Residual Feed Intake and Rumen Metabolism in Growing Pelibuey Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Animals and Experimental Design
2.3. Productive Traits
2.4. Determination of pH, Ammonia Nitrogen Concentration (NH3-N), Volatile Fatty Acid Production, and Methane Emissions
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO—Food and Agriculture Organization. Global Livestock Environmental Assessment Model (GLEAM); FAO: Rome, Italy, 2017; Available online: www.fao.org/gleam/en/ (accessed on 10 August 2021).
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Bhatta, R.; Enishi, O.; Yabumoto, Y.; Nonaka, I.; Takusari, N.; Higuchi, K.; Tajima, K.; Takenaka, A.; Kurihara, M. Methane reduction and energy partitioning in goats fed two concentrations of tannin from mimosa spp. J. Agric. Sci. 2013, 151, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Chaokaur, A.; Nishida, T.; Phaowphaisal, I.; Sommart, K. Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics. Agric. Ecosyst. Environ. 2015, 199, 225–230. [Google Scholar] [CrossRef]
- Bezerra, L.; Sarmento, J.; Neto, S.; Paula, N.; Oliveira, R.; Rêgo, W. Residual feed intake: A nutritional tool for genetic improvement. Trop. Anim. Health Prod. 2013, 45, 1649–1661. [Google Scholar] [CrossRef]
- Arthur, J.P.F.; Herd, R.M. Residual feed intake in beef cattle. Rev. Bras. Zootecn. 2008, 37, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimons, C.; Kenny, D.A.; McGee, M. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 2014, 8, 949–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, N.L.L.; Ribeiro, C.R.F.; De Sá, H.C.M.; Júnior, I.L.; Cavalcanti, L.F.L.; Santana, R.A.V.; Furusho-Garcia, I.F.; Pereira, I.G. Economic analysis, performance, and feed efficiency in feedlot lambs. Rev. Bras. Zootecn. 2017, 46, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Montelli, N.L.L.; Almeida, A.K.; Ribeiro, C.R.F.; Grobe, M.D.; Abrantes, M.A.F.; Lemos, G.S.; Garcia, I.F.F.; Pereira, I.G. Performance, feeding behavior and digestibility of nutrients in lambs with divergent efficiency traits. Small Ruminant Res. 2019, 180, 50–56. [Google Scholar] [CrossRef]
- Arce-Recinos, C.; Ramos-Juárez, J.A.; Hernández-Cázares, A.S.; Crosby-Galván, M.M.; Alarcón-Zúñiga, B.; Miranda-Romero, L.A.; Zaldívar-Cruz, J.M.; Vargas-Villamil, L.M.; Aranda-Ibáñez, E.M.; Vargas-Bello-Pérez, E.; et al. Interplay between feed efficiency indices, performance, rumen fermentation parameters, carcass characteristics and meat quality in Pelibuey lambs. Meat Sci. 2021, 183, 108670. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of feedlot feed efficiency, performance and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, R.S.; Goopy, J.P.; Herd, R.M.; McCorkell, B. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 2007, 85, 1479–1486. [Google Scholar] [CrossRef]
- Paganoni, B.; Rose, G.; Macleay, C.; Jones, C.; Brown, D.J.; Kearney, G.; Ferguson, M.; Thompson, A.N. More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets. J. Anim. Sci. 2017, 95, 3839–3850. [Google Scholar] [CrossRef]
- Ellison, M.J.; Conant, G.C.; Lamberson, W.R.; Cockrum, R.R.; Austin, K.J.; Rule, D.C.; Cammack, K.M. Diet and feed efficiency status affect rumen microbial profiles of sheep. Small Rumin. Res. 2017, 156, 12–19. [Google Scholar] [CrossRef]
- Fitzsimons, C.; Kenny, D.A.; Deighton, M.; Fahey, A.G.; McGee, M. Methane emissions and rumen fermentation variables of beef heifers differing in phenotypic residual feed intake. J. Anim. Sci. 2013, 91, 5789–5800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, E. Modificaciones del Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía, UNAM: Mexico City, Mexico, 2004; ISBN 970-32-1010-4. [Google Scholar]
- AFRC—Agricultural and Food Research Council; Technical Committee on Responses to Nutrients. Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed Sci. Tech. 2014, 198, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.A.C.C. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotech. 1996, 56, 49–58. [Google Scholar] [CrossRef]
- Gonzáles, E.G.; von Roeckel, B.M.; Sanhueza, M.V.; Vargas, A.D.; Aspé, L.E. Measurement of Volatile Fatty Acids by Anaerobic Degradation of a Saline Discharge. In Proceedings of the Interamerican Confederation of Chemical Engineering (OIIQ, 2005), Lima, Peru, 24–27 April 2008; Available online: http://www.ciiq.org/varios/peru_2005/Trabajos/I/3/1.3.05.pdf (accessed on 10 August 2021).
