206–4220. [Google Scholar] [CrossRef]
- Whipple, G.; Koohmaraie, M.; Dikeman, M.E.; Crouse, J.D.; Hunt, M.C.; Klemm, R.D. Evaluation of attributes that affect longissimus muscle tenderness in Bos taurus and Bos indicus cattle. J. Anim. Sci. 1990, 68, 2716–2728. [Google Scholar] [CrossRef] [Green Version]
- Pringle, T.D.; Williams, S.E.; Lamb, B.S.; Johnson, D.D.; West, R.L. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers. J. Anim. Sci. 1997, 75, 2955–2961. [Google Scholar] [CrossRef]
- Cruzen, S.M.; Paulino, P.V.R.; Lonergan, S.M.; Huff-Lonergan, E. Postmortem proteolysis in three muscles from growing and mature beef cattle. Meat Sci. 2014, 96, 854–861. [Google Scholar] [CrossRef]
- Lomiwes, D.; Farouk, M.M.; Wu, G.; Young, O.A. The development of meat tenderness is likely to be compartmentalised by ultimate pH. Meat Sci. 2014, 96, 646–651. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Mitsuhashi, T.; Beekman, D.D.; Parrish, F.C.; Olson, D.G.; Robson, R.M. Proteolysis of specific muscle structural proteins by µ-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J. Anim. Sci. 1996, 74, 993–1008. [Google Scholar] [CrossRef] [Green Version]
- Koohmaraie, M.; Whipple, G.; Kretchman, D.H.; Crouse, J.D.; Mersmann, H.J. Postmortem proteolysis in longissimus muscle of beef, lamb, and pork carcasses. J. Anim. Sci. 1991, 69, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Koohmaraie, M.; Shackelford, S.D.; Wheeler, T.L.; Lonergan, S.M.; Doumit, M.E. A muscle hypertrophy condition in lamb (callipyge): Characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 1995, 73, 3596–3607. [Google Scholar] [CrossRef]
- Pringle, T.D.; Harrelson, J.M.; West, R.L.; Williams, S.E.; Johnson, D.D. Calcium-activated tenderization of strip loin, top sirloin, and top round steaks in diverse genotypes of cattle. J. Anim. Sci. 1999, 77, 3230–3237. [Google Scholar] [CrossRef] [Green Version]
- Duckett, S.K.; Pratt, S.L. Meat science and muscle biology symposium—Anabolic implants and meat quality. J. Anim. Sci. 2014, 92, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Garmyn, A.J.; Miller, M.F. Meat science and muscle biology symposium—Implant and beta agonist impacts on beef palatability. J. Anim. Sci. 2014, 92, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Barendse, W.; Harrison, B.E.; Hawken, R.J.; Ferguson, D.M.; Thompson, J.M.; Thomas, M.B.; Bunch, R.J. Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics. 2007, 176, 2601–2610. [Google Scholar] [CrossRef] [Green Version]
- White, S.N.; Casas, E.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; Riley, D.G.; Chase, C.C.; Johnson, D.D.; Keele, J.W.; Smith, T.P.L. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 2005, 83, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Leal-Gutiérrez, J.D.; Elzo, M.A.; Johnson, D.D.; Scheffler, T.L.; Scheffler, J.M.; Mateescu, R.G. Association of μ-calpain and calpastatin polymorphisms with meat tenderness in a Brahman—Angus population. Front. Genet. 2018, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas, E.; White, S.N.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; Riley, D.G.; Chase, C.C.; Johnson, D.D.; Smith, T.P.L. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 2006, 84, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raynaud, P.; Gillard, M.; Parr, T.; Bardsley, R.; Amarger, V.; Levéziel, H. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch. Biochem. Biophys. 2005, 440, 46–53. [Google Scholar] [CrossRef]
- Martins, T.S.; Sanglard, L.M.P.; Silva, W.; Chizzotti, M.L.; Ladeira, M.M.; Serão, N.V.L.; Paulino, P.V.R.; Duarte, M.S. Differences in skeletal muscle proteolysis in Nellore and Angus cattle might be driven by calpastatin activity and not the abundance of calpain/calpastatin. J. Agric. Sci. 2017, 155, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
- Salamino, F.; De Tullio, R.; Michetti, M.; Mengotti, P.; Melloni, E.; Pontremoli, S. Modulation of calpastatin specificity in rat tissues by reversible phosphorylation and dephosphorylation. Biochem. Biophys. Res. Commun. 1994, 199, 1326–1332. [Google Scholar] [CrossRef]
