Genomic Selection and Genome-Wide Association Analysis for Stress Response, Disease Resistance and Body Weight in European Seabass
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Population
2.3. Study Design and Measurements
2.4. Genotyping and Quality Control
2.5. Estimation of Heritability
2.5.1. Stress Indicators
2.5.2. Body Weight
2.6. GWAS Analysis
2.6.1. Stress Indicators
2.6.2. Body Weight
2.6.3. Disease Resistance
2.7. Genomic Prediction and Comparison with Pedigree-Based Approach
3. Results
3.1. SNPs after QC
3.2. Estimation of Heritability and Genetic Parameters
3.2.1. Stress Indicators
3.2.2. Body Weight
3.3. GWAS
3.3.1. Stress Indicators
3.3.2. Body Weight and Disease Resistance
3.4. Genomic Selection and Comparison with Pedigree-Based Approach
4. Discussion
4.1. Heritability of the Stress Indicators
4.2. Heritability and Genetic Parameters for Body Weight
4.3. GWAS of Stress Indicators
4.4. GWAS of Body Weight
4.5. GWAS for Disease Resistance
4.6. Genomic Selection and Comparison with Pedigree-Based Approach
4.7. Limitations and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Fisheries Statistics and Information; FAO Fisheries and Aquaculture Department: Rome, Italy, 2018. [Google Scholar]
- EUMOFA. Case Study: Seabass in the EU; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Janssen, K.; Chavanne, H.; Berentsen, P.; Komen, H. Impact of selective breeding on European aquaculture. Aquaculture 2017, 472, 8–16. [Google Scholar] [CrossRef]
- Robledo, D.; Palaiokostas, C.; Bargelloni, L.; Martínez, P.; Houston, R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac. 2018, 10, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Chavanne, H.; Janssen, K.; Hofherr, J.; Contini, F.; Haffray, P.; Komen, H.; Nielsen, E.E.; Bargelloni, L. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquac. Int. 2016, 24, 1287–1307. [Google Scholar] [CrossRef]
- Pickering, A.D. Growth and stress in fish production. Aquaculture 1993, 111, 51–63. [Google Scholar] [CrossRef]
- Pottinger, T.G. The stress response in fish: Mechanisms, effects and measurement. In Fish Welfare; Branson, E., Ed.; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; pp. 32–48. [Google Scholar] [CrossRef]
- Fevolden, S.E.; Refstie, T.; Gjerde, B. Genetic and phenotypic parameters for cortisol and glucose stress response in Atlantic salmon and rainbow trout. Aquaculture 1993, 118, 205–216. [Google Scholar] [CrossRef]
- Fevolden, S.E.; Røed, K.H.; Fjalestad, K.T.; Stien, J. Poststress levels of lysozyme and cortisol in adult rainbow trout: Heritabilities and genetic correlations. J. Fish Biol. 1999, 54, 900–910. [Google Scholar] [CrossRef]
- Fevolden, S.E.; Røed, K.H.; Fjalestad, K.T. Selection response of cortisol and lysozyme in rainbow trout and correlation to growth. Aquaculture 2002, 205, 61–75. [Google Scholar] [CrossRef]
- Øverli, Ø.; Pottinger, T.G.; Carrick, T.R.; Øverli, E.; Winberg, S. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J. Exp. Biol. 2002, 205, 391–395. [Google Scholar] [CrossRef]
- Fevolden, S.E.; Røed, K.H.; Gjerde, B. Genetic components of post-stress cortisol and lysozyme activity in Atlantic salmon; correlations to disease resistance. Fish Shellfish Immunol. 1994, 4, 507–519. [Google Scholar] [CrossRef]
