Minimum Alveolar Concentration of Isoflurane in Rats Chronically Treated with the Synthetic Cannabinoid WIN 55,212-2
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Anesthetic Procedure
2.2. MAC Determination
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mechoulam, R. The pharmacology of cannabis sativa. In Cannabinoids as Therapeutic Agents; Mechoulam, R., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 1–16. [Google Scholar]
- United Nations Office on Drugs and Crime. World Drug Report 2019; Sales No. E.19.XI.8; United Nations Publication: New York, NY, USA, 2019. [Google Scholar]
- Gaoni, Y.; Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Devane, W.A.; Dysarz, F.A., 3rd; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar] [PubMed]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanuš, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Mechoulam, R.; Ben-Shabat, S.; Hanuš, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almong, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995, 50, 83–90. [Google Scholar] [CrossRef]
- Pacher, P.; Kunos, G. Modulating the endocannabinoid system in human health and disease successes and failures. FEBS J. 2013, 280, 1918–1943. [Google Scholar] [CrossRef] [Green Version]
- Mechoulam, R. Cannabis: The Israeli perspective. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 181–187. [Google Scholar] [CrossRef]
- Tantimonaco, M.; Ceci, R.; Sabatini, S.; Catani, M.V.; Rossi, A.; Gasperi, V.; Maccarrone, M. Physical activity and the endocannabinoid system: An overview. Cell. Mol. Life Sci. 2014, 71, 2681–2698. [Google Scholar] [CrossRef]
- Mechoulam, R.; Hanus, L.O.; Pertwee, R.; Howlett, A.C. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat. Rev. Neurosci. 2014, 15, 757–776. [Google Scholar] [CrossRef]
- Maccarrone, M.; Guzmán, M.; Mackie, K.; Doherty, P.; Harkany, T. Programming of neural cells by (endo) cannabinoids: From physiological rules to emerging therapies. Nat. Rev. Neurosci. 2014, 15, 786–801. [Google Scholar] [CrossRef] [Green Version]
- Eger, E.I.; Saidman, L.J.; Brandstater, B. Minimum alveolar anesthetic concentration: A standard of anesthetic potency. Anesthesiology 1965, 26, 756–763. [Google Scholar] [CrossRef]
- Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Chavez, J.R.; Ibancovichi, J.A.; Sanchez-Aparicio, P.; Acevedo-Arcique, C.M.; Moran-Muñoz, R.; Recillas-Morales, S. Effect of acetaminophen alone and in combination with morphine and tramadol on the minimum alveolar concentration of isoflurane in rats. PLoS ONE 2015, 25, e0143710. [Google Scholar] [CrossRef] [Green Version]
- Antognini, J.F.; Schwartz, K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 1993, 79, 1244–1249. [Google Scholar] [CrossRef]
- Quasha, A.L.; Eger, E.I.; Tinker, J.H. Determination and applications of MAC. Anesthesiology 1980, 53, 314–334. [Google Scholar] [CrossRef]
- Lawston, J.; Borella, A.; Robinson, J.K.; Whitaker-Azmitia, P.M. Changes in hippocampal morphology following chronic treatment whith the synthetic cannabinoid WIN 55,212-2. Brain Res. 2000, 877, 407–410. [Google Scholar] [CrossRef]
- Tanda, G.; Pontieri, F.E.; Chiara, G.D. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 1997, 276, 2048–2050. [Google Scholar] [CrossRef] [Green Version]
- Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.H.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; et al. International Union of Basis and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol. Rev. 2010, 62, 588–631. [Google Scholar] [CrossRef] [Green Version]
- Page, M.E.; Oropeza, V.C.; Sparks, S.E.; Qian, Y.; Menko, A.S.; Van Bockstaele, E.J. Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol. Biochem. Behav. 2007, 86, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.D.; Way, W.L.; Eger, E.I., II. The effects of alpha-methylodopa, reserpine, guanethidine and iproniazid on minimum alveolar anesthesia requirement (MAC). Anesthesiology 1968, 29, 1153–1158. [Google Scholar] [CrossRef]
