Effects of Grazing Season on Physico-Chemical Characteristics and Fatty Acids of Nutritional Interest of Caciocavallo Palermitano Cheese
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Summer (Su), (July–September);
- -
- Autumn-winter (AW), (November–February);
- -
- Spring (March–May).
- -
- Cheeses obtained from the milk of animals exclusively fed with herbage of pasture (SpG);
- -
- Cheeses obtained from animals fed on pasture with additions of hay and concentrate (SpI).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Quaranta, G.; Citro, E.; Salvia, R. Economic and social sustainable synergies to promote innovations in rural tourism and local development. Sustainability 2016, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Serrapica, F.; Masucci, F.; Di Francia, A.; Napolitano, F.; Braghieri, A.; Esposito, G.; Romano, R. Seasonal variation of chemical composition, fatty acid profile, and sensory properties of a mountain pecorino cheese. Foods 2020, 9, 1091. [Google Scholar] [CrossRef] [PubMed]
- Cabiddu, A.; Delgadillo-Puga, C.; Decandia, M.; Molle, G. Extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals 2019, 9, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make ruminants green again—How can sustainable intensification and agroecology converge for a better future? Animal 2018, 12, s210–s219. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, P.; Di Grigoli, A.; Di Trana, A.; Alabiso, M.; Maniaci, G.; Rando, A.; Valluzzi, C.; Finizio, D.; Bonanno, A. Effects of different genotypes at the CSN3 and LGB loci on milk and cheese-making characteristics of the bovine Cinisara breed. Int. Dairy J. 2017, 71, 1–5. [Google Scholar] [CrossRef]
- Bonanno, A.; Tornambè, G.; Bellina, V.; De Pasquale, C.; Mazza, F.; Maniaci, G.; Di Grigoli, A. Effect of farming system and cheesemaking technology on the physicochemical characteristics, fatty acid profile, and sensory properties of Caciocavallo Palermitano cheese. J. Dairy Sci. 2013, 96, 710–724. [Google Scholar] [CrossRef]
- Sabia, E.; Gauly, M.; Napolitano, F.; Serrapica, F.; Cifuni, G.F.; Claps, S. Dairy sheep carbon footprint and ReCiPe end-point study. Small Rumin. Res. 2020, 185, 106085. [Google Scholar] [CrossRef]
- Scocco, P.; Piermarteri, K.; Malfatti, A.; Tardella, F.M.; Catorci, A. Increase of drought stress negatively affects the sustainability of extensive sheep farming in sub-Mediterranean climate. J. Arid. Environ. 2016, 128, 50–58. [Google Scholar] [CrossRef]
- Martin, B.; Hurtaud, C.; Graulet, B.; Ferlay, A.; Chilliard, Y.; Coulon, J.B. Grass and the nutritional and organoleptic qualities of dairy products. Fourrages 2009, 199, 291–310. [Google Scholar]
- Nudda, A.; Battacone, G.; Neto, O.B.; Cannas, A.; Francesconi, A.H.D.; Atzori, A.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Di Grigoli, A.; Di Trana, A.; Alabiso, M.; Maniaci, G.; Giorgio, D.; Bonanno, A. Effects of grazing on the behaviour, oxidative and immune status, and production of organic dairy cows. Animals 2019, 9, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonanno, A.; Di Grigoli, A.; Todaro, M.; Alabiso, M.; Vitale, F.; Di Trana, A.; Giorgio, D.; Settanni, L.; Gaglio, R.; Laddomada, B.; et al. Improvement of oxidative status, milk and cheese production, and food sustainability indexes by addition of durum wheat bran to dairy cows’ diet. Animals 2019, 9, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parodi, P.W. Conjugated linoleic acid and other anticarcinogenic agents of bovine milk. J. Dairy Sci. 1999, 82, 1339–1349. [Google Scholar] [CrossRef]
- Banni, S.; Murru, E.; Angioni, E.; Carta, G.; Melis, M.P. Conjugated linoleic acid isomers (CLA): Good for everything? Sci. Aliment. 2002, 22, 371–380. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrata, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd-and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Barendse, W. Should animal fats be back on the table? A critical review of the human health effects of animal fat. Anim. Prod. Sci. 2014, 54, 831–855. [Google Scholar] [CrossRef] [Green Version]
- Di Grigoli, A.; Francesca, N.; Gaglio, R.; Guarrasi, V.; Moschetti, M.; Scatassa, M.L.; Settanni, L.; Bonanno, A. The influence of the wooden equipment employed for cheese manufacture on the characteristics of a traditional stretched cheese during ripening. Food Microbiol. 2015, 46, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Maniaci, G.; Alabiso, M.; Francesca, N.; Giosuè, C.; Di Grigoli, A.; Corona, O.; Cardamone, C.; Graci, G.; Portolano, B.; Bonanno, A. Bresaola made from Cinisara cattle: Effect of muscle type and animal category on physicochemical and sensory traits. CyTA–J. Food 2020, 18, 383–391. [Google Scholar] [CrossRef]
- Guarrasi, V.; Sannino, C.; Moschetti, M.; Bonanno, A.; Di Grigoli, A.; Settanni, L. The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese. Int. J. Food Microbiol. 2017, 259, 35–42. [Google Scholar] [CrossRef]
- Standard FIL-IDF 4A:1982; Cheese and Processed Cheese Product. Determination of the Total solids Content. International Dairy Federation: Brussels, Belgium, 1982.