- Fanouraki, E.; Mylonas, C.C.; Papandroulakis, N.; Pavlidis, M. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen. Comp. Endocrinol. 2011, 173, 313–322. [Google Scholar] [CrossRef]
- Samaras, A.; Dimitroglou, A.; Sarropoulou, E.; Papaharisis, L.; Kottaras, L.; Pavlidis, M. Repeatability of cortisol stress response in the European sea bass (Dicentrarchus labrax) and transcription differences between individuals with divergent responses. Sci. Rep. 2016, 6, 34858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaras, A.; Papandroulakis, N.; Costari, M.; Pavlidis, M. Stress and metabolic indicators in a relatively high (European sea bass, Dicentrarchus labrax) and a low (meagre, Argyrosomus regius) cortisol responsive species; in different water temperatures. Aquac. Res. 2016, 47, 3501–3515. [Google Scholar] [CrossRef]
- Vandeputte, M.; Porte, J.D.; Auperin, B.; Dupont-Nivet, M.; Vergnet, A.; Valotaire, C.; Claireaux, G.; Prunet, P.; Chatain, B. Quantitative genetic variation for post-stress cortisol and swimming performance in growth-selected and control populations of European sea bass (Dicentrarchus labrax). Aquaculture 2016, 455, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chatziplis, D.; Oikonomou, S.; Loukovitis, D.; Tsiokos, D.; Samaras, A.; Dimitroglou, A.; Kottaras, L.; Papanna, K.; Papaharisis, L.; Tsigenopoulos, C.; et al. QTL for Stress and Disease Resistance in European. Animals 2020, 10, 1668. [Google Scholar] [CrossRef] [PubMed]
- Volckaert, F.A.M.; Hellemans, B.; Batargias, C.; Louro, B.; Massault, C.; Van Houdt, J.K.J.; Haley, C.; de Koning, D.-J.; Canario, A.V. Heritability of cortisol response to confinement stress in European sea bass Dicentrarchus labrax. Genet. Sel. Evol. 2012, 44, 15. [Google Scholar] [CrossRef] [Green Version]
- Dupont-Nivet, M.; Vandeputte, M.; Vergnet, A.; Merdy, O.; Haffray, P.; Chavanne, H.; Chatain, B. Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture 2008, 275, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Saillant, E.; Dupont-Nivet, M.; Sabourault, M.; Haffray, P.; Laureau, S.; Vidal, M.O.; Chatain, B. Genetic variation for carcass quality traits in cultured sea bass (Dicentrarchus labrax). Aquat Living Resour. 2009, 22, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Horri, K.; Allal, F.; Vergnet, A.; Benhaim, D.; Vandeputte, M.; Chatain, B.; Bégout, M.-L. Heritability of boldness and hypoxia avoidance in European seabass; Dicentrarchus labrax. PLoS ONE 2016, 11, e0168506. [Google Scholar] [CrossRef]
- Massault, C.; Hellemans, B.; Louro, B.; Batargias, C.; Van Houdt, J.K.J.; Canario, A.; Volckaert, F.A.M.; Bovenhuis, H.; Haley, C.; de Koning, D.J. QTL for body weight; morphometric traits and stress response in European sea bass Dicentrarchus labrax. Anim Genet. 2009, 41, 337–345. [Google Scholar] [CrossRef]
- Chatziplis, D.; Batargias, C.; Tsigenopoulos, C.S.; Magoulas, A.; Kollias, S.; Kotoulas, G.; Volckaert, F.A.; Haley, C.S. Mapping quantitative trait loci in European sea bass (Dicentrarchus labrax): The BASSMAP pilot study. Aquaculture 2007, 272 (Suppl. 1), 172–182. [Google Scholar] [CrossRef]
