Soybean vs. Pea Bean in the Diet of Medium-Growing Broiler Chickens Raised under Semi-Intensive Conditions of Inner Mediterranean Areas: Growth Performance and Environmental Impact
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals, Diets, and Experimental Design
2.3. Measurements and Recordings
2.4. Environmental Impact
2.5. Statistical Analyses
3. Results
3.1. Climatic Characterization of Study Area
3.2. Dietary Treatment and Genotype: Effects on Feed Consumption
3.3. Dietary Treatment and Genotype: Effects on Growth Performance
3.4. GLEAM-i Elaboration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laudadio, V.; Tufarelli, V. Growth performance and carcass and meat quality of broiler chickens fed diets containing micronized-dehulled peas (Pisum sativum cv. spirale) as a substitute of soybean meal. Poult. Sci. 2010, 89, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Dotas, V.; Bampidis, V.A.; Sinapis, E.; Hatzipanagiotou, A.; Papanikolaou, K. Effect of dietary field pea (Pisum sativum L.) supplementation on growth performance, and carcass and meat quality of broiler chickens. Livest. Sci. 2014, 164, 135–143. [Google Scholar] [CrossRef]
- Listino Settimanale Borsa Merci di Bologna—AGER. Available online: https://www.bo.camcom.gov.it/borsa-merci/listino-annuale (accessed on 2 January 2022).
- Kuzniacka, J.; Adamski, M.; Czarnecki, R.; Banaszak, M. Results of rearing broiler chickens under various systems. J. Agric. Sci. 2014, 6, 19–25. [Google Scholar] [CrossRef]
- Ciurescu, G.; Vasilachi, A.; Grigore, D.; Grosu, H. Growth performance, carcass traits, and blood biochemistry of broiler chicks fed with low-fibre sunflower meal and phytase. S. Afr. J. Anim. Sci. 2019, 49, 735–745. [Google Scholar] [CrossRef]
- Li, L.; Yuan, T.Z.; Setia, R.; Raja, R.B.; Zhang, B.; Ai, Y. Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. Food Chem. 2019, 276, 599–607. [Google Scholar] [CrossRef]
- Baxter, M.; Richmond, A.; Lavery, U.; O’Connell, N.E.A. Comparison of fast growing broiler chickens with a slower-growing breed type reared on higher welfare commercial farms. PLoS ONE 2021, 16, e0259333. [Google Scholar] [CrossRef]
- Singh, M.; Lim, A.J.; Muir, W.I.; Groves, P.J. Comparison of performance and carcass composition of a novel slow-growing crossbred broiler with fast-growing broiler for chicken meat in Australia. Poult. Sci. 2021, 100, 100966. [Google Scholar] [CrossRef]
- Maharjan, P.; Martinez, D.A.; Weil, J.; Suesuttajit, N.; Umberson, C.; Mullenix, G.; Hilton, K.M.; Beitia, A.; Coon, C.N. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal 2021, 15, 100284. [Google Scholar] [CrossRef]
- Güz, B.C.; de Jong, I.C.; Bol, U.E.; Kemp, B.; van Krimpen, M.; Molenaar, R.; van den Brand, H. Effects of organic macro and trace minerals in fast and slower growing broiler breeders’ diet on offspring growth performance and tibia characteristics. Poult. Sci. 2022, 101, 101647. [Google Scholar] [CrossRef]
- Sirri, F.; Castellini, C.; Bianchi, M.; Petracci, M.; Meluzzi, A.; Franchini, A. Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method. Animal 2011, 5, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Cygan-Szczegielniak, D.; Maiorano, G.; Janicki, B.; Buzała, M.; Stasiak, K.; Stanek, M.; Roślewska, A.; Elminowska-Wenda, G.; Bogucka, J.; Tavaniello, S. Influence of rearing system and sex on carcass traits and meat quality of broiler chickens. J. Appl. Anim. Res. 2019, 47, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, T.; Narinç, D.; Önenç, A.; Ilaslan Çürek, D. Effects of season, genotype and rearing system on some meat quality traits for broilers raised in semi-intensive systems. Trop. Anim. Health Prod. 2021, 53, 352. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, N.; Forleo, M.B.; Salimei, E. Environmental impacts of a dairy cheese chain including whey feeding: An italian case study. J. Clean. Prod. 2017, 140, 881–889. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 May 2021).
- Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA. Agric. Syst. 2017, 154, 145–156. [Google Scholar] [CrossRef]
- Scrucca, F.; Barberio, G.; Fantin, V.; Porta, P.L.; Barbanera, M. Carbon Footprint: Concept, Methodology and Calculation. In Environmental Footprints and Eco-Design of Products and Processes; Muthu, S.S., Ed.; Springer: Singapore, 2021; pp. 1–31. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 6 June 2021).
- Regione Campania. Servizio Agrometeorologia. Available online: http://www.agricoltura.regione.campania.it/meteo/archivio_meteo.html (accessed on 30 January 2020).
- National Research Council. Nutrient Requirements of Chickens. In Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994; pp. 26–32. ISBN 0-309-04892-3. [Google Scholar]
- Association of Official Analytical Chemist (AOAC). Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Sauvant, D.; Perez, J.M.; Tran, G. Nutritional Values for Poultry. In Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses, and Fish; Sauvant, D., Perez, J.M., Tran, G., Eds.; Wageningen Academic Publishers, The Netherlands & INRA: Paris, France, 2004; pp. 37–42. ISBN 978-90-76998-41-1. [Google Scholar]
- Taylor, J. Economia; Zanichelli: Bologna, Italy, 2003; pp. 87–101. ISBN 9788808078896. [Google Scholar]
- Ravindran, V. Poultry Feed Availability and Nutrition in Developing Countries. In FAO, Poultry Development Review; FAO: Rome, Italy, 2013; pp. 60–63. ISBN 978-92-5-108067-2. [Google Scholar]
- Classen, H.L. Diet energy and feed intake in chickens. Anim. Feed Sci. Technol. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Ruggeri, S.; Mattioli, S.; Mugnai, C.; Sirri, F.; Castellini, C. Effect of faba bean (Vicia faba var. minor) inclusion in starter and growing diet on performance, carcass and meat characteristics of organic slow-growing chickens. Ital. J. Anim. Sci. 2013, 12, e76. [Google Scholar] [CrossRef] [Green Version]
- Fanatico, A.C.; Pillai, P.B.; Hester, P.Y.; Falcone, C.; Mench, J.A.; Owens, C.M.; Emmert, J.L. Performance, livability, and carcass yield of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult. Sci. 2008, 87, 1012–1021. [Google Scholar] [CrossRef]
- Maiorano, G.; Stadnicka, K.; Tavaniello, S.; Abiuso, C.; Bogucka, J.; Bednarczyk, M. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult. Sci. 2017, 96, 511–518. [Google Scholar] [CrossRef]
- Mueller, S.; Taddei, L.; Albiker, D.; Kreuzer, M.; Siegrist, M.; Messikommer, R.E.; Gangnat, I.D.M. Growth, carcass, and meat quality of 2 dual-purpose chickens and a layer hybrid grown for 67 or 84 d compared with slow-growing broilers. J. Appl. Poult. Res. 2020, 29, 185–196. [Google Scholar] [CrossRef]
- Cartoni Mancinelli, A.; Mattioli, S.; Dal Bosco, A.; Aliberti, A.; Guarino Amato, M.; Castellini, C. Performance, behavior, and welfare status of six different organically reared poultry genotypes. Animals 2020, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.B.; Wang, Q.; Lu, J.; Zou, J.M.; Chang, L.L.; Fu, S.Y. Effect of free-range days on a local chicken breed: Growth performance, carcass yield, meat quality, and lymphoid organ index. Poult. Sci. 2014, 93, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Mattioli, S.; Cartoni Mancinelli, A.; Cotozzolo, E.; Castellini, C. Extensive rearing systems in poultry production: The right chicken for the right farming system. A review of twenty years of scientific research in Perugia University, Italy. Animals 2021, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Avizoo. Fornitura di pulcini per L’industria, Avizoo. 2020. Available online: https://www.avizoo.com/it/ (accessed on 11 June 2021).