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC International: Washington DC, USA, 1990. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3591. [Google Scholar] [CrossRef]
- Gomes, R.C.; Sainz, R.D.; Silva, S.L.; César, M.C.; Bonin, M.N.; Leme, P.R. Feedlot performance, feed efficiency reranking, carcass traits, body composition, energy requirements, meat quality and calpain system activity in Nellore steers with low and high residual feed intake. Livest Sci. 2012, 150, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Rocha, R.F.A.T.; Souza, A.R.D.L.; Morais, M.G.; Carneiro, M.M.Y.; Fernandes, H.J.; Feijó, G.L.D.; Menezes, B.B.; Walker, C.C. Performance, carcass traits, and non-carcass components of feedlot finished lambs from different residual feed intake classes. Semin. Cienc. Agrar. 2018, 39, 2645–2658. [Google Scholar] [CrossRef]
- Muro-Reyes, A.; Gutierrez-Banuelos, H.; Díaz-Garcia, L.H.; Gutierrez-Pina, F.J.; Escareno-Sanchez, L.M.; Banuelos-Valenzuela, R.; Medina-Flores, C.A.; Corral-Luna, A. Potential Environmental Benefits of Residual Feed Intake as Strategy to Mitigate Methane Emissions in Sheep. J. Anim. Vet. Adv. 2011, 10, 1551–1556. [Google Scholar] [CrossRef] [Green Version]
- Crews, D.H., Jr.; Shannon, N.H.; Genswein, B.M.A.; Crews, R.E.; Johnson, C.M.; Kendrick, B.A. Genetic parameters for net feed efficiency of beef cattle measured during postweaning growing versus finishing periods. Proc. West. Sect. Am. Soc. Anim. Sci. 2003, 54, 125–128. [Google Scholar]
- Steyn, Y.; van Marle-Koster, E.; Theron, H.E. Residual feed intake as selection tool in South African Bonsmara cattle. Livest Sci. 2014, 164, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.D.; Szasz, J.I.; Klein, T.A.; Kuber, P.S.; Hunt, C.W.; Glaze, J.B.; Falk, D., Jr.; Richard, R.; Miller, J.C.; Battaglia, R.A.; et al. Residual feed intake of purebred Angus steers: Effects on meat quality and palatability. J. Anim. Sci. 2006, 84, 938–945. [Google Scholar] [CrossRef]
- Zhou, M.; Hernández-Sanabria, E.; Guan, L.L. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microb. 2009, 75, 6524–6533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittelmann, S.; Pinares-Patiño, C.S.; Seedorf, H.; Kirk, M.R.; Ganesh, S.; McEwan, J.C.; Janssen, P.H. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE 2014, 9, e103171. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Zhang, X.X.; Li, F.D.; Li, C.; Li, G.Z.; Zhang, D.Y.; Song, Q.Z.; Li, X.L.; Zhao, Y.; Whang, W.M. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal 2021, 15, 100161. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Sanabria, E.; Goonewardene, L.A.; Wang, Z.; Durunna, O.N.; Moore, S.S.; Guan, L.L. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl. Environ. Microb. 2012, 78, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Cammack, K.M.; Ellison, M.; Conant, G.C.; Lamberson, W.R.; Cockrum, R.; Austin, K.J. Rumen microbial species associated with feed efficiency in sheep fed a forage-based diet. J. Anim. Sci. 2014, 92 (Suppl. 2), 724. [Google Scholar]
Ingredients | % Dry Matter |
---|---|
Ground sorghum grain | 29.3 |
Star grass hay | 27.0 |
Soybean meal | 14.5 |
Wheat bran | 11.0 |
Coconut meal | 8.9 |
Molasses | 6.5 |
Vitamin and mineral premix * | 1.2 |
Calcium carbonate | 1.0 |
Sodium bicarbonate | 0.6 |
Total | 100 |
Dry matter, % | 89.2 |
Crude protein, % | 16.0 |
Neutral detergent fiber, % | 40.0 |
Acid detergent fiber, % | 18.5 |
Lignin, % | 3.9 |
Ash, % | 8.3 |
Ether extract, % | 2.5 |
Metabolizable energy (MJ/kg DM) | 11.0 |
Variable | Residual Feed Intake | p-Value | ||
