Effects of Key Farm Management Practices on Pullets Welfare—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Housing Type and Matching
2.1. Cage Rearing and Transfer Effects
2.2. Cage-Free Rearing and Transfer Effects
3. Flock Status
3.1. Flock Uniformity
3.2. Flock Size and Distribution
3.3. Stocking Density
4. Environmental Management
4.1. Lighting Management
4.1.1. Light Duration
4.1.2. Light Intensity
4.1.3. Light Color/Wavelength
4.2. Dark Brooder
4.3. Manure Management
4.4. Complex Environment (CE)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campderrich, I.; Nazar, F.N.; Wichman, A.; Marin, R.H.; Estevez, I.; Keeling, L.J. Environmental complexity: A buffer against stress in the domestic chick. PLoS ONE 2019, 14, e0210270. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, T.B.; Van Krimpen, M.M.; De Jong, I.C.; De Haas, E.N.; Kops, M.S.; Riedstra, B.J.; Nicol, C.J. The prevention and control of feather pecking in laying hens: Identifying the underlying principles. World’s Poult. Sci. J. 2013, 69, 361–374. [Google Scholar] [CrossRef] [Green Version]
- de Haas, E.N.; Bolhuis, J.E.; Kemp, B.; Groothuis, T.G.; Rodenburg, T.B. Parents and early life environment affect behavioral development of laying hen chickens. PLoS ONE 2014, 9, e90577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellor, E.; Brilot, B.; Collins, S. Abnormal repetitive behaviours in captive birds: A Tinbergian review. Appl. Anim. Behav. Sci. 2018, 198, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Rubolini, D.; Romano, M.; Boncoraglio, G.; Ferrari, R.P.; Martinelli, R.; Galeotti, P. Effects of elevated egg corticosterone levels on behavior, growth, and immunity of yellow-legged gull (Larus michahellis) chicks. Horm. Behav. 2005, 47, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, R.; Groothuis, T.G.; Rettenbacher, S. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PLoS ONE 2011, 6, e23824. [Google Scholar]
- Henriksen, R.; Rettenbacher, S.; Ton, G.G.G. Maternal corticosterone elevation during egg formation in chickens (Gallus gallus domesticus) influences offspring traits, partly via prenatal undernutrition. Gen. Comp. Endocrinol. 2013, 191, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Tauson, R. Management and housing systems for layers—Effects on welfare and production. World’s Poult. Sci. J. 2005, 61, 477–490. [Google Scholar] [CrossRef]
- Gunnarsson, S.; Keeling, L.J.; Svedberg, J. Effect of rearing factors on the prevalence of floor eggs, cloacal cannibalism and feather pecking in commercial flocks of loose housed laying hens. Br. Poult. Sci. 1999, 40, 12–18. [Google Scholar] [CrossRef]
- Gunnarsson, S.; Yngvesson, J.; Keeling, L.J.; Forkman, B. Rearing without early access to perches impairs the spatial skills of laying hens. Appl. Anim. Behav. Sci. 2000, 67, 217–228. [Google Scholar] [CrossRef]
- Mitchell, D.; Arteaga, V.; Armitage, T.; Mitloehner, F.; Tancredi, D.; Kenyon, N. Cage Versus Noncage Laying-Hen Housings: Worker Respiratory Health. J. Agromed. 2015, 20, 256–264. [Google Scholar] [CrossRef]
- Regmi, P.; Smith, N.; Nelson, N.; Haut, R.C.; Orth, M.W.; Karcher, D.M. Housing conditions alter properties of the tibia and humerus during the laying phase in Lohmann white Leghorn hens. Poult. Sci. 2016, 95, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Neijat, M.; Casey-Trott, T.M.; Robinson, S.; Widowski, T.M.; Kiarie, E. Effects of rearing and adult laying housing systems on medullary, pneumatic and radius bone attributes in 73-wk old Lohmann LSL lite hens1. Poult. Sci. 2019, 98, 2840–2845. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Hansen, T.B.; Orritt, R.; Nicol, C.; Moe, R.O.; Janczak, A.M. Does rearing laying hens in aviaries adversely affect long-term welfare following transfer to furnished cages? PLoS ONE 2014, 9, e107357. [Google Scholar]