- Griot, R.; Allal, F.; Phocas, F.; Brard-Fudulea, S.; Morvezen, R.; Bestin, A.; Haffray, P.; François, Y.; Morin, T.; Poncet, C.; et al. Genome-wide association studies for resistance to viral nervous necrosis in three populations of European sea bass (Dicentrarchus labrax) using a novel 57k SNP array DlabChip. Aquaculture 2021, 530, 735930. [Google Scholar] [CrossRef]
- Palaiokostas, C.; Cariou, S.; Bestin, A.; Bruant, J.S.; Haffray, P.; Morin, T.; Cabon, J.; Allal, F.; Vandeputte, M.; Houston, R.D. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol. 2018, 50, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ina-Salwany, M.Y.; Alsaari, N.; Mohamad, A.; Mursidi, F.A.; Mohd-Aris, A.; Amal, M.N.A.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in Fish: A Review on Disease Development and Prevention. J Aquat Anim Health 2019, 31, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Palaiokostas, C.; Houston, R.D. Genome-wide approaches to understanding and improving complex traits in aquaculture species. CAB Rev. 2017, 12, 1–23. [Google Scholar] [CrossRef]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Wakchaure, R.; Ganguly, S.; Praveen, P.K.; Kumar, A.; Sharma, S.; Mahajan, T. Marker Assisted Selection (MAS) in Animal Breeding: A Review. J. Drug Metab. Toxicol. 2015, 6, 1000e127. [Google Scholar] [CrossRef]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 2013, 1, 221–237. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Pottinger, T.G.; Carrick, T.R. A comparison of plasma glucose and plasma cortisol as selection markers for high and low stress-responsiveness in female rainbow trout. Aquaculture 1999, 175, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Pottinger, T.G.; Carrick, T.R. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol. 1999, 116, 122–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åkesson, M.; Bensch, S.; Hasselquist, D.; Tarka, M.; Hansson, B. Estimating heritabilities and genetic correlations: Comparing the “Animal model” with parent-offspring regression using data from a natural population. PLoS ONE 2008, 3, e1739. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family Programs; University of Georgia: Athens, GA, USA, 2018; Available online: http://nce.ads.uga.edu/wiki/doku.php?id=documentation (accessed on 25 September 2021).
- Aguilar, I.; Misztal, I.; Tsuruta, S.; Legarra, A.; Wang, H. BLUPF90 suite of programs for animal breeding with focus on genomics. No. 11.751. In Proceedings of the 11th World Congress of Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2014; p. 203. [Google Scholar]
- Rönnegård, L.; McFarlane, S.E.; Husby, A.; Kawakami, T.; Ellegren, H.; Qvarnström, A. Increasing the power of genome wide association studies in natural populations using repeated measures—Evaluation and implementation. Methods Ecol. Evol. 2016, 7, 792–799. [Google Scholar] [CrossRef]
- GenABEL Project Developers. GenABEL: Genome-Wide SNP Association Analysis. R Package Version 1.8-0. 2013. Available online: http://CRAN.R-project.org/package=GenABEL (accessed on 14 September 2021).
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 2014, 11, 407–409. [Google Scholar] [CrossRef]
