Analysis of Chemical Composition, Amino Acid Content, and Rumen Degradation Characteristics of Six Organic Feeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Animals and Experimental Design
2.3. In Situ Nutrient Degradability
2.4. Calculation of In Situ Nutrient Degradability
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Organic Feed
3.2. Amino Acid Composition
3.3. Ruminal DM Degradation
3.4. Ruminal CP Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willer, H.; Schlatter, B.; Trávníček, J.; Kemper, L.; Lernoud, J. The World of Organic Agriculture Statistics and Emerging Trends 2020; FiBL: Frick, Switzerland; IFOAM: Bonn, Germany, 2020; Available online: https://shop.fibl.org/CHen/mwdownloads/download/link/id/1294/?ref=1 (accessed on 8 March 2020).
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. Available online: https://ageconsearch.umn.edu/record/288998/ (accessed on 8 March 2020).
- Escribano, A.J. Organic Feed: A Bottleneck for the Development of the Livestock Sector and Its Transition to Sustainability? Sustainability 2018, 10, 293. [Google Scholar] [CrossRef] [Green Version]
- Council, E. Council regulation (EC) No 834/2007 of 28 June 2007 on organic production and labeling of organic products and repealing regulation (EEC) No 2092/91. Off. J. Eur. Union 2007, 189, 1–23. [Google Scholar]
- Commission, E. Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Off. J. Eur. Union 2008, L 260, 1–84. [Google Scholar]
- Sánchez, A.-J.E. Estudio de la Producción Bovina Ecológica y Convencional en Sistemas Extensivos de Dehesas en Extremadura.: Análisis Técnico-Económico, de Sostenibilidad y Eficiencia de su Sistema Productivo. Posibilidades de Conversión al Modelo de Producción Ecológica. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Spain, 2014. [Google Scholar]
- Kristensen, T.; Mogensen, L. Danish Organic Dairy Cattle Production Systems—Feeding and Feed Efficiency; Danish Research Centre for Organic Farming (DARCOF): Tjele, Denmark, 2000; pp. 173–178. [Google Scholar]
- Inci, H.; Ozdemir, G.; Sogut, B.; Sengul, A.Y.; Sengul, T.; Taysi, M.R. Comparison of growth performance and carcass traits of Japanese quails reared in conventional, pasture, and organic conditions. Rev. Bras. Zootec. 2016, 45, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Connor, E.E. Invited review: Improving feed efficiency in dairy production: Challenges and possibilities. Animal 2015, 9, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Iwaniuk, M.E.; Erdman, R.A. Intake, milk production, ruminal, and feed efficiency responses to dietary cation-anion difference by lactating dairy cows. J. Dairy Sci. 2015, 98, 8973–8985. [Google Scholar] [CrossRef]
- Broderick, G.A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Fox, D.G.; Sniffen, C.J.; Oconnor, J.D.; Russell, J.B.; Vansoest, P.J. A net carbohydrate and protein system for evaluating cattle diets. 3. cattle requirements and diet adequacy. J. Anim. Sci. 1992, 70, 3578–3596. [Google Scholar] [CrossRef] [Green Version]