- Johnston, R.R.; Way, W.L.; Miller, R.D. Alteration of anesthetic requirement by amphetamine. Anesthesiology 1972, 36, 357–363. [Google Scholar] [CrossRef]
- Stoelting, R.K.; Creasser, C.W.; Martz, R.Z. Effect of cocaine administration on halothane MAC in dogs. Anesth. Analg. 1975, 54, 422–424. [Google Scholar] [CrossRef]
- Linden, A.M.; Aller, M.I.; Leppa, E.; Vekovischeva, O.; Aitta-aho, T.; Veale, E.L.; Mathie, A.; Rosenberg, P.; Wisden, W.; Korpi, E.R. The in vivo contributions of TASK-1 containing channels to the actions of inhalation anesthetics, the α2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J. Pharmacol. Exp. Ther. 2006, 317, 615–626. [Google Scholar] [CrossRef]
- Linden, A.M.; Sandu, C.; Aller, M.I.; Vekovischeva, O.Y.; Rosenberg, P.H.; Wisden, W.; Korpi, E.R. TASK3 Konockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anes thetics. J. Pharmacol. Exp. Ther. 2007, 323, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Stoelting, R.K.; Martz, R.C.; Gartner, J.; Creasser, C.; Brown, D.J.; Forney, R.B. Effects of delta-9-tetrahydrocannabinol on halothane MAC in dogs. Anesthesiology 1973, 38, 521–524. [Google Scholar] [CrossRef]
- Vitez, T.S.; Way, W.L.; Miller, R.D.; Eger, E.I., II. Effects of delta-9-tetrahydrocannabinol on cyclopropane MAC in the rat. Anesthesiology 1973, 38, 525–527. [Google Scholar] [CrossRef]
- Mechoulam, R.; Lichtman, A.H. Stout guards of the central nervous system. Science 2003, 302, 65–67. [Google Scholar] [CrossRef]
- Marsicano, G.; Goodenough, S.; Monory, K.; Hermann, H.; Eder, M.; Cannich, A.; Azad, S.C.; Cascio, M.G.; Gutiérrez, S.O.; van der Stelt, M.; et al. CB1 cannabinoid receptors and on demand defense against excitotoxicity. Science 2003, 302, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R.M.; Palkovits, M.; Kopin, I.J.; Jacobowitz, D.M. Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Res. 1974, 77, 269–279. [Google Scholar] [CrossRef]
Group | MAC% | SD | % MAC Increase | p-Value | 95% IC |
---|---|---|---|---|---|
MACISO | 1.32 | 0.06 | - | 1.27–1.37 | |
MACISO + WIN55 | 1.69 * | 0.09 | 28% | <0.0001 | 1.58–1.77 |
MACISO + WIN + 8D | 1.67 * | 0.07 | 26% | <0.0001 | 1.60–1.75 |
Value | MACISO | MACISO + WIN55 | MACISO + WIN + 8D |
---|---|---|---|
Hearth rate (bpm) | 401 ± 8 | 403 ± 7 | 403 ± 9 |
Mean arterial blood pressure (mmHg) | 93 ± 8 | 90 ± 9 | 91 ± 6 |
Temperature °C | 37.7 ± 0.07 | 37.6 ± 0.12 | 37.7 ± 0.06 |
pH | 7.3 ± 03 | 7.3 ± 0.04 | 7.3 ± 0.03 |
PaO2 (mmH) | 301 ± 34 | 295 ± 8 | 288 ± 28 |
PaCo2 (mmHg) | 37 ± 4 | 37 ± 1 | 37 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavez-Monteagudo, J.R.; Ibancovichi, J.A.; Sanchez-Aparicio, P.; Recillas-Morales, S.; Osorio-Avalos, J.; De Paz-Campos, M.A. Minimum Alveolar Concentration of Isoflurane in Rats Chronically Treated with the Synthetic Cannabinoid WIN 55,212-2. Animals 2022, 12, 853. https://doi.org/10.3390/ani12070853
Chavez-Monteagudo JR, Ibancovichi JA, Sanchez-Aparicio P, Recillas-Morales S, Osorio-Avalos J, De Paz-Campos MA. Minimum Alveolar Concentration of Isoflurane in Rats Chronically Treated with the Synthetic Cannabinoid WIN 55,212-2. Animals. 2022; 12(7):853. https://doi.org/10.3390/ani12070853
Chicago/Turabian StyleChavez-Monteagudo, Julio Raul, José Antonio Ibancovichi, Pedro Sanchez-Aparicio, Sergio Recillas-Morales, Jorge Osorio-Avalos, and Marco Antonio De Paz-Campos. 2022. "Minimum Alveolar Concentration of Isoflurane in Rats Chronically Treated with the Synthetic Cannabinoid WIN 55,212-2" Animals 12, no. 7: 853. https://doi.org/10.3390/ani12070853
APA StyleChavez-Monteagudo, J. R., Ibancovichi, J. A., Sanchez-Aparicio, P., Recillas-Morales, S., Osorio-Avalos, J., & De Paz-Campos, M. A. (2022). Minimum Alveolar Concentration of Isoflurane in Rats Chronically Treated with the Synthetic Cannabinoid WIN 55,212-2. Animals, 12(7), 853. https://doi.org/10.3390/ani12070853