- Shim, H.; Chasman, D.I.; Smith, J.D.; Mora, S.; Ridker, P.M.; Nickerson, D.A.; Krauss, R.M.; Stephens, M. A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions; and Their Response to Statin Treatment; in 1868 Caucasians. PLoS ONE 2015, 10, e0120758. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 12 August 2020).
- Bonferroni, C.E. Teoria Statistica Delle Classi e Calcolo Delle Probabilità; Pubblicazioni del R. Istituto Superiore di Scienze economiche e Commerciali di Firenze 8; 1936; pp. 3–62. [Google Scholar]
- Henderson, C.R. Best Linear Unbiased Prediction of Breeding Values Not in the Model for Records. J Dairy Sci. 1977, 60, 783–787. [Google Scholar] [CrossRef]
- Legarra, A.; Robert-Granié, C.; Manfredi, E.; Elsen, J.M. Performance of genomic selection in mice. Genetics 2008, 180, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Robledo, D.; Matika, O.; Hamilton, A.; Houston, R.D. Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon. G3 Genes Genomes Genet. 2018, 8, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Besson, M.; Allal, F.; Chatain, B.; Vergnet, A.; Clota, F.; Vandeputte, M. Combining individual phenotypes of feed intake with genomic data to improve feed efficiency in sea bass. Front Genet. 2019, 10, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Pena, D.; Gao, G.; Baranski, M.; Moen, T.; Cleveland, B.M.; Brett Kenney, P.; Vallejo, R.L.; Palti, Y.; Leeds, T.D. Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout (Oncorhynchus mykiss). Front. Genet. 2016, 7, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sola, L.S.B.; Rossi, A.R.; Iaselli, V.; Crosetti, D.; Cataudella, S. A karyotype analysis of the genus Dicentrarchus bu different staining techniques. J Fish Biol. 1993, 43, 329–337. [Google Scholar] [CrossRef]
- Itoh, N.; Ornitz, D.M. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn. 2008, 237, 18–27. [Google Scholar] [CrossRef]
- Yoshida, G.M.; Yáñez, J.M. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genom. 2021, 22, 57. [Google Scholar] [CrossRef]
- Karami, A.M.; Ødegård, J.; Marana, M.H.; Zuo, S.; Jaafar, R.; Mathiessen, H.; von Gersdorff Jørgensen, L.; Kania, P.W.; Dalsgaard, I.; Nielsen, T.; et al. A Major QTL for Resistance to Vibrio anguillarum in Rainbow Trout. Front. Genet. 2020, 11, 607558. [Google Scholar] [CrossRef]
- Shao, C.; Niu, Y.; Rastas, P.; Liu, Y.; Xie, Z.; Li, H.; Wang, L.; Jiang, Y.; Tai, S.; Tian, Y.; et al. Genome-wide SNP identification for the construction of ahigh-resolution genetic map of Japanese flounder (Paralichthys olivaceus): Applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res. 2015, 22, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Caixia, F.; Yang, L.; Zhang, Y.; Liu, S.S.; Sun, D.; Deng, H.; Xu, Y.; Tian, Y.; Liao, X.; et al. A Genome Scan for Quantitative Trait Loci Associated with Vibrio anguillarum Infection Resistance in Japanese Flounder (Paralichthys olivaceus) by Bulked Segregant Analysis. Mar. Biotechnol. 2014, 16, 513–521. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, L.; Liu, Y.; Shao, C.; Chen, S.; Yang, G. Location of Vibrio anguillarum resistance-associated trait loci in half-smooth tongue sole Cynoglossus semilaevis at its microsatellite linkage map. Chin. J. Oceanol. Limnol. 2016, 34, 1309–1319. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Thomas, P.M.; Pankhurst, N.W.; Bremner, H.A. The effect of stress and exercise on post-mortem biochemistry of Atlantic salmon and rainbow trout. J. Fish Biol. 1999, 54, 1177–1196. [Google Scholar] [CrossRef]