- Pappas, A.C.; Tsiplakou, E.; Papadomichelakis, G.; Mitsiopoulou, C.; Sotirakoglou, K.; Mpekelis, V.; Haroutounian, S.A.; Fegeros, K.; Zervas, G. Effects of olive pulp addition to broiler diets on performance, selected biochemical parameters and antioxidant enzymes. J. Hell. Vet. Med. Soc. 2019, 70, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Mugnai, C.; Amato, M.G.; Piottoli, L.; Cartoni, A.; Castellini, C. Effect of slaughtering age in different commercial chicken genotypes reared according to the organic system: 1. welfare, carcass and meat traits. Ital. J. Anim. Sci. 2014, 13, 3308. [Google Scholar] [CrossRef] [Green Version]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Kaczmarek, S.; Adamski, M.; Rutkowski, A.; Zmudzińska, A.; Perz, K.; Hejdysz, M. Growth performance and carcass quality in broiler chickens fed on legume seeds and rapeseed meal. Animals 2020, 10, 846. [Google Scholar] [CrossRef]
- Arthur, P.F.; Pryce, J.E.; Herd, R.M. Lessons Learnt from 25 Years of Feed Efficiency Research in Australia. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; Available online: https://asas.confex.com/asas/WCGALP14/webprogram/Paper10178.html (accessed on 22 January 2020).
- Nolte, T.; Jansen, S.; Weigend, S.; Moerlein, D.; Halle, I.; Link, W.; Hummel, J.; Simianer, H.; Sharifi, A.R. Growth performance of local chicken breeds, a high-performance genotype and their crosses fed with regional faba beans to replace soy. Animals 2020, 10, 702. [Google Scholar] [CrossRef] [Green Version]
- ISMEA. Seminativi-Cereali-News e Analisi-Tendenze-Mais, soia e orzo-n.1/2021. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/11850 (accessed on 10 October 2021).
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; pp. 39–45. ISBN 978-92-5-109551-5. [Google Scholar]
- IPCC. Annex I: Glossary. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, J.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; 2018, pp. 541–562, In Press. Available online: https://www.ipcc.ch/sr15/chapter/glossary/ (accessed on 15 April 2021).
- de Sousa, F.C.; Tinôco, I.F.F.; Silva, J.N.; Baptista, F.d.J.F.; Souza, C.F.; Silva, A.L. Gas emission in the poultry production. J. Anum. Behav. Biometeorol. 2017, 5, 49–55. [Google Scholar] [CrossRef]
- Calvet, S.; Cambra-López, M.; Estellés, F.; Torres, A.G. Characterization of gas emissions from a mediterranean broiler farm. Poult. Sci. 2011, 90, 534–554. [Google Scholar] [CrossRef]
- FAO. Global Livestock Environmental Assessment Model (GLEAM), Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/gleam/en/ (accessed on 3 May 2021).
- Espino, M.T.M.; Bellotindos, L.M.B. Comparative global warming potential as environment protection criteria of production systems: A case study of Philippine chicken meat sector. Appl. Environ. Res. 2020, 42, 13–26. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. Life Cycle Assessment of animal origin products. Adv. Anim. Biosci. 2016, 7, 191–195. [Google Scholar] [CrossRef]
Feed Administered | SOY | PEA |
---|---|---|
Ingredients, g/100 g DM | ||
Wheat bran | 49.15 | 47.46 |
Durum wheat | 25.42 | 26.27 |
Corn meal | 15.26 | 12.71 |
Faba bean | 6.78 | 6.78 |
Pea bean | - | 6.78 |
Soybean flaked, 37% CP | 3.39 | - |
Total | 100 | 100 |
Analysed results | ||
DM, g/kg DM | 889.0 | 892.0 |
CP, g/kg DM | 186.0 | 186.0 |
EE, g/kg DM | 48.2 | 44.5 |
Ash, g/kg DM | 49.7 | 48.3 |
Calculated analysis | ||
CF, g/kg DM | 81.6 | 81.4 |
Lys, g/kg DM | 6.70 | 6.90 |
Met, g/kg DM | 2.50 | 2.40 |
aME, MJ/kg DM | 13.3 | 13.2 |