- Standard FIL-IDF 25:1964; Determination of the Protein Content of Processed Cheese Products. International Dairy Federation: Brussels, Belgium, 1964.
- Standard FIL-IDF 5B:1986; Cheese and Processed Cheese Product. Determination of Fat Content-Gravimetric Method (Reference Method). International Dairy Federation: Brussels, Belgium, 1986.
- Standard FIL-IDF 27:1964; Determination of the Ash Content of Processed Cheese Products. International Dairy Federation: Brussels, Belgium, 1964.
- Standard FIL-IDF 17A:1972; Cheese-Determination of Chloride Content. International Dairy Federation: Brussels, Belgium, 1972.
- MAF (Ministero dell’Agricoltura e delle Foreste). Decreto ministeriale 21/4/1986. Approvazione dei metodi ufficiali di analisi per i formaggi (Italian official methods of cheeses analysis). Supplemento Ordinario alla Gazzetta Ufficiale della Repubblica Italiana (GURI), 2 October 1986, p. 15; no. 229.
- Loor, J.J.; Herbein, J.H.; Polan, C.E. Trans18:1 and 18:2 isomers in blood plasma and milk fat of grazing cows fed a grain supplement containing solvent-extracted or mechanically extracted soybean meal. J. Dairy Sci. 2002, 85, 1197–1207. [Google Scholar] [CrossRef]
- Barlowska, J.; Pastuszka, R.; Rysiak, A.; Król, J.; Brodziak, A.; Kedzierska-Matysek, M.; Wolanciuk, A.; Litwinczuk, Z. Physicochemical and sensory properties of goat cheeses and their fatty acid profile in relation to the geographic region of production. Int. J. Dairy Technol. 2018, 70, 699–708. [Google Scholar] [CrossRef]
- Batista, A.L.D.; Silva, R.; Cappato, L.P.; Ferreira, M.V.S.; Nascimento, K.O.; Schmiele, M.; Esmerino, E.A.; Balthazar, C.F.; Silva, H.L.A.; Moraes, J.; et al. Developing a symbiotic fermented milk using probiotic bacteria and organic green banana flour. J. Funct. Foods 2017, 38, 242–250. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Renna, M.; Lussiana, C.; Malfatto, W.; Battaglini, L.M. PDO cheeses from Piedmont (NW Italy): Amount and variability of fatty acids of nutritional interest. Sci. Tec. Latt.-Casearia 2015, 66, 27–37. [Google Scholar]
- SAS. User’s Guide 9.0; SAS Institute: Cary, NC, USA, 2010. [Google Scholar]
- Guineee, T.P. Salting and the role of salt in cheese. Int. J. Dairy Technol. 2003, 57, 99–109. [Google Scholar] [CrossRef]
- Simal, S.; Sanchez, E.S.; Bon, J.; Femenia, A.; Rossell, C. Water and salt diffusion during cheese ripening: Effect of the external and internal resistances to mass transfer. J. Food Eng. 2001, 48, 269–275. [Google Scholar] [CrossRef]
- Gobbetti, M.; Morea, M.; Baruzzi, F.; Corbo, M.R.; Matarante, A.; Considine, T.; Cagno, R.D.; Guinee, T.P.; Fox, P.F. Microbiological, compositional, biochemical and textural characterization of Caciocavallo Pugliese cheese during ripening. Int. Dairy J. 2002, 12, 511–523. [Google Scholar] [CrossRef]
