Detection of Canine Urothelial Carcinoma Cells in Urine Using 5-Aminolevulinic Acid
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Samples
2.2. Cell Lines
2.3. Cell Culture with 5-ALA
2.4. Fluorescence Observation by 5-ALA
2.5. Quantification of Fluorescence by 5-ALA
2.6. Statistical Analyses
3. Results
3.1. Canine Urothelial Carcinoma Cells Exhibited Red Fluorescence upon Addition of 5-ALA
3.2. 5-ALA-Induced Fluorescence Is Useful for the Diagnosis of Canine Urothelial Carcinoma
3.3. 5-ALA-Induced Fluorescence Intensity Was Significantly Associated with the Clinical Condition of Urothelial Carcinoma Cases
3.4. 5-ALA-Induced Fluorescence Intensity of Urine-Derived Cells Was Significantly Associated with the BRAFV595E Gene Mutation in Urothelial Carcinoma Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mochizuki, H.; Shapiro, S.G.; Breen, M. Detection of BRAF Mutation in Urine DNA as a Molecular Diagnostic for Canine Urothelial and Prostatic Carcinoma. PLoS ONE 2015, 10, e0144170. [Google Scholar] [CrossRef]
- Knapp, D.W.; Ramos-Vara, J.A.; Moore, G.E.; Dhawan, D.; Bonney, P.L.; Young, K.E. Urinary Bladder Cancer in Dogs, a Naturally Occurring Model for Cancer Biology and Drug Development. ILAR J. 2014, 55, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Powe, J.R.; Canfield, P.J.; Martin, P.A. Evaluation of the Cytologic Diagnosis of Canine Prostatic Disorders. Vet. Clin. Pathol. 2004, 33, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Valenciano, A.C.; Cowell, R.L. Cowell and Tyler’s Diagnostic Cytology and Hematology of the Dog and Cat, 3rd ed.; Mosby: St. Louis, MO, USA, 2019. [Google Scholar]
- Eto, S.; Saeki, K.; Yoshitake, R.; Yoshimoto, S.; Shinada, M.; Ikeda, N.; Kamoto, S.; Tanaka, Y.; Kato, D.; Maeda, S.; et al. Anti-Tumor Effects of the Histone Deacetylase Inhibitor Vorinostat on Canine Urothelial Carcinoma Cells. PLoS ONE 2019, 14, e0218382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decker, B.; Parker, H.G.; Dhawan, D.; Kwon, E.M.; Karlins, E.; Davis, B.W.; Ramos-Vara, J.A.; Bonney, P.L.; McNiel, E.A.; Knapp, D.W.; et al. Homologous Mutation to Human BRAF V600E Is Common in Naturally Occurring Canine Bladder Cancer—Evidence for a Relevant Model System and Urine-Based Diagnostic Test. Mol. Cancer Res. 2015, 13, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, H.; Kennedy, K.; Shapiro, S.G.; Breen, M. BRAF Mutations in Canine Cancers. PLoS ONE 2015, 10, e0129534. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Fujiwara, T.; Ota, U.; Hatta, S.; Ichikawa, S.; Kobayashi, M.; Okitsu, Y.; Fukuhara, N.; Onishi, Y.; Ishizuka, M.; et al. Dynamics of Absorption, Metabolism, and Excretion of 5-Aminolevulinic Acid in Human Intestinal Caco-2 Cells. Biochem. Biophys. Rep. 2017, 11, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Nishio, Y.; Fujino, M.; Zhao, M.; Ishii, T.; Ishizuka, M.; Ito, H.; Takahashi, K.; Abe, F.; Nakajima, M.; Tanaka, T.; et al. 5-Aminolevulinic Acid Combined with Ferrous Iron Enhances the Expression of Heme Oxygenase-1. Int. Immunopharmacol. 2014, 19, 300–307. [Google Scholar] [CrossRef] [PubMed]
- El-Khatib, M.; Tepe, C.; Senger, B.; Dibué-Adjei, M.; Riemenschneider, M.J.; Stummer, W.; Steiger, H.J.; Cornelius, J.F. Aminolevulinic Acid-Mediated Photodynamic Therapy of Human Meningioma: An in Vitro Study on Primary Cell Lines. Int. J. Mol. Sci. 2015, 16, 9936–9948. [Google Scholar] [CrossRef] [PubMed]
