Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Acquisition and Analysis
2.3. Model Performance Validation
3. Results
3.1. Correlation
3.2. Principal Component Analysis
3.3. Time Windows
3.4. Machine Learning Models
3.5. Model Validation Based on the Second Chicken (Dataset B)
4. Discussion
4.1. Data Collection
4.2. Principal Component Analysis (PCA)
4.3. Cross-Validation
4.4. Highly Dynamic Behavior
4.5. Performance of the ML Models
4.6. Sensor Technology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Council of the European Union. Council Directive 99/74/EC of 19 July 1999 laying down minimum standards for the protection of laying hens. Off. J. Eur. Communities 1999, 203, 53–57. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to the welfare aspects of various systems of keeping laying hens. EFSA J. 2005, 3, 197. [Google Scholar] [CrossRef]
- Elson, H.A. Poultry welfare in intensive and extensive production systems. Worlds Poult. Sci. J. 2015, 71, 449–460. [Google Scholar] [CrossRef]
- Winkel, A. Particulate Matter Emission from Livestock Houses: Measurement methods, Emission Levels and Abatement Systems. Ph.D. Thesis, Wageningen University & Research, Wageningen, The Netherlands, 21 October 2016. Available online: https://library.wur.nl/WebQuery/wurpubs/508819 (accessed on 11 January 2022).
- Casey, K.; Bicudo, J.; Schmidt, D.; Singh, A.; Gay, S.; Gates, R.; Jacobson, L.; Hoff, S. Air Quality and Emissions from Livestock and Poultry Production/Waste Management Systems. In Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2020. [Google Scholar]
- Takai, H.; Pedersen, S.; Johnsen, J.O.; Metz, J.H.M.; Groot Koerkamp, P.W.G.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; et al. Concentrations and Emissions of Airborne Dust in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Cambra-López, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef]
- Directive Council. Directive 2010/75/EU of the European Parliament and of the Council. Off. J. Eur. Union L 2010, 334, 17–119. [Google Scholar]
- Calvet, S.; Van den Weghe, H.; Kosch, R.; Estellés, F. The influence of the lighting program on broiler activity and dust production. Poult. Sci. 2009, 88, 2504–2511. [Google Scholar] [CrossRef]
- Ellen, H.H.; Bottcher, R.W.; von Wachenfelt, E.; Takai, H. Dust Levels and Control Methods in Poultry Houses. J. Agric. Saf. Health 2000, 6, 275–282. [Google Scholar] [CrossRef]
- Van Niekerk, T. Managing laying hen flocks with intact beaks. In Achieving Sustainable Production of Eggs Volume 2; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 163–176. ISBN 9781351114134. [Google Scholar]
- Dawkins, M.S. Behaviour as a tool in the assessment of animal welfare. Zoology 2003, 106, 383–387. [Google Scholar] [CrossRef]
- Herbert, G.T.; Redfearn, W.D.; Brass, E.; Dalton, H.A.; Gill, R.; Brass, D.; Smith, C.; Rayner, A.C.; Asher, L. Extreme crowding in laying hens during a recurrent smothering outbreak. Vet. Rec. 2021, 188, e245. [Google Scholar] [CrossRef]
- Kozak, M.; Tobalske, B.; Springthorpe, D.; Szkotnicki, B.; Harlander-Matauschek, A. Development of physical activity levels in laying hens in three-dimensional aviaries. Appl. Anim. Behav. Sci. 2016, 185, 66–72. [Google Scholar] [CrossRef]
- Hansen, I. Behavioural expression of laying hens in aviaries and cages: Frequencies, time budgets and facility utilisation. Br. Poult. Sci. 1994, 35, 491–508. [Google Scholar] [CrossRef]
