Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Management and Diets
2.2. Sample Collection
2.3. Laboratory Analysis
2.3.1. Proximate Chemical Composition
2.3.2. Collagen Content
2.3.3. Total Content of Muscle Pigments
2.3.4. Fatty Acid Profile
2.4. Statistical Analysis
3. Results
3.1. Proximate Chemical Composition
3.2. Collagen Content
3.3. Total Content of Muscle Pigments
3.4. Fatty Acid Profile
4. Discussion
4.1. Proximate Chemical Composition
4.2. Collagen Content
4.3. Total Content of Muscle Pigments
4.4. Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Meat Market Review—Overview of Global Meat Market Developments in 2020, March 2021. Available online: http://www.fao.org (accessed on 9 May 2021).
- Erdaw, M.M.; Bhuiyan, M.M.; Iji, P.A. Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes. World’s Poult. Sci. J. 2016, 72, 307–322. [Google Scholar] [CrossRef]
- Stein, H.-H.; Berger, L.L.; Drackley, J.K.; Fahey, G.C.; Hernot, D.C.; Parsons, C.M. Nutritional Properties and Feeding Values of Soybeans and Their Coproducts. In Soybeans: Chemistry, Production, Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 613–660. [Google Scholar]
- Redden, R. Genetic Modification for Agriculture—Proposed Revision of GMO Regulation in Australia. Plants 2021, 10, 747. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Walker, R.L.; Houdijk, J.G.M. Evaluation of the nutritive value of legume alternatives to soybean meal for broiler chickens. Poult. Sci. 2019, 98, 5778–5788. [Google Scholar] [CrossRef] [PubMed]
- The U.S. Department of Agriculture (USDA). USDA Foreign Agricultural Service. 2021. Available online: https://www.fas.usda.gov/data/world-agricultural-production (accessed on 9 May 2021).
- Mattila, P.H.; Pihlava, J.M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Qual. Saf. 2018, 2, 213–219. [Google Scholar] [CrossRef]
- Józefiak, D.; Józefiak, A.; Kierończyk, B.; Rawski, M.; Świątkiewicz, S.; Długosz, J.; Engberg, R.M. Insects—A natural nutrient source for poultry—A review. Ann. Anim. Sci. 2016, 16, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Chodová, D.; Tůmová, E. Insects in chicken nutrition. A review. Agron. Res. 2020, 18, 376–392. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Official Journal of the European Union (OJEU), 20.10.2010, L 276/33. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 20 December 2021).
- Aviagen. Ross 308/Ross 308 FF Broiler. Performance Objectives. 2019. Available online: http://en.aviagen.com/brands/ross/products/ross-308 (accessed on 2 January 2019).
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- International Organization for Standardization (ISO) 3496. Meat and meat products. In Determination of Hydroxyproline Content; ISO: Geneva, Switzerland, 1994. [Google Scholar]
- Palka, K. Changes in intramuscular connective tissue and collagen solubility of bovine m. semitendinosus during retorting. Meat Sci. 1999, 53, 189–194. [Google Scholar] [CrossRef]
- Hrynets, Y.; Omana, D.A.; Xu, Y.; Betti, M. Effect of Acid-and Alkaline-Aided Extractions on Functional and Rheological Properties of Proteins Recovered from Mechanically Separated Turkey Meat (MSTM). J. Food Sci. 2010, 75, E477–E486. [Google Scholar] [CrossRef] [PubMed]