- Rud, E.; Gederaas, O.; Høgset, A.; Berg, K. 5-Aminolevulinic Acid, but Not 5-Aminolevulinic Acid Esters, Is Transported into Adenocarcinoma Cells by System BETA Transporters. Photochem. Photobiol. 2000, 71, 640–647. [Google Scholar] [CrossRef]
- Datta, S.N.; Loh, C.S.; MacRobert, A.J.; Whatley, S.D.; Matthews, P.N. Quantitative Studies of the Kinetics of 5-Aminolaevulinic Acid-Induced Fluorescence in Bladder Transitional Cell Carcinoma. Br. J. Cancer 1998, 78, 1113–1118. [Google Scholar] [CrossRef] [Green Version]
- Kausch, I.; Sommerauer, M.; Montorsi, F.; Stenzl, A.; Jacqmin, D.; Jichlinski, P.; Jocham, D.; Ziegler, A.; Vonthein, R. Photodynamic Diagnosis in Non–Muscle-Invasive Bladder Cancer: A Systematic Review and Cumulative Analysis of Prospective Studies. Eur. Urol. 2010, 57, 595–606. [Google Scholar] [CrossRef]
- Kishi, K.; Fujiwara, Y.; Yano, M.; Inoue, M.; Miyashiro, I.; Motoori, M.; Shingai, T.; Gotoh, K.; Takahashi, H.; Noura, S.; et al. Staging Laparoscopy Using ALA-Mediated Photodynamic Diagnosis Improves the Detection of Peritoneal Metastases in Advanced Gastric Cancer. J. Surg. Oncol. 2012, 106, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Nakai, Y.; Anai, S.; Tatsumi, Y.; Kuwada, M.; Onishi, S.; Chihara, Y.; Tanaka, N.; Hirao, Y.; Fujimoto, K. Diagnostic Approach for Cancer Cells in Urine Sediments by 5-Aminolevulinic Acid-Based Photodynamic Detection in Bladder Cancer. Cancer Sci. 2014, 105, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakai, Y.; Anai, S.; Kuwada, M.; Miyake, M.; Chihara, Y.; Tanaka, N.; Hirayama, A.; Yoshida, K.; Hirao, Y.; Fujimoto, K. Photodynamic Diagnosis of Shed Prostate Cancer Cells in Voided Urine Treated with 5-Aminolevulinic Acid. BMC Urol. 2014, 14, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Q.; Warloe, T.; Berg, K.; Moan, J.; Kongshaug, M.; Giercksky, K.E.; Nesland, J.M. 5-Aminolevulinic Acid-Based Photodynamic Therapy. Clinical Research and Future Challenges. Cancer 1997, 79, 2282–2308. [Google Scholar] [CrossRef]
- Mahmoudi, K.; Garvey, K.L.; Bouras, A.; Cramer, G.; Stepp, H.; Jesu Raj, J.G.; Bozec, D.; Busch, T.M.; Hadjipanayis, C.G. 5-Aminolevulinic Acid Photodynamic Therapy for the Treatment of High-Grade Gliomas. J. Neurooncol. 2019, 141, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Hino, H.; Murayama, Y.; Nakanishi, M.; Inoue, K.; Nakajima, M.; Otsuji, E. 5-Aminolevulinic Acid-Mediated Photodynamic Therapy Using Light-Emitting Diodes of Different Wavelengths in a Mouse Model of Peritoneally Disseminated Gastric Cancer. J. Surg. Res. 2013, 185, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Osaki, T.; Yokoe, I.; Sunden, Y.; Ota, U.; Ichikawa, T.; Imazato, H.; Ishii, T.; Takahashi, K.; Ishizuka, M.; Tanaka, T.; et al. Efficacy of 5-Aminolevulinic Acid in Photodynamic Detection and Photodynamic Therapy in Veterinary Medicine. Cancers 2019, 11, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshitake, R.; Saeki, K.; Watanabe, M.; Nakaoka, N.; Ong, S.M.; Hanafusa, M.; Choisunirachon, N.; Fujita, N.; Nishimura, R.; Nakagawa, T. Molecular Investigation of the Direct Anti-Tumour Effects of Nonsteroidal Anti-Inflammatory Drugs in a Panel of Canine Cancer Cell Lines. Vet. J. 2017, 221, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Mu, A.; Adachi, Y.; Adachi, Y.; Taketani, S. Neurotransmitter Transporter Family Including SLC6A6 and SLC6A13 Contributes to the 5-Aminolevulinic Acid (ALA)-Induced Accumulation of Protoporphyrin IX and Photodamage, through Uptake of ALA by Cancerous Cells. Photochem. Photobiol. 2014, 90, 1136–1143. [Google Scholar] [CrossRef]