- Janczak, A.M.; Riber, A.B. Review of rearing-related factors affecting the welfare of laying hens. Poult. Sci. 2015, 94, 1454–1469. [Google Scholar] [CrossRef]
- Pullin, A.N.; Temple, S.M.; Bennett, D.C.; Rufener, C.B.; Blatchford, R.A.; Makagon, M.M. Pullet Rearing Affects Collisions and Perch Use in Enriched Colony Cage Layer Housing. Animals 2020, 10, 1269. [Google Scholar] [CrossRef]
- Brantsæter, M.; Tahamtani, F.M.; Moe, R.O.; Hansen, T.B.; Orritt, R.; Nicol, C. Rearing Laying Hens in Aviaries Reduces Fearfulness following Transfer to Furnished Cages. Front. Vet. Sci. 2016, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Colson, S.; Arnould, C.; Michel, V. Influence of rearing conditions of pullets on space use and performance of hens placed in aviaries at the beginning of the laying period. Appl. Anim. Behav. Sci. 2008, 111, 286–300. [Google Scholar] [CrossRef]
- Bari, M.S.; Laurenson, Y.C.; Cohen-Barnhouse, A.M.; Walkden-Brown, S.W.; Campbell, D.L. Effects of outdoor ranging on external and internal health parameters for hens from different rearing enrichments. PeerJ 2020, 8, e8720. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, C.M.; Nicol, C.J. A descriptive account of the pre-laying behaviour of hens housed individually in modified cages with nests. Appl. Anim. Behav. Sci. 1993, 38, 49–60. [Google Scholar] [CrossRef]
- Ali, B.A.; Toscano, M.; Siegford, J.M. Later exposure to perches and nests reduces individual hens’ occupancy of vertical space in an aviary and increases force of falls at night. Poult. Sci. 2019, 98, 6251–6262. [Google Scholar] [CrossRef]
- MacLachlan, S.S.; Ali, A.B.A.; Toscano, M.J.; Siegford, J.M. Influence of later exposure to perches and nests on flock level distribution of hens in an aviary system during lay. Poult. Sci. 2019, 99, 30–38. [Google Scholar] [CrossRef]
- Faure, J.M. Rearing conditions and needs for space and litter in laying hens. Appl. Anim. Behav. Sci. 1991, 31, 111–117. [Google Scholar] [CrossRef]
- Craig, J.V.; Okpokho, N.A.; Milliken, G.A. Floor- and cage-rearing effects on pullets’ initial adaptation to multiple-hen cages. Appl. Anim. Behav. Sci. 1988, 20, 319–333. [Google Scholar] [CrossRef]
- Nicol, C.J.; Caplen, G.; Edgar, J.; Browne, W.J. Associations between welfare indicators and environmental choice in laying hens. Anim. Behav. 2009, 78, 413. [Google Scholar] [CrossRef]
- Nicol, C.J.; Caplen, G.; Edgar, J.; Richards, G.; Browne, W.J. Relationships between multiple welfare indicators measured in individual chickens across different time periods and environments. Anim. Welf. 2011, 20, 133–143. [Google Scholar]
- Grigor, P.N.; Hughes, B.O.; Appleby, M.C. Effects of regular handling and exposure to an outside area on subsequent fearfulness and dispersal in domestic hens. Appl. Anim. Behav. Sci. 1995, 44, 47–55. [Google Scholar] [CrossRef]
- Milisits, G.; Szász, S.; Donkó, T.; Budai, Z.; Almási, A.; Pőcze, O. Comparison of Changes in the Plumage and Body Condition, Egg Production, and Mortality of Different Non-Beak-Trimmed Pure Line Laying Hens during the Egg-Laying Period. Animals 2021, 11, 500. [Google Scholar] [CrossRef]
- Decina, C.; Berke, O.; van Staaveren, N.; Baes, C.F.; Widowski, T.M.; Harlander-Matauschek, A. An Investigation of Associations Between Management and Feather Damage in Canadian Laying Hens Housed in Furnished Cages. Animals 2019, 9, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambton, S.L.; Nicol, C.J.; Friel, M.; Main, D.C.J.; McKinstry, J.L.; Sherwin, C.M. A bespoke management package can reduce levels of injurious pecking in loose-housed laying hen flocks. Vet. Rec. 2013, 172, 423. [Google Scholar] [CrossRef]