Batch | Batch 10 and 13 | Batch 13 | Batch 10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Traits | Number of Observations Per Trait | Age (DPH *) | Number of Offspring | MEAN | SD | Mean | SDV | Mean | SD |
Weight (g) | 1 | 290–306 | 862 | 53.87 | 16.86 | 48.35 | 12.9 | 57.3 | 18.08 |
2 | 318–334 | 858 | 65.26 | 20.85 | 60.35 | 16.37 | 68.28 | 22.68 | |
3 | 346–362 | 861 | 79.25 | 25.78 | 74.62 | 20.46 | 82.12 | 28.22 | |
4 | 362–378 | 861 | 93.02 | 32.78 | 86.9 | 24.28 | 96.8 | 36.59 | |
Cortisol levels (ng mL−1) | 1 | 318–334 | 859 | 339.43 | 79.77 | 300.54 | 68.09 | 363.57 | 76.96 |
2 | 346–362 | 859 | 316.69 | 79.77 | 328.96 | 78.3 | 309.11 | 79.8 | |
3 | 362–378 | 860 | 313.33 | 83.95 | 339.47 | 78.39 | 297.21 | 83.27 | |
Glucose levels (mmol L−1) | 1 | 318–334 | 848 | 6.78 | 2.25 | 6.07 | 1.85 | 7.24 | 2.36 |
2 | 346–362 | 854 | 7.02 | 2.1 | 6.65 | 1.93 | 7.25 | 2.18 | |
3 | 362–378 | 852 | 7.3 | 2.15 | 6.5 | 1.81 | 7.8 | 2.2 | |
Lactate levels (mmol L−1) | 1 | 318–334 | 861 | 6.29 | 3.39 | 5.73 | 2.13 | 6.64 | 3.94 |
2 | 346–362 | 859 | 6.79 | 4.17 | 5.46 | 2.5 | 7.6 | 4.75 | |
3 | 362–378 | 858 | 7 | 4.69 | 4.93 | 2.23 | 8.27 | 5.31 | |
Lysozyme levels (Kui−1) | 1 | 318–334 | 817 | 568.2 | 287.45 | 408.73 | 168.23 | 671.94 | 301.22 |
2 | 346–362 | 815 | 602.19 | 283.89 | 531.16 | 220.02 | 648.83 | 310.43 | |
3 | 362–378 | 814 | 619.79 | 317.26 | 568.2 | 217.93 | 653.56 | 364.32 |
Stress Indicator | h2 (Using PRM *) | Repeatability (Using PRM *) | h2 (Using GRM **) |
---|---|---|---|
Cortisol levels | 0.45 (0.02) | 0.48 (0.02) | 0.43 (0.06) |
Glucose levels | 0.31 (0.04) | 0.32 (0.04) | 0.52 (0.06) |
Lactate levels | 0.61 (0.05) | 0.62 (0.05) | 0.59 (0.06) |
Lysozyme levels | 0.63 (0.02) | 0.64 (0.02) | 0.75 (0.06) |
Weight 1 | Weight 2 | Weight 3 | Weight 4 | |
---|---|---|---|---|
Weight 1 | 0.75 (0.09) | 0.98 (0.01) | 0.93 (0.03) | 0.87 (0.04) |
Weight 2 | 0.95 (0.05) | 0.70 (0.09) | 0.97 (0.01) | 0.94 (0.02) |
Weight 3 | 0.88 (0.01) | 0.95 (0.00) | 0.55 (0.08) | 0.99 (0.00) |
Weight 4 | 0.81 (0.01) | 0.91 (0.01) | 0.98 (0.01) | 0.54 (0.08) |
Weight 1 | Weight 2 | Weight 3 | Weight 4 | |
---|---|---|---|---|
Weight 1 | 0.61 (0.06) | 0.97 (0.01) | 0.90 (0.02) | 0.83 (0.03) |
Weight 2 | 0.95 (0.05) | 0.60 (0.06) | 0.97 (0.01) | 0.93 (0.02) |
Weight 3 | 0.88 (0.01) | 0.95 (0.00) | 0.54 (0.06) | 0.99 (0.00) |
Weight 4 | 0.81 (0.01) | 0.91 (0.01) | 0.98 (0.01) | 0.57 (0.06) |
Trait (Measurement) | Chr | SNP | Position (bp) | MAF | SNP Effect | SE | -log (p-Value) | PVE *** (%) |
---|---|---|---|---|---|---|---|---|
Lactate levels (Repeated measurements) * | 19 (LG5) | AX-172290333 | 25,862,514 | 0.15 | 1.46 | 0.27 | 7.03 | 2.6 |
Lactate levels (3rd **) | 17 (LG3) | AX-172304113 | 6167,189 | 0.075 | 2.47 | 0.47 | 6.63 | 2.5 |
Lactate levels (3rd **) | 19 (LG5) | AX-172290333 | 25,862,514 | 0.15 | 1.84 | 0.35 | 6.69 | 2.5 |