- Hepworth, P.J.; Nefedov, A.V.; Muchnik, I.B.; Morgan, K.L. Broiler chickens can benefit from machine learning: Support vector machine analysis of observational epidemiological data. J. R. Soc. Interface 2012, 9, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Oladipupo, T. Types of Machine Learning Algorithms. In New Advances in Machine Learning; InTech: Vienna, Austria, 2010. [Google Scholar]
- Stadig, L.M.; Rodenburg, T.B.; Ampe, B.; Reubens, B.; Tuyttens, F.A.M. An automated positioning system for monitoring chickens’ location: Effects of wearing a backpack on behaviour, leg health and production. Appl. Anim. Behav. Sci. 2018, 198, 83–88. [Google Scholar] [CrossRef]
- Tom, R. Monitoring and Analysis of the Daily Behaviour of Individual Laying. Ph.D. Thesis, Wageningen University & Research, Wageningen, The Netherlands, 8 April 2020. [Google Scholar]
- Rahman, A.; Smith, D.V.; Little, B.; Ingham, A.B.; Greenwood, P.L.; Bishop-Hurley, G.J. Cattle behaviour classification from collar, halter, and ear tag sensors. Inf. Process. Agric. 2018, 5, 124–133. [Google Scholar] [CrossRef]
- Robert, B.; White, B.J.; Renter, D.G.; Larson, R.L. Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Comput. Electron. Agric. 2009, 67, 80–84. [Google Scholar] [CrossRef]
- Wang, Y.; Nickel, B.; Rutishauser, M.; Bryce, C.M.; Williams, T.M.; Elkaim, G.; Wilmers, C.C. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 2015, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Twomey, N.; Diethe, T.; Fafoutis, X.; Elsts, A.; McConville, R.; Flach, P.; Craddock, I. A Comprehensive Study of Activity Recognition Using Accelerometers. Informatics 2018, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Zhang, Y. Dilemma and Solution of Traditional Feature Extraction Methods Based on Inertial Sensors. Mob. Inf. Syst. 2018, 2018, 2659142. [Google Scholar] [CrossRef]
- Picasso, P. Principal Component Analysis; Everitt, B.S., Howell, D.C., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 2002; Volume 9, ISBN 0-387-95442-2. [Google Scholar]
- Bergmeir, C.; Benítez, J.M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. 2012, 191, 192–213. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, J.; Zhao, X. Estimating the uncertainty of average F1 scores. In Proceedings of the 2015 International Conference on the Theory of information Retrieval, Northampton, MA, USA, 27–30 September 2015; pp. 317–320. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellen, E.; van der Sluis, M.; Siegford, J.; Guzhva, O.; Toscano, M.; Bennewitz, J.; van der Zande, L.; van der Eijk, J.; de Haas, E.; Norton, T.; et al. Review of Sensor Technologies in Animal Breeding: Phenotyping Behaviors of Laying Hens to Select Against Feather Pecking. Animals 2019, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 542–545. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Sassi, N.B.; Averós, X.; Estevez, I. Technology and Poultry Welfare. Animals 2016, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, D.; Biswas, S.; Daigle, C.; Siegford, J.M. Remote Activity Classification of Hens Using Wireless Body Mounted Sensors. In Proceedings of the 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, London, UK, 9–12 May 2012; IEEE: New York, NY, USA, 2012; pp. 107–112. [Google Scholar]
- Bannerman-Thompson, H.; Bhaskara Rao, M.; Kasala, S. Bagging, boosting, and random forests using R. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 31, pp. 101–149. [Google Scholar]
- Nandy, A.; Chakraborty, S.; Chakraborty, J.; Venture, G. Low-cost sensors for gait analysis. Mod. Methods Afford. Clin. Gait Anal. 2021, 25–44. [Google Scholar] [CrossRef]
Parameter | Angular Velocity | Acceleration | Magnetic Field |
---|---|---|---|
Dimensions | 3 axes | 3 axes | 3 axes |
Full scale | 2000 deg/s | 160 m/s2 | 1.9 Gauss |