- Fallico, V.; McSweeney, P.L.H.; Siebert, K.J.; Horne, J.; Carpino, S.; Licitra, G. Chemometric analysis of proteolysis during ripening of Ragusano cheese. J. Dairy Sci. 2004, 87, 3138–3152. [Google Scholar] [CrossRef]
- Wallace, J.M.; Fox, P.F. Rapid spectrophotometric and fluorometric methods for monitoring nitrogenous (proteinaceous) compounds in cheese and cheese fractions: A review. Food Chemistry 1998, 62, 217–224. [Google Scholar] [CrossRef]
- Carpino, S.; Horne, J.; Melilli, C.; Licitra, G.; Barbano, D.M.; Van Soest, P.J. Contribution of native pasture to the sensory properties of Ragusano cheese. J. Dairy Sci. 2004, 87, 308–315. [Google Scholar] [CrossRef]
- Coppa, M.; Verdier-Metz, I.; Ferlay, A.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.C.; Martin, B. Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. Int. Dairy J. 2011, 21, 815–822. [Google Scholar] [CrossRef]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addis, M.; Fiori, M.; Riu, G.C.; Pes, M.; Salvatore, E.; Pirisi, A. Physico-chemical characteristics and acidic profile of PDO Pecorino Romano cheese: Seasonal variation. Small Rumin. Res. 2015, 126, 73–79. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Doreau, M. Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livest. Prod. Sci. 2001, 70, 31–48. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Bailoni, L.; Buccioni, A.; Cattani, M.; Minieri, S.; Infascelli, F.; Tudisco, R. I fattori di variazione delle caratteristiche chimico-nutrizionali del latte e dei prodotti lattiero-caseari. Effetto della dieta sul profilo in acidi grassi. In Alimenti di Origine Animale e Salute; Mele, M., Pulina, G., Eds.; Franco Angeli: Milan, Italy, 2016; Chapter 5.3.3; pp. 203–211. [Google Scholar]
- Parodi, P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004, 59, 3–58. [Google Scholar]
- Belobrajdic, D.P.; McIntosh, G.H. Dietary butyrate inhibits NMU-induced mammary cancer in rats. Nutr. Cancer 2000, 36, 217–223. [Google Scholar] [CrossRef]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Bas, P.; Archimède, H.; Rouzeau, A.; Sauvant, D. Fatty acid composition of mixed-rumen bacteria: Effect of concentration and type of forage. J. Dairy Sci. 2003, 86, 2940–2948. [Google Scholar] [CrossRef] [Green Version]
- Borreani, G.; Coppa, M.; Revello-Chion, A.; Comino, L.; Giaccone, D.; Ferlay, A.; Tabacco, E. Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy. J. Dairy Sci. 2013, 96, 6840–6855. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Correddu, F.; Cesarani, A.; Pulina, G.; Battacone, G. Functional odd- and branched-chain fatty acid in sheep and goat milk and cheeses. Dairy 2021, 2, 79–89. [Google Scholar] [CrossRef]