- Kaukonen, E.; Valros, A. Feather Pecking and Cannibalism in Non-Beak-Trimmed Laying Hen Flocks—Farmers’ Perspectives. Animals 2019, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campderrich, I.; Liste, G.; Estevez, I. Group size and phenotypic appearance: Their role on the social dynamics in pullets. Appl. Anim. Behav. Sci. 2017, 189, 41–48. [Google Scholar] [CrossRef]
- Buchwalder, T.; Huber-Eicher, B. Effect of group size on aggressive reactions to an introduced conspecific in groups of domestic turkeys (Meleagris gallopavo). Appl. Anim. Behav. Sci. 2005, 93, 251–258. [Google Scholar] [CrossRef]
- Nicol, C.J.; Gregory, N.G.; Knowles, T.G.; Parkman, I.D.; Wilkins, L.J. Differential effects of increased stocking density, mediated by increased flock size, on feather pecking and aggression in laying hens. Appl. Anim. Behav. Sci. 1999, 65, 137–152. [Google Scholar] [CrossRef]
- Bilcík, B.; Keeling, L.J. Relationship between feather pecking and ground pecking in laying hens and the effect of group size. Appl. Anim. Behav. Sci. 2000, 68, 55–66. [Google Scholar] [CrossRef]
- Newberry, R.C.; Estevez, I.; Keeling, L.J. Group size and perching behaviour in young domestic fowl. Appl. Anim. Behav. Sci. 2001, 73, 117–129. [Google Scholar] [CrossRef]
- Gilani, A.M.; Knowles, T.G.; Nicol, C.J. Factors affecting ranging behaviour in young and adult laying hens. Br. Poult. Sci. 2014, 55, 127–135. [Google Scholar] [CrossRef]
- Hegelund, L.; Sørensen, J.T.; Kjaer, J.B.; Kristensen, I.S. Use of the range area in organic egg production systems: Effect of climatic factors, flock size, age and artificial cover. Br. Poult. Sci. 2005, 46, 1–8. [Google Scholar] [CrossRef]
- Bestman, M.W.P.; Wagenaar, J.P. Farm level factors associated with feather pecking in organic laying hens. Livest. Prod. Sci. 2003, 80, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Keeling, L.J.; Newberry, R.C.; Estevez, I. Flock size during rearing affects pullet behavioural synchrony and spatial clustering. Appl. Anim. Behav. Sci. 2017, 194, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Spindler, B.; Clauss, M.; Briese, A.; Hartung, J. Planimetric measurement of floor space covered by pullets. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 156–162. [Google Scholar] [PubMed]
- Liebers, C.J.; Schwarzer, A.; Erhard, M.; Schmidt, P.; Louton, H. The influence of environmental enrichment and stocking density on the plumage and health conditions of laying hen pullets. Poult. Sci. 2019, 98, 2474–2488. [Google Scholar] [CrossRef]
- Zepp, M.; Schwarzer, A.; Helmer, F.; Louton, H.; Erhard, M.; Schmidt, P. The influence of stocking density and enrichment on the occurrence of feather pecking and aggressive pecking behavior in laying hen chicks. J. Vet. Behav. 2018, 24, 9–18. [Google Scholar] [CrossRef]
- von Eugen, K.; Nordquist, R.E.; Zeinstra, E.; van der Staay, F.J. Stocking Density Affects Stress and Anxious Behavior in the Laying Hen Chick During Rearing. Animals 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Riddle, E.R.; Ali, A.B.A.; Campbell, D.L.M.; Siegford, J.M. Space use by 4 strains of laying hens to perch, wing flap, dust bathe, stand and lie down. PLoS ONE 2018, 13, e0190532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, P.H.; Lindberg, A.; Pope, S.J.; Glen, E.; Bolhuis, J.; Nicol, C.J. The effect of stocking density, flock size and modified management on laying hen behaviour and welfare in a non-cage system. Appl. Anim. Behav. Sci. 2006, 101, 111–124. [Google Scholar] [CrossRef]
- Kruijt, J.P. Ontogeny of Social Behaviour in Burmese Red Junglefowl (Callus Gallus Spadìceus) Bonnaterre; University of Groningen: Groningen, The Netherlands, 1964; pp. ix+201. [Google Scholar]
- Campbell, D.L.M.; de Haas, E.N.; Lee, C. A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development. Poult. Sci. 2019, 98, 9–28. [Google Scholar] [CrossRef]