Non-linearity | 0.1% of FS | 0.5% of FS | 0.1% of FS |
Bias stability | 10 deg/hr | 0.1 mg | - |
Noise | 0.01 deg/s/√Hz | 0.01 µg/√Hz | 0.2 mGauss/√Hz |
Alignment error | 0.1 deg | 0.1 deg | 0.1 deg |
Bandwidth | 180 Hz | 180 Hz | 10–60 Hz (var.) |
Class 1 | Class 2 | Class 3 |
---|---|---|
Low-intensity | Moderate-intensity | High-intensity |
• Sleep like resting • Neck shortening resting • Sleeping • Quiet sitting/standing • Small postural head/shoulder/neck movements • Perching • Egg laying • Side-laying phase of dust bathing | • Preening • Foraging & pecking • Drinking & eating • Small wing adjustments • Scratching & stretching • Head shaking • Feather fluffing • Searching behavior • Scratching behavior of dust bathing | • Walking • Running • Jumping • Wing flapping • Controlled aerial ascent/descent • Full-body shaking • Shaking phase of dust bathing |
Original Dataset | Dataset A | Dataset B | |
---|---|---|---|
Number of datapoints class 1 | 3023 | 3017 | 747 |
Number of datapoints class 2 | 3606 | 3588 | 2638 |
Number of datapoints class 3 | 37 | 61 | 47 |
Total number of data points | 6666 | 6666 | 3432 |
Chicken (color) | Green | Green | Blue |
Day of recording | Wednesday | Wednesday | Friday |
Total length of the recording | 2 h 20 min | 2 h 20 min | 29 min |
Parameter | Original Dataset | Dataset A | ||||
---|---|---|---|---|---|---|
PCA | No PCA | p-Value | PCA | No PCA | p-Value | |
Accuracy | 87.9 | 89.4 | 0.0358 | 87.5 | 88.8 | 4.32 × 10−4 |
F1-score class 1 | 0.88 | 0.89 | 0.175 | 0.88 | 0.89 | 0.0113 |
F1-score class 2 | 0.88 | 0.89 | 0.0108 | 0.88 | 0.89 | 5.54 × 10−4 |
F1-score class 3 | 0.42 | 0.46 | 8.52 × 10−3 | 0.55 | 0.58 | 0.214 |
Overall F1-score | 0.73 | 0.75 | 7.66 × 10−4 | 0.77 | 0.79 | 0.0185 |
Parameter | Original Dataset | Dataset A | ||||
---|---|---|---|---|---|---|
PCA | No PCA | p-Value | PCA | No PCA | p-Value | |
Accuracy | 82.8 | 85.5 | 8.52 × 10−8 | 80.9 | 83.6 | 1.49 × 10−8 |
F1-score class 1 | 0.83 | 0.85 | 1.40 × 10−9 | 0.83 | 0.85 | 9.90 × 10−7 |
F1-score class 2 | 0.83 | 0.86 | 2.30 × 10−6 | 0.81 | 0.84 | 2.20 × 10−6 |
F1-score class 3 | 0.67 | 0.72 | 0.0780 | 0.34 | 0.37 | 0.130 |
Overall F1-score | 0.78 | 0.81 | 1.67 × 10−3 | 0.66 | 0.69 | 3.10 × 10−4 |
Parameter | Original Dataset | Dataset A | ||||
---|---|---|---|---|---|---|
Long | Short | p-Value | Long | Short | p-Value | |
Accuracy | 89.4 | 85.5 | 2.82 × 10−4 | 88.8 | 83.6 | 5.48 × 10−5 |
F1-score class 1 | 0.89 | 0.85 | 5.58 × 10−5 | 0.89 | 0.85 | 1.31 × 10−2 |
F1-score class 2 | 0.89 | 0.86 | 1.31 × 10−4 | 0.89 | 0.84 | 2.67 × 10−6 |
F1-score class 3 | 0.46 | 0.72 | 1.04 × 10−7 | 0.58 | 0.37 | 4.07 × 10−7 |
Overall F1-score | 0.75 | 0.81 | 8.63 × 10−5 | 0.79 | 0.69 | 9.25 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derakhshani, S.M.; Overduin, M.; van Niekerk, T.G.C.M.; Groot Koerkamp, P.W.G. Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens. Animals 2022, 12, 536. https://doi.org/10.3390/ani12050536
Derakhshani SM, Overduin M, van Niekerk TGCM, Groot Koerkamp PWG. Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens. Animals. 2022; 12(5):536. https://doi.org/10.3390/ani12050536
Chicago/Turabian StyleDerakhshani, Sayed M., Matthias Overduin, Thea G. C. M. van Niekerk, and Peter W. G. Groot Koerkamp. 2022. "Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens" Animals 12, no. 5: 536. https://doi.org/10.3390/ani12050536
APA StyleDerakhshani, S. M., Overduin, M., van Niekerk, T. G. C. M., & Groot Koerkamp, P. W. G. (2022). Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens. Animals, 12(5), 536. https://doi.org/10.3390/ani12050536