- Mele, M. Designing milk fat to improve healthfulness and functional properties of dairy products: From feeding strategies to a genetic approach. Ital. J. Anim. Sci. 2009, 8, 365–374. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.A.; Battacone, G.; Pulina, G. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.F.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Bargo, F.; Delahoy, J.E.; Schroeder, G.F.; Muller, L.D. Milk fatty acid composition of dairy cows grazing at two pasture allowances and supplemented with different level and sources of concentrate. Anim. Feed Sci. Technol. 2006, 125, 17–31. [Google Scholar] [CrossRef]
- Elgersma, A.; Tamminga, S.; Ellen, G. Modifying milk composition through forage. Anim. Feed Sci. Technol. 2006, 131, 207–225. [Google Scholar] [CrossRef]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaarian, D.; Siscovick, D.S.; Lichtenstein, A.H. Seafood long-chain n3 polyunsaturated fatty acids and cardiovascular disease: A science advisory from the American Heart Association. Circulation 2018, 138, 35–47. [Google Scholar] [CrossRef]
- Guo, X.F.; Sinclair, A.J.; Kaur, G.; Li, D. Differential effects of EPA, DPA and DHA on cardio-metabolic risk factors in high-fat diet fed mice. Prostaglandins Leukot. Essent. Fatty Acids 2018, 136, 47–55. [Google Scholar] [CrossRef]
- Abilleira, E.; Collomb, M.; Schlichtherle-Cerny, H.; Virto, M.; de Renobales, M.; Barron, L.J. Winter/spring changes in fatty acid composition of farmhouse Idiazabal cheese due to different flock management systems. J. Agric. Food Chem. 2009, 57, 4746–4753. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pertíñez, M.; Gutiérrez-Peña, R.; Mena, Y.; Fernández-Cabanás, V.M.; Laberye, D. Milk production, fatty acid composition and vitamin E content of Payoya goats according to grazing level in summer on Mediterranean shrublands. Small Rumin. Res. 2013, 114, 167–175. [Google Scholar] [CrossRef]
- Maniaci, G.; Di Grigoli, A.; Bonanno, A.; Giosuè, C.; Ilardi, V.; Alabiso, M. Fatty acids as biomarkers of the production season of Caciocavallo Palermitano cheese. Animals 2021, 11, 2675. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Fats and Oils in Human Nutrition; Report of a Joint FAO (Food and Agriculture Organization of United Nations) and WHO (World Health Organization) Experts Consultation; FAO: Rome, Italy, 1994. [Google Scholar]
- Altomonte, I.; Conte, G.; Serra, A.; Mele, M.; Cannizzo, L.; Salari, F.; Martini, M. Nutritional characteristics and volatile components of sheep milk products during two grazing seasons. Small Rum. Res. 2019, 180, 41–49. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Íñiguez-González, G.; Fehrmann-Cartes, K.; Toro-Mujica, P.; Garnsworthy, P.C. Influence of fish oil alone or in combination with hydrogenated palm oil on sensory characteristics and fatty acid composition of bovine cheese. Anim. Feed Sci. Technol. 2015, 205, 60–68. [Google Scholar] [CrossRef]