- Andrew, R.J.; Brennan, A. The lateralization of fear behaviour in the male domestic chick: A developmental study. Anim. Behav. 1983, 31, 1166–1176. [Google Scholar] [CrossRef]
- Abo-Al-Ela, H.G.; El-Kassas, S.; El-Naggar, K.; Abdo, S.E.; Jahejo, A.R.; Al Wakeel, R.A. Stress and immunity in poultry: Light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones 2021, 26, 457–472. [Google Scholar] [CrossRef]
- Ray, A.; Pradhan, R.K. Importance of Light in Poultry Industry. Res. J. Sci. Technol. 2012, 4, 172–177. [Google Scholar]
- Manser, C.E. Effects of lighting on the welfare of domestic poultry: A review. Anim. Welf. 1996, 5, 341–360. [Google Scholar]
- Hofmann, T.; Schmucker, S.S.; Bessei, W.; Grashorn, M.; Stefanski, V. Impact of Housing Environment on the Immune System in Chickens: A Review. Animals 2020, 10, 1138. [Google Scholar] [CrossRef] [PubMed]
- Hieke, A.S.C.; Hubert, S.M.; Athrey, G. Circadian disruption and divergent microbiota acquisition under extended photoperiod regimens in chicken. PeerJ 2019, 7, e6592. [Google Scholar] [CrossRef] [Green Version]
- Poetzsch, C.J.; Lewis, K.; Nicol, C.J.; Green, L.E. A cross-sectional study of the prevalence of vent pecking in laying hens in alternative systems and its associations with feather pecking, management and disease. Appl. Anim. Behav. Sci. 2001, 74, 259–272. [Google Scholar] [CrossRef]
- Ma, H.; Xin, H.; Zhao, Y.; Li, B.; Shepherd, T.A.; Alvarez, I. Assessment of lighting needs by W-36 laying hens via preference test. Animal 2016, 10, 671–680. [Google Scholar] [CrossRef]
- Lewis, P.D.; Morris, T.R.; Perry, G.C. A model for the effect of constant photoperiods on the rate of sexual maturation in pullets. Br. Poult. Sci. 1998, 39, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Caston, L.J.; Summers, J.D. Performance of layers given two-hour midnight lighting as growing pullets. J. Appl. Poult. Res. 2003, 12, 313–320. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L.J.; Summers, J.D. Potential for midnight lighting to influence development of growing leghorn pullets. J. Appl. Poult. Res. 2003, 12, 306–312. [Google Scholar] [CrossRef]
- Chew, J.A.; Widowski, T.; Herwig, E.; Shynkaruk, T.; Schwean-Lardner, K. The Effect of Light Intensity, Strain, and Age on the Behavior, Jumping Frequency and Success, and Welfare of Egg-Strain Pullets Reared in Perchery Systems. Animals 2021, 11, 3353. [Google Scholar] [CrossRef]
- Renema, R.A.; Robinson, F.E.; Feddes, J.J.R.; Fasenko, G.M.; Zuidhoft, M.J. Effects of light intensity from photostimulation in four strains of commercial egg layers: 2. Egg production parameters. Poult. Sci. 2001, 80, 1121–1131. [Google Scholar] [CrossRef]
- Kadir, E.; Sarıca, M.; Moise, N.; Dur, M.; Aslan, R. Effect of light intensity and stocking density on the performance, egg quality, and feather condition of laying hens reared in a battery cage system over the first laying period. Trop. Anim. Health Prod. 2021, 53, 320. [Google Scholar]
- England, A.; Ruhnke, I. The influence of light of different wavelengths on laying hen production and egg quality. World’s Poult. Sci. J. 2020, 76, 443–458. [Google Scholar] [CrossRef]
- Liu, K.; Xin, H.; Settar, P. Effects of light-emitting diode light v. fluorescent light on growing performance, activity levels and well-being of non-beak-trimmed W-36 pullets. Animal 2018, 12, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zheng, W.; Li, B.; Tong, Q.; Shi, H. Effects of a two-phase mixed color lighting program using light-emitting diode lights on layer chickens during brooding and rearing periods. Poult. Sci. 2020, 99, 4695–4703. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.R.; Sultana, S.; Ho Sung, C.; Ryu, K.S. Effect of Monochromatic and Combined Light Colour on Performance, Blood Parameters, Ovarian Morphology and Reproductive Hormones in Laying Hens. Ital. J. Anim. Sci. 2013, 12, e56. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.G.; Follett, B.K. The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail. J. Comp. Physiol. A 1985, 157, 519–528. [Google Scholar] [CrossRef]