Lysozyme levels (1st **) | 20 (LG6) | AX-172274981 | 7284,104 | 0.2 | 99.18 | 19.87 | 6.12 | 2.2 |
Trait (Measurement) | Chr | SNP | Position (bp) | MAF | SNP Effect | SE | -Log (p-Value) | PVE * (%) |
---|---|---|---|---|---|---|---|---|
Weight (2nd) | 16 (LG24) | AX-172310116 | 11,181,812 | 0.13 | −11.01 | 2.12 | 6.51 | 2.4 |
Weight (2nd) | 16 (LG24) | AX-172322981 | 11,223,301 | 0.28 | −8.01 | 1.44 | 7.35 | 2.8 |
Weight (3rd) | 16 (LG24) | AX-172310116 | 11,181,812 | 0.13 | −15.16 | 2.81 | 6.98 | 2.6 |
Weight (3rd) | 16 (LG24) | AX-172322981 | 11,223,301 | 0.28 | −10.82 | 1.90 | 7.64 | 2.9 |
Weight (4th) | 16 (LG24) | AX-172310116 | 11,181,812 | 0.13 | −20.35 | 3.68 | 7.28 | 2.7 |
Weight (4th) | 16 (LG24) | AX-172322981 | 11,223,301 | 0.28 | −13.27 | 2.51 | 6.73 | 2.5 |
Lactate levels (3rd) | 19 (LG5) | AX-172290333 | 25,862,514 | 0.21 | 2.33 | 0.46 | 6.15 | 2.3 |
Trait | Accuracy with PRM † (EBVs) | Accuracy with GRM †† (GEBVs) | Accuracy ▪ with GRM †† (GEBVs) Using the |
---|---|---|---|
Cortisol levels | 0.40 (0.04) * | 0.51 (0.07) ** | 0.48 (0.06) ** |
Glucose levels | 0.38 (0.03) * | 0.28 (0.04) ** | 0.23 (0.04) ** |
Lactate levels | 0.26 (0.05) * | 0.31 (0.08) ** | 0.28 (0.08) ** |
Lysozyme levels | 0.47 (0.07) * | 0.47 (0.06) ** | 0.48 (0.06) ** |
Weight 1 | 0.54 (0.03) | 0.60 (0.04) | 0.62 (0.04) |
Weight 2 | 0.53 (0.03) | 0.56 (0.04) | 0.62 (0.04) |
Weight 3 | 0.43 (0.05) | 0.41 (0.06) | 0.55 (0.08) |
Weight 4 | 0.42 (0.06) | 0.40 (0.07) | 0.54 (0.10) |
Trait | Correlation |
---|---|
Cortisol levels | 0.79 |
Glucose levels | 0.78 |
Lactate levels | 0.78 |
Lysozyme levels | 0.84 |
Weight 1 | 0.91 |
Weight 2 | 0.88 |
Weight 3 | 0.86 |
Weight 4 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oikonomou, S.; Samaras, A.; Tekeoglou, M.; Loukovitis, D.; Dimitroglou, A.; Kottaras, L.; Papanna, K.; Papaharisis, L.; Tsigenopoulos, C.S.; Pavlidis, M.; et al. Genomic Selection and Genome-Wide Association Analysis for Stress Response, Disease Resistance and Body Weight in European Seabass. Animals 2022, 12, 277. https://doi.org/10.3390/ani12030277
Oikonomou S, Samaras A, Tekeoglou M, Loukovitis D, Dimitroglou A, Kottaras L, Papanna K, Papaharisis L, Tsigenopoulos CS, Pavlidis M, et al. Genomic Selection and Genome-Wide Association Analysis for Stress Response, Disease Resistance and Body Weight in European Seabass. Animals. 2022; 12(3):277. https://doi.org/10.3390/ani12030277
Chicago/Turabian StyleOikonomou, Stavroula, Athanasios Samaras, Maria Tekeoglou, Dimitrios Loukovitis, Arkadios Dimitroglou, Lefteris Kottaras, Kantham Papanna, Leonidas Papaharisis, Costas S. Tsigenopoulos, Michail Pavlidis, and et al. 2022. "Genomic Selection and Genome-Wide Association Analysis for Stress Response, Disease Resistance and Body Weight in European Seabass" Animals 12, no. 3: 277. https://doi.org/10.3390/ani12030277
APA StyleOikonomou, S., Samaras, A., Tekeoglou, M., Loukovitis, D., Dimitroglou, A., Kottaras, L., Papanna, K., Papaharisis, L., Tsigenopoulos, C. S., Pavlidis, M., & Chatziplis, D. (2022). Genomic Selection and Genome-Wide Association Analysis for Stress Response, Disease Resistance and Body Weight in European Seabass. Animals, 12(3), 277. https://doi.org/10.3390/ani12030277