- Żegarska, Z.; Jaworski, J.; Borejszo, Z. Evaluation of the Peisker modified method for extracting methyl esters from fatty acids. Acta Acad. Agric. Tech. Olst. 1991, 24, 25–33. [Google Scholar]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef]
- Cummins, V.C.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. Evaluation of black soldier fly (Hermetia illucens) larva meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2017, 473, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Acuti, G.; Marangon, A.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animal 2018, 12, 640–647. [Google Scholar] [CrossRef]
- Mancini, S.; Medina, I.; Iaconisi, V.; Gai, F.; Basto, A.; Parisi, G. Impact of black soldier fly larvae meal on the chemical and nutritional characteristics of rainbow trout fillets. Animal 2018, 12, 1672–1681. [Google Scholar] [CrossRef]
- Secci, G.; Moniello, G.; Gasco, L.; Bovera, F.; Parisi, G. Barbary partridge meat quality as affected by Hermetia illucens and Tenebrio molitor larva meals in feeds. Food Res. Int. 2018, 112, 291–298. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Cullere, M.; Schiavone, A.; Dabbou, S.; Gasco, L.; Dalle Zotte, A. Meat quality and sensory traits of finisher broiler chickens fed with Black Soldier Fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals 2019, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Bang, H.T.; Kim, K.H.; Kim, M.J.; Jeong, J.Y.; Chun, J.L.; Ji, S.Y. Evaluation of black soldier fly larvae oil as a dietary fat source in broiler chicken diets. J. Anim. Sci. Technol. 2020, 62, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popova, T.; Petkov, E.; Ignatova, M. Effect of Black Soldier Fly (Hermetia illucens) meals on the meat quality in broilers. Agric. Food Sci. 2020, 29, 177–188. [Google Scholar] [CrossRef]
- Weston, A.R.; Rogers, R.W.; Althen, T.G. Review: The Role of Collagen in Meat Tenderness. Prof. Anim. Sci. 2002, 18, 107–111. [Google Scholar] [CrossRef]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [Green Version]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Dominguez, B.M.; Aguzzi, A. Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 2002, 67, 1738–1741. [Google Scholar] [CrossRef]
- Wideman, N.; O’Bryan, C.A.; Crandall, P.G. Factors affecting poultry meat colour and consumer preferences—A review. World’s Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Dierenfeld, E.S.; King, J. Digestibility and mineral availability of phoenix worms (Hermetia illucens) ingested by mountain chicken frogs (Leptodactylus fallax). J. Herpetol. Med. Surg. 2009, 18, 100–105. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Luz Fernandez, M.; West, K.L. Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef]
- Smink, W.; Gerrits, W.J.J.; Hovenier, R.; Geelen, M.J.H.; Verstegen, M.W.A.; Beynen, A.C. Effect of dietary fat sources on fatty acid deposition and lipid metabolism in broiler chickens. Poult. Sci. 2010, 89, 2432–2440. [Google Scholar] [CrossRef]
- Poureslami, R.; Turchini, G.M.; Raes, K.; Huyghebaert, G.; De Smet, S. Effect of diet, sex and age on fatty acid metabolism in broiler chickens: SFA and MUFA. Br. J. Nutr. 2010, 104, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Rubayet Bostami, A.B.M.; Mun, H.S.; Yang, C.J. Breast and Thigh Meat Chemical Composition and Fatty Acid Profile in Broilers Fed Diet with Dietary Fat Sources. J. Food Process. Technol. 2017, 8, 672. [Google Scholar] [CrossRef]