- Sultana, S.; Hassan, M.R.; Choe, H.S.; Ryu, K.S. The effect of monochromatic and mixed LED light colour on the behaviour and fear responses of broiler chicken. Avian Biol. Res. 2013, 6, 207. [Google Scholar] [CrossRef]
- Li, G.; Li, B.; Zhao, Y.; Shi, Z.; Liu, Y.; Zheng, W. Layer pullet preferences for light colors of light-emitting diodes. Animal 2019, 13, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ji, B.; Li, B.; Shi, Z.; Zhao, Y.; Dou, Y.J. Assessment of layer pullet drinking behaviors under selectable light colors using convolutional neural network. Comput. Electron. Agric. 2020, 172, 105333. [Google Scholar] [CrossRef]
- Shi, H.; Li, B.; Tong, Q.; Zheng, W.; Zeng, D.; Feng, G. Effects of LED Light Color and Intensity on Feather Pecking and Fear Responses of Layer Breeders in Natural Mating Colony Cages. Animals 2019, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Lind, O.; Kelber, A. Avian colour vision: Effects of variation in receptor sensitivity and noise data on model predictions as compared to behavioural results. Vis. Res. 2009, 49, 1939–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, C.J.; Bestman, M.; Gilani, A.M.; De Haas, E.N.; De Jong, I.C.; Lambton, S. The prevention and control of feather pecking: Application to commercial systems. World’s Poult. Sci. J. 2013, 69, 775–788. [Google Scholar] [CrossRef]
- Osorio, D.; Vorobyev, M.; Jones, C.D. Colour vision of domestic chicks. J. Exp. Biol. 1999, 202, 2951–2959. [Google Scholar] [CrossRef]
- Wichman, A.; De Groot, R.; Håstad, O.; Wall, H.; Rubene, D. Influence of Different Light Spectrums on Behaviour and Welfare in Laying Hens. Animals 2021, 11, 924. [Google Scholar] [CrossRef]
- Bestman, M.; Koene, P.; Wagenaar, J.P. Influence of farm factors on the occurrence of feather pecking in organic reared hens and their predictability for feather pecking in the laying period. Appl. Anim. Behav. Sci. 2009, 121, 120–125. [Google Scholar] [CrossRef]
- Drake, K.A.; Donnelly, C.A.; Dawkins, M.S. Influence of rearing and lay risk factors on propensity for feather damage in laying hens. Br. Poult. Sci. 2010, 51, 725–733. [Google Scholar] [CrossRef]
- Spindler, B.; Weseloh, T.; Eßer, C.; Freytag, S.K.; Klambeck, L.; Kemper, N. The Effects of UV-A Light Provided in Addition to Standard Lighting on Plumage Condition in Laying Hens. Animals 2020, 10, 1106. [Google Scholar] [CrossRef]
- Shimmura, T.; Suzuki, T.; Hirahara, S.; Eguchi, Y.; Uetake, K.; Tanaka, T. Pecking behaviour of laying hens in single-tiered aviaries with and without outdoor area. Br. Poult. Sci. 2008, 49, 396–401. [Google Scholar] [CrossRef]
- Maddocks, S.A.; Cuthill, I.C.; Goldsmith, A.R.; Sherwin, C.M. Behavioural and physiological effects of absence of ultraviolet wavelengths for domestic chicks. Anim. Behav. 2001, 62, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Prescott, N.B.; Wathes, C.M.; Jarvis, J.R. Light, vision and the welfare of poultry. Anim. Welf. 2003, 12, 269–288. [Google Scholar]
- Barrett, J.; Rayner, A.C.; Gill, R.; Willings, T.H.; Bright, A. Smothering in UK free-range flocks. Part 1: Incidence, location, timing and management. Vet. Rec. 2014, 175, 19. [Google Scholar] [CrossRef] [PubMed]
- Richards, G.J.; Brown, S.N.; Booth, F.; Toscano, M.J.; Wilkins, L.J. Panic in free-range laying hens. Vet. Rec. 2012, 170, 519. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.L.; María García, G.; Sara García, D.V. Comparison of the tonic immobility duration, heterophil to lymphocyte ratio, and fluctuating asymmetry of chicks reared with or without a broody hen, and of broody and non-broody hens. Appl. Anim. Behav. Sci. 2014, 151, 61–66. [Google Scholar] [CrossRef]