- Averna, M.; De Tullio, R.; Passalacqua, M.; Salamino, F.; Pontremoli, S.; Melloni, E. Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochem. J. 2001, 354, 25–30. [Google Scholar] [CrossRef]
- De Oliveira, L.G.; Delgado, E.F.; Steadham, E.M.; Huff-Lonergan, E.; Lonergan, S.M. Association of calpain and calpastatin activity to postmortem myofibrillar protein degradation and sarcoplasmic proteome changes in bovine Longissiumus lumborum and Triceps brachii. Meat Sci. 2019, 155, 50–60. [Google Scholar] [CrossRef]
- Goodman, C.A.; Kotecki, J.A.; Jacobs, B.L.; Hornberger, T.A. Muscle fiber type-dependent differences in the regulation of protein synthesis. PLoS ONE. 2012, 7, e37890. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.A.; Ramos, P.; Johnson, D.D.; Scheffler, J.M.; Elzo, M.A.; Mateescu, R.G.; Bass, A.L.; Carr, C.C.; Scheffler, T.L. Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multibreed herd. Meat Sci. 2018, 135, 84–93. [Google Scholar] [CrossRef]
- Cooke, R.F.; Bill, E. Kunkle Interdisciplinary Beef Symposium: Temperament and acclimation to human handling influence growth, health, and reproductive responses in Bos taurus and Bos indicus cattle. J. Anim. Sci. 2014, 92, 5325–5333. [Google Scholar] [CrossRef] [Green Version]
- Francisco, C.L.; Resende, F.D.; Benatti, J.M.B.; Castilhos, A.M.; Cooke, R.F.; Jorge, A.M. Impacts of temperament on Nellore cattle: Physiological responses, feedlot performance, and carcass characteristics. J. Anim. Sci. 2015, 93, 5419–5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sant’Anna, A.C.; Valente, T.D.S.; Magalhaes, A.F.B.; Espigolan, R.; Ceballos, M.C.; De Albuquerque, L.G.; Da Costa, M.J.R.P. Relationships between temperament, meat quality, and carcass traits in Nellore cattle. J. Anim. Sci. 2019, 97, 4721–4731. [Google Scholar] [CrossRef]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; Mcintyre, B.L.; Geesink, G.H.; Greenwood, P.L. Cattle temperament: Persistence of assessments and associations with productivity, efficiency, carcass and meat quality traits. J. Anim. Sci. 2011, 89, 1452–1465. [Google Scholar] [CrossRef]
- Bardsley, R.G.; Allock, S.M.J.; Allcock, S.M.J.; Dumelow, N.W.; Higgins, J.A.; Lasslett, Y.V.; Lockley, A.K.; Parr, T.; Buttery, P.J. Effect of β-agonists on expression of calpain and calpastatin activity in skeletal muscle. Biochimie 1992, 74, 267–273. [Google Scholar] [CrossRef]
- De Moura Souza, G.; da Silva Coutinho, M.A.; Ramos, P.M.; de Oliveira, G.M.; Lonergan, S.M.; Delgado, E.F. Tough aged meat presents greater expression of calpastatin, which presents postmortem protein profile and tenderization related to Nellore steer temperament. Meat Sci. 2019, 156, 131–138. [Google Scholar] [CrossRef]
- King, D.A.; Pfeiffer, C.E.S.; Randel, R.D.; Welsh, T.H.; Oliphint, R.A.; Baird, B.E.; Curley, K.O.; Vann, R.C.; Hale, D.S.; Savell, J.W. Influence of animal temperament and stress responsiveness on the carcass quality and beef tenderness of feedlot cattle. Meat Sci. 2006, 74, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Bendall, J.R. The shortening of rabbit muscles during rigor mortis: Its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction. J. Physiol. 1951, 114, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Boehm, M.L.; Kendall, T.L.; Thompson, V.F.; Goll, D.E. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. J. Anim. Sci. 1998, 76, 2415–2434. [Google Scholar] [CrossRef]
- Colle, M.J.; Doumit, M.E. Effect of extended aging on calpain-1 and -2 activity in beef longissimus lumborum and semimembranosus muscles. Meat Sci. 2017, 131, 142–145. [Google Scholar] [CrossRef]
- Maddock, K.R.; Huff-Lonergan, E.; Rowe, L.J.; Lonergan, S.M. Effect of pH and ionic strength on μ- and m-calpain inhibition by calpastatin. J. Anim. Sci. 2005, 83, 1370–1376. [Google Scholar] [CrossRef] [Green Version]
- Dransfeld, E. Modelling post-mortem tenderisation—V: Inactivation of calpains. Meat Sci. 1994, 37, 391–409. [Google Scholar] [CrossRef]