Item | Content |
---|---|
C10:0 | 0.86 |
C12:0 | 45.97 |
C14:0 | 8.70 |
C15:0 | 0.15 |
C16:0 | 12.21 |
C16:1 | 1.91 |
C17:0 | 0.20 |
C17:1 | 0.20 |
C18:0 | 2.53 |
C18:1 c9 | 11.24 |
C18:2 | 14.07 |
C18:3 | 1.65 |
C20:0 | 0.10 |
C20:1 | 0.06 |
C20:2 | 0.01 |
C20:4 | 0.14 |
SFAs | 70.72 |
MUFAs | 13.41 |
PUFAs | 15.87 |
Item | Diets | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Starter (1–14 d) | Grower (15–35 d) | Finisher (36–42 d) | ||||||||||
0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | 0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | 0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | |
C10:0 | 0.02 | 0.66 | 0.75 | 0.78 | 0 | 0.36 | 0.46 | 0.56 | 0.02 | 0.49 | 0.42 | 0.42 |
C12:0 | 0.38 | 34.99 | 38.23 | 39.62 | 0.11 | 20.97 | 26.70 | 30.41 | 0.48 | 22.68 | 26.55 | 28.33 |
C14:0 | 0.15 | 7.14 | 7.63 | 8.04 | 0.12 | 4.36 | 5.69 | 6.48 | 0.27 | 4.33 | 5.49 | 5.91 |
C15:0 | 0.03 | 0.17 | 0.17 | 0.17 | 0.03 | 0.10 | 0.14 | 0.16 | 0.33 | 0.41 | 0.13 | 0.11 |
C16:0 | 11.72 | 13.33 | 13.00 | 13.12 | 11.84 | 11.75 | 13.32 | 13.48 | 25.75 | 14.38 | 13.00 | 13.11 |
C16:1 | 0.12 | 1.67 | 1.89 | 1.96 | 0.11 | 1.24 | 1.33 | 1.50 | 0.23 | 1.19 | 1.39 | 1.43 |
C17:0 | 0.13 | 0.23 | 0.23 | 0.24 | 0.15 | 0.19 | 0.23 | 0.23 | 2.80 | 0.30 | 0.20 | 0.18 |
C17:1 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | 0.14 | 0.05 | 0.06 | 0.18 | 0.06 | 0.05 | 0.04 |
C18:0 | 4.28 | 2.62 | 2.42 | 2.49 | 4.34 | 2.97 | 3.10 | 2.86 | 8.76 | 2.29 | 2.98 | 2.92 |
C18:1 c9 | 21.55 | 13.67 | 13.62 | 13.30 | 22.14 | 17.88 | 15.62 | 14.57 | 36.74 | 20.67 | 15.64 | 14.96 |
C18:2 | 54.51 | 23.01 | 19.78 | 18.15 | 53.89 | 35.53 | 29.60 | 26.42 | 22.43 | 29.75 | 30.20 | 28.75 |
C18:3 | 6.30 | 2.01 | 1.87 | 1.69 | 6.45 | 3.90 | 3.27 | 2.77 | 0.66 | 3.10 | 3.42 | 3.19 |
C20:0 | 0.41 | 0.18 | 0.15 | 0.15 | 0.41 | 0.25 | 0.23 | 0.20 | 0.81 | 0.46 | 0.21 | 0.20 |
C20:1 | 0.23 | 0.14 | 0.12 | 0.12 | 0.22 | 0.18 | 0.16 | 0.15 | 0.40 | 0.23 | 0.16 | 0.13 |
C20:2 | 0.04 | 0.02 | 0.02 | 0.02 | 0.04 | 0.03 | 0.02 | 0.02 | 0.10 | 0 | 0.02 | 0.02 |
C20:4 | 0.06 | 0.11 | 0.03 | 0.09 | 0.08 | 0.16 | 0.08 | 0.13 | 0.02 | 0.12 | 0.16 | 0.30 |
SFAs | 17.12 | 59.32 | 62.60 | 64.62 | 17.00 | 40.95 | 49.87 | 54.37 | 39.23 | 45.34 | 48.97 | 51.17 |
MUFAs | 21.97 | 15.53 | 15.70 | 15.43 | 22.53 | 19.43 | 17.15 | 16.28 | 37.55 | 22.15 | 17.22 | 16.56 |
PUFAs | 60.91 | 25.15 | 21.70 | 19.95 | 60.47 | 39.62 | 32.97 | 29.35 | 23.22 | 32.97 | 33.80 | 32.27 |
Item | Dietary Treatments | SEM | p-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | Linear | Quadratic | |||
Water (%) | 74.97 ab | 75.18 b | 74.31 a | 75.00 ab | 0.110 | 0.021 | 0.379 | 0.241 |
Protein (%) | 22.19 | 22.46 | 22.97 | 22.26 | 0.110 | 0.050 | 0.458 | 0.023 |
Fat (%) | 2.09 a | 1.34 b | 1.73 ab | 1.66 ab | 0.091 | 0.027 | 0.228 | 0.047 |
Ash (%) | 1.15 a | 1.12 b | 1.12 b | 1.10 b | 0.005 | <0.001 | <0.001 | 0.358 |
Collagen (%) | 0.46 a | 0.36 b | 0.47 a | 0.44 ab | 0.013 | 0.018 | 0.557 | 0.146 |
Muscle pigments (mg/g meat) | 0.20 c | 0.24 bc | 0.29 a | 0.26 ab | 0.007 | <0.001 | <0.001 | <0.008 |
Item | Dietary Treatments | SEM | p-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | Linear | Quadratic | |||
C 12:0 | 0.07 d | 8.74 c | 11.74 b | 14.20 a | 1.229 | <0.001 | 0.00 | <0.001 |