- Roden, C.; Wechsler, B. A comparison of the behaviour of domestic chicks reared with or without a hen in enriched pens. Appl. Anim. Behav. Sci. 1998, 55, 317–326. [Google Scholar] [CrossRef]
- Riber, A.B.; Nielsen, B.L.; Ritz, C.; Forkman, B. Diurnal activity cycles and synchrony in layer hen chicks (Gallus gallus domesticus). Appl. Anim. Behav. Sci. 2007, 108, 276–287. [Google Scholar] [CrossRef]
- Riber, A.B.; Wichman, A.; Braastad, B.O.; Forkman, B. Effects of broody hens on perch use, ground pecking, feather pecking and cannibalism in domestic fowl (Gallus gallus domesticus). Appl. Anim. Behav. Sci. 2007, 106, 39–51. [Google Scholar] [CrossRef]
- Perre, Y.; Wauters, A.M.; Richard-Yris, M.A. Influence of mothering on emotional and social reactivity of domestic pullets. Appl. Anim. Behav. Sci. 2002, 75, 133–146. [Google Scholar] [CrossRef]
- Riber, A.B.; Guzman, D.A. Effects of different types of dark brooders on injurious pecking damage and production-related traits at rear and lay in layers. Poult. Sci. 2017, 96, 3529–3538. [Google Scholar] [CrossRef]
- Riber, A.B.; Guzman, D.A. Effects of Dark Brooders on Behavior and Fearfulness in Layers. Animal 2016, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodenburg, T.B.; Komen, H.; Ellen, E.D.; Uitdehaag, K.A.; van Arendonk, J.A.M. Selection method and early-life history affect behavioural development, feather pecking and cannibalism in laying hens: A review. Appl. Anim. Behav. Sci. 2008, 110, 217–228. [Google Scholar] [CrossRef]
- Jensen, A.B.; Palme, R.; Forkman, B. Effect of brooders on feather pecking and cannibalism in domestic fowl (Gallus gallus domesticus). Appl. Anim. Behav. Sci. 2006, 99, 287–300. [Google Scholar] [CrossRef]
- Gilani, A.M.; Knowles, T.G.; Nicol, C.J. The effect of dark brooders on feather pecking on commercial farms. Appl. Anim. Behav. Sci. 2012, 142, 42–50. [Google Scholar] [CrossRef]
- Chi, Q.; Chi, X.; Hu, X.; Wang, S.; Zhang, H.; Li, S. The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: Perspectives on inflammation, oxidative stress and energy metabolism. Environ. Res. 2018, 167, 1–6. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Moe, R.O. Air Quality in Alternative Housing Systems may have an Impact on Laying Hen Welfare. Part II—Ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roque, K.; Shin, K.-M.; Jo, J.-H.; Kim, H.-A.; Heo, Y. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments. J. Vet. Sci. 2015, 16, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Stevenson, D.S.; Uwizeye, A.; Tempio, G.; Sutton, M.A. A climate-dependent global model of ammonia emissions from chicken farming. Biogeosciences 2021, 18, 135–158. [Google Scholar] [CrossRef]
- Shepherd, T.A.; Xin, H.; Stinn, J.P.; Hayes, M.D.; Zhao, Y.; Li, H. Ammonia and Carbon Dioxide Emissions of Three Laying-Hen Housing Systems as Affected by Manure Accumulation Time. Trans. ASABE 2017, 60, 229–236. [Google Scholar]
- Zhao, Y.; Shepherd, T.A.; Li, H.; Xin, H. Environmental assessment of three egg production systems—Part I: Monitoring system and indoor air quality. Poult. Sci. 2015, 94, 518–533. [Google Scholar] [CrossRef]
- German, G.S.; Karlis, P. Developing EU Environmental Standards for the Food, Drink and Milk Industries: Key Environmental Issues and Data Collection; Research Square: Durham, UK, 2020. [Google Scholar]
- Matheus, D.O.; Fernanda, C.S.; Jair, O.S.; Arele, A.C.; Ilda Fátima Ferreira, T.; Antônio, P.S.C. Ammonia Emission in Poultry Facilities: A Review for Tropical Climate Areas. Atmosphere 2021, 12, 1091. [Google Scholar]
- Nimmermark, S.; Lund, V.; Gustafsson, G.; Eduard, W. Ammonia, dust and bacteria in welfare-oriented systems for laying hens. Ann. Agric. Environ. Med. 2009, 16, 103–113. [Google Scholar]