Measure Unit | Ripening (Days) | Summer (Su) | Autumn-Winter (AW) | Spring 1 (SpG) | Spring 2 (SpI) | |
---|---|---|---|---|---|---|
Samples | n. | 30 | 9 | 9 | 5 | 6 |
60 | 9 | 9 | 5 | 6 | ||
120 | 9 | 9 | 5 | 6 | ||
Concentrate | kg/day per head | 3.2 | 3.6 | 0 | 3.4 | |
Hay | kg/day per head | 1.9 | 3.2 | 0 | 1.9 |
Ripening Time | Production Season (PS) | Significance (p Value) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(RT) | Summer (Su) | Autumn Winter (AW) | Spring 1 (SpG) | Spring 2 (SpI) | pSE 3 | PS | RT | PS × RT | ||
Dry matter (DM), % | 30 d | 61.45 B | 62.20 | 59.70 | 61.10 | 62.80 | 1.390 | 0.0642 | 0.0001 | 0.9913 |
60 d | 62.31 B | 63.30 | 61.00 | 61.50 | 63.50 | |||||
120 d | 66.94 A | 67.70 | 64.40 | 65.10 | 66.50 | |||||
Total | 64.20 | 61.71 | 62.55 | 64.28 | ||||||
Protein, % DM | 30 d | 46.70 | 46.50 | 47.30 | 46.90 | 46.00 | 0.952 | 0.2524 | 0.3025 | 0.9865 |
60 d | 47.46 | 48.30 | 48.20 | 47.00 | 46.30 | |||||
120 d | 46.38 | 46.40 | 46.90 | 46.60 | 45.70 | |||||
Total | 47.04 | 47.49 | 46.83 | 46.02 | ||||||
Fat, % DM | 30 d | 41.22 | 41.00 | 39.90 | 41.70 | 42.20 | 1.256 | 0.5514 | 0.4748 | 0.5526 |
60 d | 40.22 | 39.70 | 41.50 | 39.70 | 40.10 | |||||
120 d | 40.23 | 38.70 | 41.50 | 40.00 | 40.70 | |||||
Total | 39.79 | 40.95 | 40.47 | 41.02 | ||||||
Ash, % DM | 30 d | 6.97 | 7.54 | 6.90 | 6.20 | 7.22 | 0.431 | 0.0695 | 0.3641 | 0.9928 |
60 d | 6.80 | 7.59 | 6.94 | 6.17 | 6.80 | |||||
120 d | 7.22 | 8.04 | 6.97 | 6.60 | 7.31 | |||||
Total | 7.72 | 6.84 | 6.32 | 7.11 | ||||||
NaCl, g/100 g | 30 d | 2.21 B | 2.27 | 2.15 | 1.65 | 2.57 | 0.387 | 0.0745 | 0.0156 | 0.8239 |
60 d | 2.30 B | 2.38 | 2.27 | 1.64 | 2.65 | |||||
120 d | 2.89 A | 3.40 | 2.81 | 2.20 | 2.82 | |||||
Total | 2.67 | 2.40 | 1.82 | 2.71 | ||||||
Soluble N % DM | 30 d | 0.51 Bc | 0.54 | 0.48 | 0.48 | 0.55 | 0.065 | 0.1278 | 0.0001 | 0.9902 |
60 d | 0.59 ABb | 0.64 | 0.52 | 0.59 | 0.64 | |||||
120 d | 0.69 Aa | 0.71 | 0.65 | 0.72 | 0.73 | |||||
Total | 0.63 | 0.55 | 0.60 | 0.64 | ||||||
Hardness, N (mm2)−1 | 30 d | 0.52 Bc | 0.53 | 0.56 | 0.47 | 0.52 | 0.086 | 0.0849 | 0.0001 | 0.9218 |
60 d | 0.63 ABb | 0.59 | 0.70 | 0.55 | 0.68 | |||||
120 d | 0.77 Aa | 0.73 | 0.85 | 0.63 | 0.87 | |||||
Total | 0.62 | 0.71 | 0.55 | 0.69 | ||||||
L*, lightness | 30 d | 83.05 | 85.00 | 85.00 | 82.42 | 79.70 | 1.781 | 0.0011 | 0.1684 | 0.7260 |
60 d | 80.42 | 83.70 | 84.10 | 77.20 | 76.70 | |||||
120 d | 81.48 | 82.10 | 83.50 | 79.90 | 80.50 | |||||
Total | 83.60 A | 84.21 A | 79.83 B | 78.96 B | ||||||
a*, redness | 30 d | −4.18 | −4.96 | −4.18 | −3.89 | −3.68 | 0.243 | 0.0001 | 0.9612 | 0.4627 |
60 d | −4.19 | −4.58 | −4.56 | −4.13 | −3.49 | |||||
120 d | −4.14 | −4.71 | −4.24 | −3.73 | −3.90 | |||||