- Apelo, S.I.A.; Knapp, J.R.; Hanigan, M.D. Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. J. Dairy Sci. 2014, 97, 4000–4017. [Google Scholar] [CrossRef] [Green Version]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in Situ Techniques for Ruminant Feedstuff Evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- Harazim, J.; Tináct, J.; Homolka, P. Degradability and intestinal digestibility of crude protein and amino acids of extracted rapeseed meal. Czech J. Anim. Sci. 2002, 47, 50–56. [Google Scholar]
- Horwitz, W.; Chichilo, P.; Reynolds, H. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1970. [Google Scholar]
- Van Soest, P. A rapid method for the determination of fiber and lignin. J. Assoc. Off. Agric. Chem. 1963, 46, 829–835. [Google Scholar]
- Winters, A.L.; Cockburn, J.E.; Dhanoa, M.S.; Merry, R.J. Effects of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and nonsterile ryegrass. J. Appl. Microbiol. 2000, 89, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Alderman, G.; Cottrill, B. Energy and Protein Requirements of Ruminants; Acribia, SA: Zaragoza, Spain, 1996. [Google Scholar]
- Ma, Y.L.; Khan, M.Z.; Liu, Y.F.; Xiao, J.X.; Chen, X.; Ji, S.K.; Cao, Z.J.; Li, S.L. Analysis of Nutrient Composition, Rumen Degradation Characteristics, and Feeding Value of Chinese Rye Grass, Barley Grass, and Naked Oat Straw. Animals 2021, 11, 2486. [Google Scholar] [CrossRef]
- Ørskov, E.-R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Van Duinkerken, G.; Blok, M.C.; Bannink, A.; Cone, J.W.; Dijkstra, J.; Van Vuuren, A.M.; Tamminga, S. Update of the Dutch protein evaluation system for ruminants: The DVE/OEB2010 system. J. Agric. Sci. 2011, 149, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A. Maximizing utilization of alfalfa protein: The example of the lactating dairy cow. In Quality in Lucerne and Medics for Animal Production; Options Mediterraneennes. Serie A, Seminaires Mediterraneens; CIHEAM: Zaragoza, Spain, 2001; pp. 183–192. [Google Scholar]
- Cherney, D.J.R.; Sicilianojones, J.; Pell, A.N. Forage invitro dry-matter digestibility as influenced by fiber source in the donor cow diet. J. Anim. Sci. 1993, 71, 1335–1338. [Google Scholar] [CrossRef] [Green Version]
- Inal, F.; Coskun, B.; Alatas, M.S.; Kahraman, O.; Ozbilgin, A. Quality classification of alfalfa hays according to protein and fiber contents. Eurasian J. Vet. Sci. 2020, 36, 193–198. [Google Scholar] [CrossRef]
- Ferguson, J.D. Nutritional strategies to improve nitrogen efficiency and milk protein synthesis in dairy cows. In Achieving Sustainable Production of Milk: Volume 1: Milk Composition, Genetics and Breeding; VanBelzen, N., Ed.; Burleigh Dodds Series in Agricultural Science; Burleigh Dodds Science Publishing Ltd.: Sawston, UK, 2017; Volume 8, pp. 283–331. [Google Scholar]