- Donham, K.J.; Cumro, D.; Reynolds, S.J.; Merchant, J.A. Dose-response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers: Recommendations for exposure limits. J. Occup. Environ. Med. 2000, 42, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Mahardhika, B.P.; Mutia, R.; Ridla, M. Effort to reduce ammonia gas in the broiler chicken excreta with the addition of probiotic as substitute for antibiotic growth promoter. IOP Conf. Ser. Earth Environ. Sci. 2021, 883, 012013. [Google Scholar] [CrossRef]
- Such, N.; Csitári, G.; Stankovics, P.; Wágner, L.; Koltay, I.A.; Farkas, V. Effects of Probiotics and Wheat Bran Supplementation of Broiler Diets on the Ammonia Emission from Excreta. Animals 2021, 11, 2703. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Choct, M.; Wu, S.; Swick, R.A. Nutritional effects on odour emissions in broiler production. World’s Poult. Sci. J. 2017, 73, 257–280. [Google Scholar] [CrossRef]
- Zheshi, K.; Jie, C.; Xiangjie, Z.; Xianli, L. Study Progress on Animal Feces Treatment by Microorganism. Meteorol. Environ. Res. 2014, 5, 56–58. [Google Scholar]
- Vela-Aparicio, D.; Forero, D.F.; Hernández, M.A.; Brandão Pedro, F.B.; Cabeza, I.O. Simultaneous biofiltration of H2S and NH3 using compost mixtures from lignocellulosic waste and chicken manure as packing material. Environ. Sci. Pollut. Res. Int. 2021, 28, 24721–24730. [Google Scholar] [CrossRef]
- Redding, M.R. Bentonite can decrease ammonia volatilisation losses from poultry litter: Laboratory studies. Anim. Prod. Sci. 2013, 53, 1115–1118. [Google Scholar] [CrossRef] [Green Version]
- Brantsæter, M.; Nordgreen, J.; Rodenburg, T.B.; Tahamtani, F.M.; Popova, A.; Janczak, A.M. Exposure to Increased Environmental Complexity during Rearing Reduces Fearfulness and Increases Use of Three-Dimensional Space in Laying Hens (Gallus gallus domesticus). Front. Vet. Sci. 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Zidar, J.; Campderrich, I.; Jansson, E.; Wichman, A.; Winberg, S.; Keeling, L. Environmental complexity buffers against stress-induced negative judgement bias in female chickens. Sci. Rep. 2018, 8, 5404. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Hartcher, K.; Liu, W.; Xiao, J.; Xiang, H.; Wang, J.; Zhao, X. Adaptive response to a future life challenge: Consequences of early-life environmental complexity in dual-purpose chicks. J. Anim. Sci. 2020, 98, skaa348. [Google Scholar] [CrossRef]
- Vestergaard, K.S.; Kruijt, J.P.; Hogan, J.A. Feather pecking and chronic fear in groups of red junglefowl: Their relations to dustbathing, rearing environment and social status. Anim. Behav. 1993, 45, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Murillo, A.C.; Abdoli, A.; Blatchford, R.A.; Keogh, E.J.; Gerry, A.C. Parasitic mites alter chicken behaviour and negatively impact animal welfare. Sci. Rep. 2020, 10, 8236. [Google Scholar] [CrossRef]
- Mens, A.J.W.; van Krimpen, M.M.; Kwakkel, R.P. Nutritional approaches to reduce or prevent feather pecking in laying hens: Any potential to intervene during rearing? World’s Poult. Sci. J. 2020, 76, 591–610. [Google Scholar] [CrossRef]
- Ross, M.; Rausch, Q.; Vandenberg, B.; Mason, G. Hens with benefits: Can environmental enrichment make chickens more resilient to stress? Physiol. Behav. 2020, 226, 113077. [Google Scholar] [CrossRef]
- Martin, C.D.; Mullens, B. Housing and dustbathing effects on northern fowl mites (Ornithonyssus sylviarum) and chicken body lice (Menacanthus stramineus) on hens. Med. Vet. Entomol. 2012, 26, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Huber-eicher, B.; Wechsler, B. The effect of quality and availability of foraging materials on feather pecking in laying hen chicks. Anim. Behav. 1998, 55, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Tahamtani, F.M.; Brantsaeter, M.; Nordgreen, J.; Sandberg, E.; Hansen, T.B.; Nodtvedt, A. Effects of litter provision during early rearing and environmental enrichment during the production phase on feather pecking and feather damage in laying hens. Poult. Sci. 2016, 95, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Brantsæter, M.; Tahamtani, F.M.; Nordgreen, J.; Sandberg, E.; Hansen, T.B.; Rodenburg, T.B. Access to litter during rearing and environmental enrichment during production reduce fearfulness in adult laying hens. Appl. Anim. Behav. Sci. 2017, 189, 49–56. [Google Scholar] [CrossRef]