- Döring, F.; Walter, J.; Will, J.; Föcking, M.; Boll, M.; Amasheh, S.; Clauss, W.; Daniel, H. Delta-Aminolevulinic Acid Transport by Intestinal and Renal Peptide Transporters and Its Physiological and Clinical Implications. J. Clin. Investig. 1998, 101, 2761–2767. [Google Scholar] [CrossRef]
- Frølund, S.; Marquez, O.; Larsen, M.; Brodin, B.; Nielsen, C. δ-Aminolevulinic Acid Is a Substrate for the Amino Acid Transporter SLC36A1 (HPAT1). Br. J. Pharmacol. 2010, 159, 1339–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajima, Y.; Ishii, T.; Kohda, T.; Ishizuka, M.; Yamazaki, K.; Nishimura, Y.; Tanaka, T.; Dan, S.; Nakajima, M. Mechanistic Study of PpIX Accumulation Using the JFCR39 Cell Panel Revealed a Role for Dynamin 2-Mediated Exocytosis. Sci. Rep. 2019, 9, 8666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, Z.; Sazgarnia, A.; Rajabi, O.; Soudmand, S.; Esmaily, H.; Sadeghi, H.R. An in Vitro Study on the Photosensitivity of 5-Aminolevulinic Acid Conjugated Gold Nanoparticles. Photodiagnosis Photodyn. Ther. 2013, 10, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Chung, C.-W.; Choi, K.H.; Yoo, J.-J.; Kim, D.H.; Jeong, Y.-I.; Kang, D.H. Effect of 5-Aminolevulinic Acid-Based Photodynamic Therapy via Reactive Oxygen Species in Human Cholangiocarcinoma Cells. Int. J. Nanomed. 2011, 6, 1357–1363. [Google Scholar] [CrossRef] [Green Version]
- Sailer, R.; Strauss, W.S.L.; Wagner, M.; Emmert, H.; Schneckenburger, H. Relation between Intracellular Location and Photodynamic Efficacy of 5-Aminolevulinic Acid-Induced Protoporphyrin IXin Vitro. Comparison between Human Glioblastoma Cells and Other Cancer Cell Lines. Photochem. Photobiol. Sci. 2007, 6, 145–151. [Google Scholar] [CrossRef]
- Ishizuka, M.; Abe, F.; Sano, Y.; Takahashi, K.; Inoue, K.; Nakajima, M.; Kohda, T.; Komatsu, N.; Ogura, S.; Tanaka, T. Novel Development of 5-Aminolevurinic Acid (ALA) in Cancer Diagnoses and Therapy. Int. Immunopharmacol. 2011, 11, 358–365. [Google Scholar] [CrossRef]
- Schoenfeld, N.; Epstein, O.; Lahav, M.; Mamet, R.; Shaklai, M.; Atsmon, A. The Heme Biosynthetic Pathway in Lymphocytes of Patients with Malignant Lymphoproliferative Disorders. Cancer Lett. 1988, 43, 43–48. [Google Scholar] [CrossRef]
- Krieg, R.C.; Fickweiler, S.; Wolfbeis, O.S.; Knuechel, R. Cell-Type Specific Protoporphyrin IX Metabolism in Human Bladder Cancer in Vitro. Photochem. Photobiol. 2000, 72, 226–233. [Google Scholar] [CrossRef]
- Henderson, B.W.; Bellnier, D.A. Tissue Localization of Photosensitizers and the Mechanism of Photodynamic Tissue Destruction. Ciba Found. Symp. 1989, 146, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, V.S.; Som, J.; Yoshioka, E.; Rice, C.P.; Rutihinda, S.G.; Hirasawa, K. Systemic MEK Inhibition Enhances the Efficacy of 5-Aminolevulinic Acid-Photodynamic Therapy. Br. J. Cancer 2019, 121, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, V.S.; Liu, K.; Yoshioka, E.; Saha, S.; Xu, D.; Licursi, M.; Dorward, A.; Hirasawa, K. MEK Reduces Cancer-Specific PpIX Accumulation through the RSK-ABCB1 and HIF-1α-FECH Axes. Sci. Rep. 2020, 10, 22124. [Google Scholar] [CrossRef] [PubMed]