- Chandra, R.K.; Kumari, S. Nutrition and immunity—An overview. J. Nutr. 1994, 124, S1433–S1435. [Google Scholar] [CrossRef]
- Cantalapiedra-Hijar, G.; Ortigues-Marry, I.; Sepchat, B.; Titgemeyer, E.; Bahloul, L. Methionine-balanced diets improve cattle performance in fattening young bulls fed high-forage diets through changes in nitrogen metabolism. Br. J. Nutr. 2020, 124, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Oconnor, J.D.; Sniffen, C.J.; Fox, D.G.; Chalupa, W. A net carbohydrate and protein system for evaluating cattle diets. 4. predicting amino-acid adequacy. J. Anim. Sci. 1993, 71, 1298–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wang, Y.; Dang, S.; Jing, L.; Mo, F.; Zhang, W. Effects of rumen soaking treatment on rumen degradation characteristics of feedstuffs before using new nylon bags. Chin. J. Anim. Nutr. 2021, 33, 428–435. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, Z.; Yuan, C.; Hu, J.; Wang, L.; Zhu, F.; Zhang, T.; Lin, Y. Research about Ruminal and Small Intestinal Digestibility of Shandong Province Mainly Concentrates for Sheep. Chin. Agric. Sci. Bull. 2014, 30, 1–6. [Google Scholar]
- Im, D.H.; Ki, K.S.; Lee, H.J.; Kim, S.B.; Park, J.K. Studies on In Situ Ruminal Degradation Characteristics by Protease Treatment of Protein Feedstuffs. Ann. Anim. Resour. Sci. 2011, 22, 101–108. [Google Scholar]
- Das, L.K.; Kundu, S.S.; Chander, D.; Dinesh, K.; Hujaz, T. In situ ruminal degradation kinetics of dry matter, crude protein and neutral detergent fiber of tropical ruminant feedstuffs. Indian J. Anim. Nutr. 2015, 32, 45–51. [Google Scholar]
- Pan, L.; Huang, K.H.; Middlebrook, T.; Zhang, D.; Bryden, W.L.; Li, X. Rumen Degradability of Barley, Oats, Sorghum, Triticale, and Wheat In Situ and the Effect of Pelleting. Agriculture 2021, 11, 647. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.; Du, W.; Wang, Y.; Cao, Z.; Li, S.; Yu, X. Degradation characteristics of common roughage and roughage forage in the rumen of dairy cows. Chin. J. Anim. Nutr. 2018, 30, 1592–1602. [Google Scholar]
- Turgut, L.; Yanar, M. In situ dry matter and crude protein degradation kinetics of some forages in Eastern Turkey. Small Rumin. Res. 2004, 52, 217–222. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Ning, L.; Feng, B.; Lin, M.; Zhao, G. Comparison of rumen degradation characteristics among different parts of paper mulberry and commonly used roughages for dairy cows. Chin. J. Anim. Nutr. 2019, 31, 3612–3620. [Google Scholar]
- Taghinejad, M.; Nikkhah, A.; Sadeghi, A.A.; Raisali, G.; Chamani, M. Effects of Gamma Irradiation on Chemical Composition, Antinutritional Factors, Ruminal Degradation and In vitro Protein Digestibility of Full-fat Soybean. Asian Australas. J. Anim. Sci. 2009, 22, 534–541. [Google Scholar] [CrossRef]