---|---|---|---|---|
Low (n = 3) | Medium (n = 6) | High (n = 3) | ||
Residual feed intake (g/d) | −83.9 ± 25.27 c | 4.4 ± 10.99 b | 76.6 ± 20.97 a | 0.001 |
Dry matter intake (kg/d) | 0.99 ± 0.12 | 1.26 ± 0.12 | 1.14 ± 0.08 | 0.313 |
Dry matter intake (% LW0.75) | 8.6 ± 0.38 b | 9.7 ± 0.27 a,b | 9.9 ± 0.26 a | 0.036 |
Dry matter intake (g/kg/d LW.75) | 85.5 ± 3.79 b | 97.0 ± 2.68 a,b | 99.4 ± 2.58 a | 0.032 |
Organic matter intake (g/kg/d LW0.75) | 77.8 ± 3.60 | 88.0 ± 2.56 | 89.9 ± 2.38 | 0.057 |
Crude protein intake (g/kg/d LW0.75) | 16.3 ± 0.60 b | 18.8 ± 0.54 a | 19.5 ± 0.49 a | 0.005 |
Neutral detergent fiber intake (g/kg/d LW0.75) | 30.5 ± 1.17 b | 35.0 ± 1.00 a | 36.2 ± 0.92 a | 0.010 |
Daily weight gain (g/d) | 205 ± 22.9 | 229 ± 11.9 | 208 ± 12.4 | 0.481 |
Feed conversion (kg DMI/kg of DWG) | 4.96 ± 0.71 | 5.46 ± 0.32 | 5.53 ± 0.46 | 0.696 |
Metabolic weight (LW0.75) | 11.55 ± 0.85 | 12.84 ± 0.88 | 11.45 ± 0.55 | 0.435 |
Initial live weight | 19.79 ± 1.65 | 23.11 ± 2.18 | 18.62 ± 0.89 | 0.279 |
Final live weight | 30.60 ± 2.64 | 34.93 ± 2.74 | 30.07 ± 1.52 | 0.371 |
Parameters | Residual Feed Intake | p-Value | ||
---|---|---|---|---|
Low (n = 3) | Medium (n = 6) | High (n = 3) | ||
pH | 6.75 ± 0.05 | 6.83 ± 0.07 | 6.94 ± 0.12 | 0.369 |
N-NH3 (mg/dL) | 23.9 ± 1.98 | 23.3 ± 5.19 | 38.3 ± 6.11 | 0.149 |
Volatile fatty acids (mol/100 mol) | ||||
Acetate | 59.7 ± 0.12 | 58.4 ± 3.05 | 59.3 ± 1.67 | 0.951 |
Propionate | 21.0 ± 3.99 | 21.0 ± 3.17 | 18.8 ± 1.52 | 0.874 |
Butyrate | 14.4 ± 0.87 | 15.6 ± 1.36 | 15.8 ± 0.97 | 0.731 |
Iso-valerate | 2.12 ± 0.26 | 2.06 ± 0.17 | 3.12 ± 0.14 | 0.055 |
Iso-butyrate | 1.34 ± 0.09 | 1.52 ± 0.25 | 1.67 ± 0.15 | 0.634 |
Valerate | 1.42 ± 0.27 | 1.30 ± 0.30 | 1.16 ± 0.31 | 0.866 |
Acetate: Propionate | 3.09 ± 0.66 | 3.16 ± 0.66 | 3.20 ± 0.33 | 0.994 |
CH4 (mM/L) | 26.8 ± 2.97 | 26.7 ± 2.38 | 25.8 ± 2.79 | 0.966 |
CH4 (L/d) | 37.3 ± 4.35 | 47.2 ± 4.44 | 42.9 ± 2.95 | 0.316 |
CH4 (L/kg DMI) | 37.6 ± 0.01 | 37.6 ± 0.06 | 37.6 ± 0.03 | 0.547 |
CH4 (L/LW0.75/d) | 3.21 ± 0.15 b | 3.65 ± 0.11 a,b | 3.75 ± 0.09 a | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce-Recinos, C.; Ojeda-Robertos, N.F.; Garcia-Herrera, R.A.; Ramos-Juarez, J.A.; Piñeiro-Vázquez, Á.T.; Canul-Solís, J.R.; Castillo-Sanchez, L.E.; Casanova-Lugo, F.; Vargas-Bello-Pérez, E.; Chay-Canul, A.J. Residual Feed Intake and Rumen Metabolism in Growing Pelibuey Sheep. Animals 2022, 12, 572. https://doi.org/10.3390/ani12050572
Arce-Recinos C, Ojeda-Robertos NF, Garcia-Herrera RA, Ramos-Juarez JA, Piñeiro-Vázquez ÁT, Canul-Solís JR, Castillo-Sanchez LE, Casanova-Lugo F, Vargas-Bello-Pérez E, Chay-Canul AJ. Residual Feed Intake and Rumen Metabolism in Growing Pelibuey Sheep. Animals. 2022; 12(5):572. https://doi.org/10.3390/ani12050572
Chicago/Turabian StyleArce-Recinos, Carlos, Nadia Florencia Ojeda-Robertos, Ricardo Alfonso Garcia-Herrera, Jesús Alberto Ramos-Juarez, Ángel Trinidad Piñeiro-Vázquez, Jorge Rodolfo Canul-Solís, Luis Enrique Castillo-Sanchez, Fernando Casanova-Lugo, Einar Vargas-Bello-Pérez, and Alfonso Juventino Chay-Canul. 2022. "Residual Feed Intake and Rumen Metabolism in Growing Pelibuey Sheep" Animals 12, no. 5: 572. https://doi.org/10.3390/ani12050572
APA StyleArce-Recinos, C., Ojeda-Robertos, N. F., Garcia-Herrera, R. A., Ramos-Juarez, J. A., Piñeiro-Vázquez, Á. T., Canul-Solís, J. R., Castillo-Sanchez, L. E., Casanova-Lugo, F., Vargas-Bello-Pérez, E., & Chay-Canul, A. J. (2022). Residual Feed Intake and Rumen Metabolism in Growing Pelibuey Sheep. Animals, 12(5), 572. https://doi.org/10.3390/ani12050572