- Frimberger, D.; Zaak, D.; Stepp, H.; Knüchel, R.; Baumgartner, R.; Schneede, P.; Schmeller, N.; Hofstetter, A. Autofluorescence Imaging to Optimize 5-ALA-Induced Fluorescence Endoscopy of Bladder Carcinoma. Urology 2001, 58, 372–375. [Google Scholar] [CrossRef]
Case No. | Age (Years) | Sex | Breed | BRAFV595E Mutation | 5-ALA Fluorescence Intensity | Tumor Location | Metastasis | Muscle- Invasion | Medication Status at First Visit |
---|---|---|---|---|---|---|---|---|---|
1 | 14 | FS | Chihuahua | + | High | Prostate involvement | + | + | Prednisolone |
2 | 14 | FS | Pug | + | Low | Urethra involvement | - | - | Piroxicam |
3 | 14 | MN | Toy Poodle | + | High | Prostate involvement | - | - | Piroxicam |
4 | 13 | FS | Border collie | - | Low | Vesical torigone | + | + | Piroxicam |
5 | 11 | FS | Miniature Schnauzer | - | High | Urethra involvement | + | + | No treatment |
6 | 12 | MN | Mix | + | High | Prostate involvement | + | + | Prednisolone |
7 | 12 | FS | Toy Poodle | + | High | Vesical torigone | - | + | No treatment |
8 | 15 | M | Miniature Pinscher | - | Low | Urethra involvement | - | - | No treatment |
9 | 12 | MN | Shetland Sheepdog | - | Low | Urethra involvement | - | - | Piroxicam |
10 | 11 | MN | Miniature Schnauzer | + | High | Prostate involvement | - | - | Prednisolone |
11 | 12 | MN | Cavalier King Charles Spaniel | + | High | Urethra involvement | + | + | No treatment |
12 | 13 | FS | Mix | + | High | Urethra involvement | - | - | No treatment |
13 | 14 | MN | Toy Poodle | + | High | Prostate involvement | + | + | Piroxicam |
14 | 14 | MN | Chihuahua | - | Low | Prostate involvement | - | - | No treatment |
15 | 10 | MN | Cairn Terrier | + | Low | Prostate involvement | - | + | Piroxicam |
16 | 13 | M | Toy Poodle | + | Low | Prostate involvement | - | - | Firocoxib |
17 | 12 | M | Mix | - | Low | Urethra involvement | - | - | Piroxicam |
18 | 15 | MN | Shih Tzu | + | Low | Prostate involvement | - | - | Piroxicam |
19 | 12 | MN | Papillon | + | High | Vesical torigone | + | + | No treatment |
20 | 14 | FS | Maltese | - | Low | Urethra involvement | - | - | Piroxicam |
21 | 13 | MN | Toy Poodle | - | Low | Prostate involvement | - | - | Firocoxib |
Fluorescence Intensity | |||||
Cases (%) | Low | High | p-Value | ||
Muscle-invesion | Present | 9 (45) | 2 | 7 | 0.030 |
Absent | 12 (55) | 9 | 3 | ||
Metastasis | Present | 7 (34) | 1 | 6 | 0.019 |
Absent | 14 (66) | 10 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaji, K.; Yonezawa, T.; Momoi, Y.; Maeda, S. Detection of Canine Urothelial Carcinoma Cells in Urine Using 5-Aminolevulinic Acid. Animals 2022, 12, 485. https://doi.org/10.3390/ani12040485
Kaji K, Yonezawa T, Momoi Y, Maeda S. Detection of Canine Urothelial Carcinoma Cells in Urine Using 5-Aminolevulinic Acid. Animals. 2022; 12(4):485. https://doi.org/10.3390/ani12040485
Chicago/Turabian StyleKaji, Kenjiro, Tomohiro Yonezawa, Yasuyuki Momoi, and Shingo Maeda. 2022. "Detection of Canine Urothelial Carcinoma Cells in Urine Using 5-Aminolevulinic Acid" Animals 12, no. 4: 485. https://doi.org/10.3390/ani12040485
APA StyleKaji, K., Yonezawa, T., Momoi, Y., & Maeda, S. (2022). Detection of Canine Urothelial Carcinoma Cells in Urine Using 5-Aminolevulinic Acid. Animals, 12(4), 485. https://doi.org/10.3390/ani12040485