- Hwang, I.H.; Thompson, J.M. The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle. Meat Sci. 2001, 58, 167–174. [Google Scholar] [CrossRef]
- Locker, R.H.; Hagyard, C.J. A cold shortening effect in beef muscles. J. Sci. Food Agric. 1963, 14, 787–793. [Google Scholar] [CrossRef]
- Mohrhauser, D.A.; Lonergan, S.M.; Huff-Lonergan, E.; Underwood, K.R.; Weaver, A.D. Calpain-1 activity in bovine muscle is primarily influenced by temperature, not pH decline. J. Anim. Sci. 2014, 92, 1261–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- England, E.M.; Matarneh, S.K.; Mitacek, R.M.; Abraham, A.; Ramanathan, R.; Wicks, J.C.; Shi, H.; Scheffler, T.L.; Oliver, E.M.; Helm, E.T.; et al. Presence of oxygen and mitochondria in skeletal muscle early postmortem. Meat Sci. 2018, 139, 97–106. [Google Scholar] [CrossRef]
- Ramos, P.M.; Li, C.; Elzo, M.A.; Wohlgemuth, S.E.; Scheffler, T.L. Mitochondrial oxygen consumption in early postmortem permeabilized skeletal muscle fibers is influenced by cattle breed. J. Anim. Sci. 2020, 98, skaa044. [Google Scholar] [CrossRef]
- Ramos, P.M.; Bell, L.C.; Wohlgemuth, S.; Scheffler, T. Mitochondrial function in oxidative and glycolytic bovine skeletal muscle postmortem. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- James, R.S.; Tallis, J. The likely effects of thermal climate change on vertebrate skeletal muscle mechanics with possible consequences for animal movement and behaviour. Conserv. Physiol. 2019, 7, coz066. [Google Scholar] [CrossRef]
- Ramos, P.M.; Wright, S.A.; Delgado, E.F.; van Santen, E.; Johnson, D.D.; Scheffler, J.M.; Elzo, M.A.; Carr, C.C.; Scheffler, T.L. Resistance to pH decline and slower calpain-1 autolysis are associated with higher energy availability early postmortem in Bos taurus indicus cattle. Meat Sci. 2020, 159, 107925. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.S.; Buhler, J.F.; Davis, H.T.; Thornton, K.J.; Scheffler, T.L.; Matarneh, S.K. Inhibition of mitochondrial calcium uniporter enhances postmortem proteolysis and tenderness in beef cattle. Meat Sci. 2020, 162, 108039. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.K.W. Calpain and caspase: Can you tell the difference? Trends Neurosci. 2000, 23, 20–26. [Google Scholar] [CrossRef]
- Cramer, T.; Penick, M.L.; Waddell, J.N.; Bidwell, C.A.; Kim, Y.H.B. A new insight into meat toughness of callipyge lamb loins—The relevance of anti-apoptotic systems to decreased proteolysis. Meat Sci. 2018, 140, 66–71. [Google Scholar] [CrossRef]
- Huang, F.; Huang, M.; Zhang, H.; Guo, B.; Zhang, D.; Zhou, G. Cleavage of the calpain inhibitor, calpastatin, during postmortem ageing of beef skeletal muscle. Food Chem. 2014, 148, 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Kim, C.N.; Yang, J.; Jemmerson, R.; Wang, X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Underwood, K.R.; Means, W.J.; Du, M. Caspase 3 is not likely involved in the postmortem tenderization of beef muscle. J. Anim. Sci. 2008, 86, 960–966. [Google Scholar] [CrossRef]
- Mohrhauser, D.A.; Underwood, K.R.; Weaver, A.D. In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-3. J. Anim. Sci. 2011, 89, 798–808. [Google Scholar] [CrossRef]
- Rowe, L.J.; Maddock, K.R.; Lonergan, S.M.; Huff-Lonergan, E. Influence of early postmortem protein oxidation on beef quality. J. Anim. Sci. 2004, 82, 785–793. [Google Scholar] [CrossRef]
- Smuder, A.J.; Kavazis, A.N.; Hudson, M.B.; Nelson, W.B.; Powers, S.K. Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic. Biol. Med. 2010, 49, 1152–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheffler, T.L. Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle. Animals 2022, 12, 220. https://doi.org/10.3390/ani12030220
Scheffler TL. Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle. Animals. 2022; 12(3):220. https://doi.org/10.3390/ani12030220
Chicago/Turabian StyleScheffler, Tracy L. 2022. "Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle" Animals 12, no. 3: 220. https://doi.org/10.3390/ani12030220
APA StyleScheffler, T. L. (2022). Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle. Animals, 12(3), 220. https://doi.org/10.3390/ani12030220