- Son, K.N.; Kim, Y.K.; Lee, S.K.; Kim, H.S. The effects of processing methods of corn on in sacco starch and protein degradability in the rumen. J. Anim. Sci. Technol. 2003, 45, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; Mesgaran, M.D.; Golian, A.G. The determination of in situ protein degradability characteristics of some feedstuffs and comparing to AFRC standard tables in the feeding of lactating cows. Agric. Sci. Technol. 2002, 16, 35–44. [Google Scholar]
- Moghadam, M.J. and Amanlou, H. Rumen degradability of xylose-treated soybean meal determined with nylon bag technique (in situ). Anim. Prod. Res. 2013, 1, 53–61. [Google Scholar]
- Hackmann, T.J.; Sampson, J.D.; Spain, J.N. Comparing relative feed value with degradation parameters of grass and legume forages. J. Anim. Sci. 2008, 86, 2344–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizalde, J.C.; Merchen, N.R.; Faulkner, D.B. In situ dry matter and crude protein degradation of fresh forages during the spring growth. J. Dairy Sci. 1999, 82, 1978–1990. [Google Scholar] [CrossRef]
- Sun, J.; Lamusi, A.; Zhao, J.; Xue, Y.; Yu, L.; Yu, Z.; Zhang, Y. Analysis of amino acid composition and six native alfalfa cultivars. Sci. Agric. Sin. 2019, 52, 2359–2367. [Google Scholar] [CrossRef]
Ingredients | Content | Nutrient Levels 2 | Content |
---|---|---|---|
Whole corn silage | 30.76 | NEL(MJ/kg) | 1.78 |
Alfalfa hay | 11.88 | CP | 16.98 |
Corn | 11.49 | NDF | 65.26 |
Steam-flaked corn | 15.72 | ADF | 14.73 |
Soybean meal | 13.74 | EE | 3.77 |
Soybean hull | 3.89 | Ash | 8.81 |
Cottonseed | 1.90 | Ca | 0.86 |
Molasses | 3.33 | P | 0.38 |
Corn gluten meal | 2.72 | ||
Rumen-protected fatty acid | 1.47 | ||
Premix 1 | 2.51 | ||
NaHCO3 | 0.60 |
Items | DM | CP | EE | Ash | NDF | ADF |
---|---|---|---|---|---|---|
SC | 89.99 ± 0.08 c | 47.46 ± 0.07 a | 8.23 ± 0.06 a | 6.77 ± 0.03 c | 17.56 ± 0.65 c | 8.06 ± 0.04 e |
WB | 86.43 ± 0.03 d | 20.15 ± 0.06 b | 2.97 ± 0.05 b | 5.67 ± 0.01 d | 43.72 ± 1.15 b | 12.82 ± 0.16 d |
CG | 85.96 ± 0.12 e | 8.65 ± 0.02 e | 2.23 ± 0.01 c | 1.37 ± 0.04 f | 8.07 ± 0.35 d | 2.11 ± 0.43 f |
OT | 95.04 ± 0.00 a | 8.88 ± 0.13 d | 0.74 ± 0.10 e | 8.55 ± 0.27 b | 65.00 ± 1.99 a | 39.16 ± 0.43 a |
AF | 93.86 ± 0.06 b | 19.61 ± 0.02 c | 1.38 ± 0.08 d | 11.50 ± 0.04 a | 44.84 ± 1.63 b | 31.47 ± 0.42 b |
CS | 31.30 ± 0.14 f | 7.99 ± 0.06 f | 2.25 ± 0.06 c | 5.48 ± 0.07 e | 42.91 ± 0.13 b | 23.63 ± 0.09 c |
Amino Acid | Samples | |||||
---|---|---|---|---|---|---|
CG | SC | WB | CS | OT | AF | |
Arg | 0.36 ± 0.01 d | 3.37 ± 0.07 a | 1.12 ± 0.01 b | 0.18 ± 0.00 e | 0.28 ± 0.01 d | 0.73 ± 0.02 c |
His | 0.20 ± 0.01 d | 1.21 ± 0.03 a | 0.44 ± 0.01 b | 0.13 ± 0.00 e | 0.11 ± 0.00 e | 0.36 ± 0.00 c |
Ile | 0.26 ± 0.01 d | 1.99 ± 0.04 a | 0.50 ± 0.02 c | 0.27 ± 0.00 d | 0.29 ± 0.00 d | 0.72 ± 0.01 b |
Leu | 0.91 ± 0.02 d | 3.47 ± 0.06 a | 1.02 ± 0.00 c | 0.77 ± 0.01 e | 0.54 ± 0.00 f | 1.23 ± 0.03 b |
Lys | 0.23 ± 0.01 e | 2.77 ± 0.06 a | 0.70 ± 0.00 c | 0.25 ± 0.01 e | 0.35 ± 0.00 d | 1.11 ± 0.00 b |