Total | −4.75 A | −4.33 A | −3.92 B | −3.69 B | ||||||
b*, yellowness | 30 d | 24.18 | 19.50 | 24.40 | 27.80 | 25.00 | 1.258 | 0.0001 | 0.5535 | 0.8646 |
60 d | 24.83 | 20.40 | 25.00 | 26.90 | 26.90 | |||||
120 d | 25.13 | 20.70 | 26.20 | 26.20 | 27.40 | |||||
Total | 20.23 B | 25.20 A | 26.99 A | 26.43 A |
Production Season (PS) | Significance (p Value) | |||||||
---|---|---|---|---|---|---|---|---|
Summer (Su) | Autumn Winter (AW) | Spring 1 (SpG) | Spring 2 (SpI) | pSE 3 | PS | RT | PS × RT | |
C 4:0 | 2.88 B | 3.39 A | 3.37 A | 3.36 A | 0.142 | 0.0001 | 0.6347 | 0.0831 |
C 6:0 | 1.80 B | 2.23 A | 2.20 A | 2.23 A | 0.094 | 0.0001 | 0.7349 | 0.9425 |
C 7:0 | 0.13 B | 0.12 B | 0.20 A | 0.22 A | 0.023 | 0.0001 | 0.1076 | 0.0924 0.0936 |
C 8:0 | 0.99 B | 1.29 A | 1.36 A | 1.37 A | 0.070 | 0.0001 | 0.9420 | 0.9923 |
C 9:0 | 0.11 B | 0.11 B | 0.16 A | 0.18 A | 0.019 | 0.0001 | 0.5008 | 0.1058 |
C 10:0 | 1.89 Bc | 2.52 Bb | 2.82 Aa | 2.79 Aa | 0.175 | 0.0001 | 0.8805 | 0.9901 |
C 10:1 | 0.004 C | 0.004 C | 0.025 B | 0.035 A | 0.003 | 0.0001 | 0.5641 | 0.1108 |
C 11:0 | 0.29 Bc | 0.34 Aab | 0.37 Aa | 0.32 Aba | 0.020 | 0.0001 | 0.7529 | 0.3620 |
C 12:0 | 2.15 B | 2.80 A | 3.04 A | 2.88 A | 0.167 | 0.0001 | 0.8313 | 0.9934 |
C 13:0 | 0.14 Bc | 0.16 ABb | 0.18 Aa | 0.16 ABb | 0.009 | 0.0002 | 0.8934 | 0.9902 |
C 13:0 iso | 0.06 A | 0.02 B | 0.05 A | 0.05 A | 0.015 | 0.0008 | 0.7665 | 0.1000 |
C 13:0 anteiso | 0.05 b | 0.05 b | 0.07 a | 0.06 ab | 0.009 | 0.0369 | 0.3271 | 0.0254 |
C 12:1 | 0.06 b | 0.08 a | 0.09 a | 0.07 ab | 0.009 | 0.0075 | 0.5528 | 0.8327 |
C 14 iso | 0.28 a | 0.23 b | 0.21 b | 0.22 b | 0.013 | 0.0001 | 0.6056 | 0.9046 |
C 14:0 | 9.09 B | 9.97 A | 10.2 A | 9.88 A | 0.318 | 0.0001 | 0.7248 | 0.9937 |
∑ C 4:0–C 14:0 | 19.9 B | 23.3 A | 24.3 A | 23.8 A | 0.521 | <0.0001 | 0.7328 | 0.9418 |
C 15:0 iso | 0.47 | 0.43 | 0.44 | 0.44 | 0.027 | 0.2228 | 0.9361 | 0.9929 |
C 15:0 anteiso | 0.84 A | 0.75 B | 0.80 AB | 0.77 B | 0.035 | 0.0076 | 0.7749 | 1.0000 |
C 14:1 cis | 0.84 a | 0.83 a | 0.84 a | 0.74 b | 0.051 | 0.0237 | 0.7228 | 0.9957 |
C 15:0 | 1.56 | 1.39 | 1.51 | 1.46 | 0.061 | 0.0889 | 0.9243 | 1.0000 |
C 15:1 | 0.08 B | 0.07 B | 0.09 A | 0.10 A | 0.009 | 0.0003 | 0.4252 | 0.5425 |
C 16 iso | 0.51 Aa | 0.47 ABb | 0.41 Bc | 0.41 Bc | 0.026 | 0.0001 | 0.7639 | 0.9717 |
C 16:0 | 27.2 A | 26.2 A | 24.3 B | 23.9 B | 0.861 | 0.0001 | 0.5327 | 0.6835 |
C 17:0 iso | 0.57 | 0.56 | 0.59 | 0.57 | 0.049 | 0.9040 | 0.0646 | 0.0985 |
C 17:0 anteiso | 0.60 A | 0.26 B | 0.56 A | 0.58 A | 0.050 | 0.0001 | 0.0718 | 0.0974 |
C 16:1 trans 9 | 0.23 B | 0.24 B | 0.33 A | 0.30 A | 0.033 | 0.0032 | 0.6247 | 0.2249 |
C 16:1 cis | 1.26 A | 1.32 A | 1.01 B | 0.94 B | 0.119 | 0.0001 | 0.2078 | 0.1152 |
C 17:0 | 0.99 A | 0.86 B | 0.85 B | 0.86 B | 0.050 | 0.0001 | 0.8427 | 0.9904 |