Parameter * | Unit | SOY (Baseline) | PEA (Scenario) |
---|---|---|---|
Herd module | |||
Number of animals | n | 60 | 60 |
Live weight at slaughter | kg | 2.62 | 2.57 |
Death rate of adult broilers | % | 1.70 | 1.70 |
Manure module | |||
Poultry manure with litter | % | 100 | 100 |
Diet | SEM | Genotype | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
SOY | PEA | KABIR | NEW RED | D | G | D × G | |||
DM intake, kg | 1.11 | 1.12 | 0.04 | 1.13 | 1.10 | 0.009 | ns | ns | * |
DM refusals, kg | 0.04 | 0.04 | 0.04 | 0.02 | 0.05 | 0.008 | ns | ns | * |
Feed Ingredients | Price a (EUR/t) | Diet Cost (EUR/100 kg as Fed) | Diet Cost (EUR/kg DM) | ||
---|---|---|---|---|---|
SOY | PEA | SOY | PEA | ||
Wheat bran | 161.6 (±13.5) | 8.42 | 8.08 | 0.08 | 0.08 |
Durum Wheat | 266.7 (±8.31) | 6.40 | 6.67 | 0.07 | 0.07 |
Corn meal | 174.8 (±0.39) | 2.56 | 2.18 | 0.03 | 0.02 |
Faba bean | 278.6 (±1.92) | 1.74 | 1.74 | 0.02 | 0.2 |
Pea bean | 234.4 (±8.41) | - | 1.46 | - | 0.2 |
Soybean flaked, 37% CP | 367.5 (±3.78) | 1.10 | - | 0.01 | - |
Total cost | 20.22 | 20.14 | 0.21 | 0.20 | |
Variation b, % | −0.40 | −5.00 |
Diet | SEM | Genotype | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
SOY | PEA | KABIR | NEW RED | D | G | D × G | |||
BW, kg/group | |||||||||
14 day | 12.8 | 12.5 | 0.11 | 14.4 | 12.9 | 0.23 | ns | ns | ns |
28 day | 15.6 | 15.2 | 0.37 | 15.6 | 15.2 | 0.74 | ns | ns | ns |
36 day | 15.7 | 15.4 | 0.40 | 16.2 | 15.0 | 0.82 | ns | ns | ns |
ADG, kg/day | 0.17 | 0.16 | 0.01 | 0.18 | 0.15 | 0.02 | ns | ns | ns |
FCR, kg DM intake/kg gain | 6.95 | 7.25 | 0.56 | 6.40 | 7.76 | 1.13 | ns | ns | ns |
Parameters | Unit | SOY (Baseline) | PEA (Scenario) | Delta (%) |
---|---|---|---|---|
Total GHG emissions | kg CO2-eq/year | 583.3 | 535.3 | −8.21 |
Total CO2 | kg CO2/year | 125.9 | 42.7 | −66.1 |
Total CH4 | kg CH4/year | 2.42 | 2.46 | +1.81 |
Total N2O | kg N2O/year | 1.26 | 1.37 | +9.00 |
Total feed intake | kg DM/year | 2261.2 | 2901.0 | +1.32 |
System meat production | kg/year | 87.8 | 87.8 | +0.00 |
GHG emissions linked to meat production | kg CO2/year | 583.3 | 535.3 | −8.21 |
Meat emission intensity | kg CO2-eq/kg Prot | 46.6 | 42.8 | −8.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatica, A.; Fantuz, F.; Wu, M.; Tavaniello, S.; Maiorano, G.; Salimei, E. Soybean vs. Pea Bean in the Diet of Medium-Growing Broiler Chickens Raised under Semi-Intensive Conditions of Inner Mediterranean Areas: Growth Performance and Environmental Impact. Animals 2022, 12, 649. https://doi.org/10.3390/ani12050649
Fatica A, Fantuz F, Wu M, Tavaniello S, Maiorano G, Salimei E. Soybean vs. Pea Bean in the Diet of Medium-Growing Broiler Chickens Raised under Semi-Intensive Conditions of Inner Mediterranean Areas: Growth Performance and Environmental Impact. Animals. 2022; 12(5):649. https://doi.org/10.3390/ani12050649
Chicago/Turabian StyleFatica, Antonella, Francesco Fantuz, Mengjun Wu, Siria Tavaniello, Giuseppe Maiorano, and Elisabetta Salimei. 2022. "Soybean vs. Pea Bean in the Diet of Medium-Growing Broiler Chickens Raised under Semi-Intensive Conditions of Inner Mediterranean Areas: Growth Performance and Environmental Impact" Animals 12, no. 5: 649. https://doi.org/10.3390/ani12050649
APA StyleFatica, A., Fantuz, F., Wu, M., Tavaniello, S., Maiorano, G., & Salimei, E. (2022). Soybean vs. Pea Bean in the Diet of Medium-Growing Broiler Chickens Raised under Semi-Intensive Conditions of Inner Mediterranean Areas: Growth Performance and Environmental Impact. Animals, 12(5), 649. https://doi.org/10.3390/ani12050649