- Schreiter, R.; Damme, K.; von Borell, E.; Vogt, I.; Klunker, M.; Freick, M. Effects of litter and additional enrichment elements on the occurrence of feather pecking in pullets and laying hens—A focused review. Vet. Med. Sci. 2019, 5, 500–507. [Google Scholar] [CrossRef] [Green Version]
Rearing Type | Housing Conversion | Matching Effects | References |
---|---|---|---|
Cage rearing | To aviaries | Higher risk of feed waste, dehydration, and ground eggs | Tauson 2005 [8] |
To aviaries | Prone to flight accidents, keel fractures, and vent pecking | Gunnarsson et al., 1999 [9] | |
To perches | chicks exposed to perches earlier behaved better at moving between the layers later. | Gunnarsson et al., 2000 [10] | |
To floor barns with perch | Delaying access to perches for at least 10 weeks | Mitchell et al., 2015 [11] | |
To enriched colony cages * | Reduces discomfort, enhances the development of bone mass parameters better than those of the traditional cage layers | Regmi et al., 2016 [12] | |
Cage-free rearing | From aviaries or cages to the same housing type or enriched cages | Total medullary and pneumatic bone weight and ash content scores from high to low were A-A, C-E, A-C and C-C hens, respectively | Neijat et al., 2019 [13] |
From aviaries to furnished cages at 16 weeks | Mortality (20–76 wk) is higher (5.52% vs. 2.48%) than cage-reared birds | Tahamtani et al., 2014 [14] | |
From aviaries to cages | Early transfer (16 weeks or earlier) could reduce mortality and increase nest eggs | Janczak et al., 2015 [15] | |
From aviaries to enriched cages * | Fewer acceleration events and collisions during daytime at 21 and 35 weeks of age, and more high-perching compared to conventional cages | Pulin et al., 2020 [16] | |
From aviaries to enriched cages at 16 weeks * | Lower levels of fearfulness indicated by spending less time away from the novel object at 19 and 21 weeks compared to conventional cages | Brantsæter et al., 2016 [17] | |
From aviaries to * aviaries | More eggs in the nest compared to barn-reared hens | Colson et al., 2008 [18] | |
To outdoor * | The high outdoor hens showed the highest spleen and empty gizzard weights | Md Saiful et al., 2020 [19] | |
To modified cages (with 2 nests each) * | Expressed a full repertoire of pre-laying activities; displacement behaviors and pacing were less frequent; more eggs in the nest than conventional cages without nests | Shervin et al., 1993 [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Qin, P.; Liu, Y.; Amevor, F.K.; Shu, G.; Li, D.; Zhao, X. Effects of Key Farm Management Practices on Pullets Welfare—A Review. Animals 2022, 12, 729. https://doi.org/10.3390/ani12060729
Du X, Qin P, Liu Y, Amevor FK, Shu G, Li D, Zhao X. Effects of Key Farm Management Practices on Pullets Welfare—A Review. Animals. 2022; 12(6):729. https://doi.org/10.3390/ani12060729
Chicago/Turabian StyleDu, Xiaohui, Pingwu Qin, Yanting Liu, Felix Kwame Amevor, Gang Shu, Diyan Li, and Xiaoling Zhao. 2022. "Effects of Key Farm Management Practices on Pullets Welfare—A Review" Animals 12, no. 6: 729. https://doi.org/10.3390/ani12060729
APA StyleDu, X., Qin, P., Liu, Y., Amevor, F. K., Shu, G., Li, D., & Zhao, X. (2022). Effects of Key Farm Management Practices on Pullets Welfare—A Review. Animals, 12(6), 729. https://doi.org/10.3390/ani12060729