∑ Branched chain FA | 3.48 A | 2.87 B | 3.23 A | 3.22 A | 0.184 | 0.0001 | 0.1315 | 0.3785 |
∑ Odd chain FA | 3.12 Aa | 2.73 Bb | 2.90 ABb | 2.82 Bb | 0.142 | 0.0005 | 0.7414 | 0.9915 |
C 18:0 iso | 0.072 A | 0.044 B | 0.077 A | 0.062 A | 0.014 | 0.0166 | 0.2664 | 0.6090 |
C 17:1 cis | 0.33 A | 0.24 B | 0.24 B | 0.23 B | 0.021 | 0.0001 | 0.5275 | 0.8054 |
C 18:0 | 11.2 | 11.3 | 10.5 | 11.6 | 0.455 | 0.0850 | 0.7382 | 0.9904 |
C 18:1 trans 6 | 0.14 | 0.09 | 0.18 | 0.17 | 0.049 | 0.1197 | 0.8154 | 0.7463 |
C 18:1 trans 9 | 0.39 ABa | 0.42 Aa | 0.29 Cc | 0.32 BCb | 0.040 | 0.0006 | 0.5542 | 0.6852 |
C 18:1 trans 11 TVA 4 | 2.72 Bc | 2.95 Bc | 4.75 Aa | 3.69 ABb | 0.499 | 0.0002 | 0.3037 | 0.1927 |
C 18:1 trans 12–14 | 0.26 B | 0.29 B | 0.36 A | 0.36 A | 0.333 | 0.0005 | 0.1984 | 0.3038 |
C 18:1 cis 6 | 0.49 B | 0.50 B | 0.94 A | 0.93 A | 0.082 | 0.0001 | 0.9423 | 0.6154 |
C 18:1 cis 9 OA 5 | 21.3 Aa | 19.6 Bb | 16.7 Cd | 18.3 Cc | 0.756 | 0.0001 | 0.7646 | 0.9712 |
C 18:1 cis 10 | 0.57 ab | 0.60 a | 0.51 b | 0.54 b | 0.043 | 0.0399 | 0.3428 | 0.2092 |
C 18:1 cis 11 | 0.24 a | 0.22 a | 0.15 b | 0.21 b | 0.031 | 0.0218 | 0.7249 | 0.5556 |
C 18:1 cis 12 | 0.35 Cd | 0.43 BCc | 0.51 ABab | 0.55 Aa | 0.047 | 0.0001 | 0.6854 | 0.0764 |
C 18:1 cis 13 | 0.30 a | 0.23 b | 0.27 a | 0.29 a | 0.033 | 0.0270 | 0.0638 | 0.3685 |
C 18:1 cis 14 | 0.14 | 0.14 | 0.20 | 0.20 | 0.045 | 0.1190 | 0.0776 | 0.1872 |
C 18:2 trans 9–12 | 0.25 B | 0.24 B | 0.33 A | 0.34 A | 0.044 | 0.0078 | 0.0552 | 0.7734 |
C 18:2 cis 9 trans 12 | 0.000 B | 0.000 B | 0.072 A | 0.067 A | 0.016 | 0.0001 | 0.1738 | 0.3352 |
C 18:2 cis 9 trans 13 | 0.30 | 0.33 | 0.26 | 0.28 | 0.050 | 0.5093 | 0.069 | 0.3499 |
C 18:2 trans 11 cis 15 VNA 6 | 0.29 C | 0.49 B | 0.90 A | 0.79 A | 0.096 | 0.0001 | 0.8084 | 0.9885 |
C 18:2 LA 7 | 2.05 Aa | 1.78 Bb | 1.48 Bc | 1.68 Bbc | 0.153 | 0.0001 | 0.6874 | 0.5875 |
C 20:0 | 0.24 | 0.22 | 0.19 | 0.21 | 0.028 | 0.2060 | 0.5453 | 0.2124 |
C 18:3 n6 | 0.22 A | 0.15 B | 0.13 B | 0.14 B | 0.017 | 0.0001 | 0.3369 | 0.4264 |
C 20:1 cis 11 | 0.082 A | 0.007 B | 0.014 B | 0.024 B | 0.026 | 0.0012 | 0.4456 | 0.7427 |
C 18:3 n3 ALA 8 | 0.88 B | 0.92 B | 1.39 A | 1.25 A | 0.129 | 0.0001 | 0.2784 | 0.1585 |
C 18:2 cis 9 trans 11 RA 9 | 1.04 Bc | 1.07 Bc | 1.87 Aa | 1.36 Bb | 0.204 | 0.0001 | 0.4852 | 0.1510 |
Other isomers CLA 10 | 0.13 Bc | 0.15 Bc | 0.44 Aa | 0.31 Bb | 0.047 | 0.0001 | 0.5237 | 0.1624 |
C 20:2 cis, cis n6 | 0.005 Dd | 0.054 Cc | 0.145 Aa | 0.101 ABb | 0.021 | 0.0001 | 0.9264 | 0.9934 |
C 22:0 | 0.17 A | 0.11 B | 0.12 B | 0.13 B | 0.018 | 0.0001 | 0.9752 | 0.7661 |
C 20:3 n6 | 0.062 | 0.067 | 0.055 | 0.066 | 0.010 | 0.6525 | 0.4027 | 0.3828 |
C 20:4 n6 AA 11 | 0.15 | 0.13 | 0.13 | 0.14 | 0.032 | 0.7632 | 0.4534 | 0.5191 |
C 20: 5 n3 EPA 12 | 0.084 | 0.141 | 0.085 | 0.081 | 0.071 | 0.6223 | 0.9324 | 0.8846 |