Met | 0.15 ± 0.00 c | 0.46 ± 0.00 a | 0.23 ± 0.00 b | 0.11 ± 0.00 d | 0.09 ± 0.00 e | 0.23 ± 0.00 b |
Phe | 0.43 ± 0.01 d | 2.09 ± 0.02 a | 0.60 ± 0.01 c | 0.35 ± 0.00 e | 0.43 ± 0.01 d | 0.79 ± 0.03 b |
Thr | 0.27 ± 0.01 d | 1.76 ± 0.04 a | 0.54 ± 0.00 c | 0.29 ± 0.01 d | 0.30 ± 0.00 d | 0.77 ± 0.01 b |
Trp | 0.05 ± 0.00 e | 0.53 ± 0.02 a | 0.26 ± 0.00 b | 0.05 ± 0.00 e | 0.08 ± 0.00 d | 0.24 ± 0.01 c |
Val | 0.34 ± 0.01 d | 2.09 ± 0.04 a | 0.77 ± 0.00 c | 0.37 ± 0.00 d | 0.37 ± 0.00 d | 0.91 ± 0.00 b |
Lys/Met | 1.53 ± 0.03 f | 6.07 ± 0.08 a | 2.99 ± 0.04 d | 2.31 ± 0.00 e | 3.79 ± 0.04 c | 4.74 ± 0.05 b |
EAA | 3.20 ± 0.07 de | 19.73 ± 0.35 a | 6.18 ± 0.00 c | 2.77 ± 0.02 ef | 2.85 ± 0.03 de | 7.90 ± 0.02 b |
Ala | 0.54 ± 0.02 d | 2.00 ± 0.04 a | 0.79 ± 0.00 c | 0.77 ± 0.01 c | 0.40 ± 0.00 e | 0.94 ± 0.00 b |
Asp | 0.52 ± 0.02 e | 5.04 ± 0.11 a | 1.17 ± 0.02 c | 0.39 ± 0.02 f | 0.68 ± 0.00 d | 2.15 ± 0.00 b |
Cys | 0.14 ± 0.00 d | 0.58 ± 0.01 a | 0.33 ± 0.01 b | 0.10 ± 0.00 e | 0.10 ± 0.00 e | 0.22 ± 0.00 c |
Glu | 1.35 ± 0.03 d | 7.90 ± 0.17 a | 3.12 ± 0.05 b | 0.82 ± 0.01 e | 0.87 ± 0.00 e | 1.65 ± 0.01 c |
Gly | 0.27 ± 0.00 d | 1.96 ± 0.04 a | 0.88 ± 0.01 b | 0.34 ± 0.00 c | 0.32 ± 0.00 c | 0.79 ± 0.00 b |
Pro | 0.69 ± 0.01 d | 2.04 ± 0.06 a | 1.07 ± 0.02 c | 0.52 ± 0.01 e | 0.53 ± 0.02 e | 1.19 ± 0.03 b |
Ser | 0.36 ± 0.01 d | 2.30 ± 0.05 a | 0.72 ± 0.01 c | 0.24 ± 0.01 e | 0.31 ± 0.00 d | 0.81 ± 0.01 b |
Tyr | 0.31 ± 0.01 d | 1.39 ± 0.02 a | 0.44 ± 0.00 c | 0.20 ± 0.01 f | 0.25 ± 0.01 e | 0.48 ± 0.01 b |
NEAA | 4.17 ± 0.08 c | 23.22 ± 0.50 a | 8.52 ± 0.13 b | 3.38 ± 0.00 d | 3.48 ± 0.02 d | 8.22 ± 0.01 b |
TAA | 7.37 ± 0.15 c | 42.95 ± 0.85 a | 14.70 ± 0.12 b | 6.14 ± 0.00 d | 6.64 ± 0.01 d | 15.31 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Wang, D.; Lu, N.; Li, H.; Liu, G.; Cao, Z.; Yang, H.; Li, S.; Yu, X.; Shao, W.; et al. Analysis of Chemical Composition, Amino Acid Content, and Rumen Degradation Characteristics of Six Organic Feeds. Animals 2022, 12, 682. https://doi.org/10.3390/ani12060682
Luo C, Wang D, Lu N, Li H, Liu G, Cao Z, Yang H, Li S, Yu X, Shao W, et al. Analysis of Chemical Composition, Amino Acid Content, and Rumen Degradation Characteristics of Six Organic Feeds. Animals. 2022; 12(6):682. https://doi.org/10.3390/ani12060682
Chicago/Turabian StyleLuo, Chenglong, Donghai Wang, Na Lu, Haiqing Li, Gaofei Liu, Zhijun Cao, Hongjian Yang, Shengli Li, Xiong Yu, Wei Shao, and et al. 2022. "Analysis of Chemical Composition, Amino Acid Content, and Rumen Degradation Characteristics of Six Organic Feeds" Animals 12, no. 6: 682. https://doi.org/10.3390/ani12060682
APA StyleLuo, C., Wang, D., Lu, N., Li, H., Liu, G., Cao, Z., Yang, H., Li, S., Yu, X., Shao, W., & Wang, W. (2022). Analysis of Chemical Composition, Amino Acid Content, and Rumen Degradation Characteristics of Six Organic Feeds. Animals, 12(6), 682. https://doi.org/10.3390/ani12060682