C 14:0 | 0.49 d | 4.07 c | 5.03 b | 5.49 a | 0.452 | <0.001 | 0.00 | <0.001 |
C 15:0 | 0.09 b | 0.15 a | 0.16 a | 0.14 a | 0.007 | <0.001 | <0.001 | <0.001 |
C 16:0 | 19.78 | 20.67 | 20.18 | 20.81 | 0.174 | 0.127 | 0.085 | 0.692 |
C 17:0 | 0.20 b | 0.23 a | 0.23 a | 0.19 b | 0.005 | <0.001 | 0.581 | <0.001 |
C 18:0 | 8.41 a | 7.81 a | 6.72 b | 6.24 b | 0.226 | <0.001 | <0.001 | 0.793 |
C 20:0 | 0.16 | 0.17 | 0.14 | 0.12 | 0.008 | 0.100 | 0.035 | 0.399 |
C 22:0 | 0.27 | 0.26 | 0.25 | 0.30 | 0.011 | 0.385 | 0.361 | 0.161 |
SFAs | 29.46 d | 42.09 c | 44.43 b | 47.51 a | 1.589 | <0.001 | <0.001 | <0.001 |
Item | Dietary Treatments | SEM | p-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | Linear | Quadratic | |||
C 14:1 | 0.06 d | 0.44 c | 0.58 b | 0.71 a | 0.056 | <0.001 | <0.001 | <0.001 |
C 16:1 | 2.32 d | 3.07 c | 3.47 b | 4.25 a | 0.168 | <0.001 | <0.001 | 0.913 |
C 17:1 | 0.05 | 0.12 | 0.14 | 0.15 | 0.018 | 0.160 | 0.040 | 0.367 |
C 18:1 | 26.80 a | 23.42 b | 22.45 b | 22.68 b | 0.478 | <0.001 | <0.001 | 0.006 |
C 18:2 | 34.92 a | 25.41 b | 23.96 b | 20.29 c | 1.256 | <0.001 | <0.001 | <0.001 |
C 18:3 | 3.67 a | 2.33 b | 2.20 b | 1.82 c | 0.162 | <0.001 | <0.001 | <0.001 |
C 20:1 | 0.26 a | 0.23 ab | 0.20 b | 0.19 c | 0.008 | <0.001 | <0.001 | 0.226 |
C 20:2 | 0.41 a | 0.37 ab | 0.33 ab | 0.29 b | 0.016 | 0.038 | 0.005 | 0.873 |
C 20:4 | 1.60 | 1.89 | 1.60 | 1.51 | 0.080 | 0.392 | 0.459 | 0.253 |
C 20:5 | 0.04 | 0.03 | 0.03 | 0.04 | 0.003 | 0.576 | 0.667 | 0.196 |
C 22:5 | 0.29 | 0.37 | 0.34 | 0.34 | 0.021 | 0.558 | 0.488 | 0.320 |
C 22:6 | 0.12 b | 0.24 a | 0.25 a | 0.22 ab | 0.017 | 0.012 | 0.020 | 0.011 |
MUFAs | 29.50 | 27.27 | 26.85 | 27.98 | 0.380 | 0.055 | 0.111 | 0.021 |
PUFAs | 41.04 a | 30.64 b | 28.72 b | 24.51 c | 1.422 | <0.001 | <0.001 | <0.001 |
UFAs | 70.54 a | 57.91 b | 55.57 c | 52.49 d | 1.589 | <0.001 | <0.001 | <0.001 |
Item | Dietary Treatments | SEM | p-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
0% PAP-HI | 50% PAP-HI | 75% PAP-HI | 100% PAP-HI | Linear | Quadratic | |||
UFA/SFA ratio | 2.40 a | 1.38 b | 1.25 b | 1.11 c | 0.118 | <0.001 | <0.001 | <0.001 |
MUFA/SFA ratio | 1.00 a | 0.65 b | 0.61 b | 0.59 b | 0.018 | <0.001 | <0.001 | <0.001 |
PUFA/SFA ratio | 1.40 a | 0.73 b | 0.65 b | 0.52 c | 0.079 | <0.001 | <0.001 | <0.001 |
DFA/OFA ratio | 3.76 a | 1.92 b | 1.65 c | 1.42 d | 0.213 | <0.001 | <0.001 | <0.001 |
EFAs | 38.59 a | 27.74 b | 26.16 b | 22.11 c | 1.417 | <0.001 | <0.001 | <0.001 |
Nutritional value 1 | 1.78 a | 1.51 b | 1.45 bc | 1.39 c | 0.037 | <0.001 | <0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daszkiewicz, T.; Murawska, D.; Kubiak, D.; Han, J. Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal. Animals 2022, 12, 464. https://doi.org/10.3390/ani12040464
Daszkiewicz T, Murawska D, Kubiak D, Han J. Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal. Animals. 2022; 12(4):464. https://doi.org/10.3390/ani12040464
Chicago/Turabian StyleDaszkiewicz, Tomasz, Daria Murawska, Dorota Kubiak, and Jolanta Han. 2022. "Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal" Animals 12, no. 4: 464. https://doi.org/10.3390/ani12040464
APA StyleDaszkiewicz, T., Murawska, D., Kubiak, D., & Han, J. (2022). Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal. Animals, 12(4), 464. https://doi.org/10.3390/ani12040464