C 24:0 | 0.062 B | 0.012 C | 0.106 A | 0.098 A | 0.014 | 0.0001 | 0.1218 | 0.0771 |
C 22:5 n3 DPA 13 | 0.002 B | 0.000 B | 0.035 A | 0.055 A | 0.010 | 0.0001 | 0.0643 | 0.1086 |
C 22: 6 n3 DHA 14 | 0.076 Bc | 0.114 ABb | 0.156 Aa | 0.125 ABab | 0.023 | 0.0002 | 0.4565 | 0.5894 |
Production Season (PS) | Significance (p Value) | |||||||
---|---|---|---|---|---|---|---|---|
Summer (Su) | Autumn Winter (AW) | Spring 1 (SpG) | Spring 2 (SpI) | pSE 3 | PS | RT | PS × RT | |
∑ saturated | 64.3 | 65.7 | 64.5 | 64.7 | 1.336 | 0.3514 | 0.5048 | 0.8012 |
∑ monounsaturated | 29.9 | 28.3 | 27.7 | 28.1 | 0.927 | 0.0612 | 0.6121 | 0.9911 |
∑ polyunsaturated | 5.76 B | 5.86 B | 7.71 A | 7.12 A | 0.529 | 0.0001 | 0.3615 | 0.1334 |
∑ CLA 4 | 1.17 C | 1.22 C | 2.32 A | 1.67 B | 0.237 | 0.0001 | 0.6410 | 0.1351 |
∑ n3 | 1.43 Bc | 1.73 Bb | 2.61 Aa | 2.43 Aa | 0.224 | 0.0001 | 0.7626 | 0.6624 |
∑ n6 | 2.75 | 2.45 | 2.43 | 2.59 | 0.174 | 0.0625 | 0.6037 | 0.6151 |
∑ n6/∑ n3 | 2.84 a | 2.04 b | 1.02 c | 1.31 c | 0.360 | 0.0001 | 0.9958 | 0.9732 |
∑ PUFA 5/∑ SFA 6 | 0.09 B | 0.09 B | 0.12 A | 0.11 A | 0.012 | 0.0001 | 0.3342 | 0.1448 |
HSFA 7 | 65.6 | 68.7 | 68.2 | 66.1 | 2.230 | 0.1015 | 0.6418 | 0.9821 |
HPI 8 | 0.53 | 0.49 | 0.48 | 0.51 | 0.030 | 0.1359 | 0.5126 | 0.9412 |
AI 9 | 1.94 | 2.16 | 2.09 | 2.01 | 0.148 | 0.1128 | 0.6623 | 0.9910 |
TI 10 | 2.31 A | 2.34 A | 1.86 B | 1.95 B | 0.165 | 0.0001 | 0.7328 | 0.8324 |
CVD-R 11 | 9.41 | 9.36 | 8.62 | 9.11 | 0.638 | 0.4465 | 0.8052 | 0.6621 |
CVD-P 12 | 7.26 | 6.80 | 6.94 | 7.16 | 0.384 | 0.3476 | 0.1442 | 0.9110 |
C-R 13 | 10.06 | 9.78 | 9.40 | 9.66 | 0.545 | 0.4948 | 0.4583 | 0.8992 |
C-P 14 | 2.22 C | 2.46 BC | 3.29 A | 2.98 AB | 0.209 | 0.0001 | 0.1312 | 0.4781 |
CVD-R/CVD-P | 1.28 | 1.39 | 1.21 | 1.23 | 0.121 | 0.1682 | 0.6414 | 0.7275 |
C-R/C-P | 4.80 Aa | 4.12 Ab | 2.81 Bc | 3.25 Bc | 0.421 | 0.0001 | 0.6084 | 0.5447 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Grigoli, A.; Ponte, M.; Bonanno, A.; Maniaci, G.; Alabiso, M. Effects of Grazing Season on Physico-Chemical Characteristics and Fatty Acids of Nutritional Interest of Caciocavallo Palermitano Cheese. Animals 2022, 12, 544. https://doi.org/10.3390/ani12050544
Di Grigoli A, Ponte M, Bonanno A, Maniaci G, Alabiso M. Effects of Grazing Season on Physico-Chemical Characteristics and Fatty Acids of Nutritional Interest of Caciocavallo Palermitano Cheese. Animals. 2022; 12(5):544. https://doi.org/10.3390/ani12050544
Chicago/Turabian StyleDi Grigoli, Antonino, Marialetizia Ponte, Adriana Bonanno, Giuseppe Maniaci, and Marco Alabiso. 2022. "Effects of Grazing Season on Physico-Chemical Characteristics and Fatty Acids of Nutritional Interest of Caciocavallo Palermitano Cheese" Animals 12, no. 5: 544. https://doi.org/10.3390/ani12050544