The Effect of Sustainable Feeding Systems, Combining Total Mixed Rations and Pasture, on Milk Fatty Acid Composition and Antioxidant Capacity in Jersey Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Experimental Procedure
- -
- For maintenance: NEL (Mcal/day) = 1.1 × (0.080 × BW0.75);
- -
- For lactation: NEL (Mcal/day) = milk production (kg/day) × (0.3512 + [0.0962 × %milk fat]);
- -
- For body weight changes: daily weight gain = 5.12 Mcal/kg BW; while average daily weight loss = 4.92 Mcal/kg BW;
- -
- For walking to the pasture and back to the shelter: 0.62 cal/(kg BW × m). Distance measurements to each parcel were performed and showed a mean value of 752 m (one way);
- -
- For grazing: NEL (Mcal/day) = 1.2 kcal × 8 h × BW0.75.
2.3. Sample Collection
2.4. Feed and Milk Chemical Analyses
2.4.1. Feed and Milk Composition
2.4.2. Feed and Milk Fatty Acid Profiles
2.4.3. Feed and Milk Fat-Soluble Antioxidants
2.4.4. Milk Antioxidant Capacity Analysis
2.5. Nutritional Indices and FA Ratios
- -
- n-6/n-3 FA = (C18:2n-6 + C18:3n-6 + C20:4n-6)/(C18:3n-3 + C20:5n-3 + C22:3n-3 + C22:5n-3 + C22:6n-3);
- -
- AI = (C12:0 + (C14:0 × 4) + C16:0)/(MUFA + PUFA);
- -
- TI = (12:0 + 16:0 + 18:0)/[(0.5 × MUFA) + (0.5 × n-6FA) + (3 × n-3FA) + (n-3FA/n-6FA)];
- -
- HPI = (n-3 PUFA + n-6 PUFA + MUFA)/[C12:0 + (4 × C14:0) + C16:0];
- -
- h/H FA = (C18:1 + PUFA)/(C12:0 + C14:0 + C16:0).
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of the Forages
3.2. Dry Matter Intake, Milk Yield, and Milk Composition
3.3. Milk Fatty Acids Profile
3.4. Fat-Soluble Vitamins and Antioxidant Capacity
4. Discussion
4.1. Chemical Composition of the Forages
4.2. Feed Intake, Milk Yield, and Milk Composition
4.3. Fatty Acid Composition
4.4. Fat-Soluble Vitamins and Antioxidant Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Angelo, S.; Motti, M.L.; Meccariello, R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020, 12, 2751. [Google Scholar] [CrossRef] [PubMed]
- Elgersma, A.; Tamminga, S.; Ellen, G. Modifying milk composition through forage. Anim. Feed Sci. Technol. 2006, 131, 207–225. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Preference of dairy cows: Indoor cubicle housing with access to a total mixed ration vs. access to pasture. Appl. Anim. Behav. Sci. 2011, 130, 1–9. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef] [PubMed]
- Serrapica, F.; Masucci, F.; Di Francia, A.; Napolitano, F.; Braghieri, A.; Esposito, G.; Romano, R. Seasonal Variation of Chemical Composition, Fatty Acid Profile, and Sensory Properties of a Mountain Pecorino Cheese. Foods 2020, 9, 1091. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Barca, J.; Chilibroste, P.; Fajardo, M.; Olazabal, L.; Carriquiry, M.; Meikle, A. Milk fatty acid profile from cows fed with mixed rations and different access time to pastureland during early lactation. J. Anim. Physiol. Anim. Nutr. 2018, 102, 620–629. [Google Scholar] [CrossRef]
- Chilibroste, P.; Mattiauda, D.A.; Bentancur, O.; Soca, P.; Meikle, A. Effect of herbage allowance on grazing behavior and productive performance of early lactation primiparous Holstein cows. Anim. Feed Sci. Technol. 2012, 173, 201–209. [Google Scholar] [CrossRef]
- Wales, W.J.; Marett, L.C.; Greenwood, J.S.; Wright, M.M.; Thornhill, J.B.; Jacobs, J.L.; Ho, C.K.; Auldist, M.J. Use of partial mixed rations in pasture-based dairying in temperate regions of Australia. Anim. Prod. Sci. 2013, 53, 1167–1178. [Google Scholar] [CrossRef]
- Vibart, R.E.; Fellner, V.; Burns, J.C.; Huntington, G.B.; Green, J.T., Jr. Performance of lactating dairy cows fed varying levels of total mixed ration and pasture. J. Dairy Res. 2008, 75, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Bargo, F.; Muller, L.D.; Delahoy, J.E.; Cassidy, T.W. Performance of high producing dairy cows with three different feeding systems combining pasture and total mixed rations. J. Dairy Sci. 2002, 85, 2948–2963. [Google Scholar] [CrossRef]
- Morales-Almaraz, E.; Soldado, A.; Gonzalez, A.; Martınez-Fernandez, A.; Domınguez-Vara, A.; de la Roza-Delgado, B.; Vicente, F. Improving the fatty acid profile of dairy cow milk by combining grazing with feeding of total mixed ration. J. Dairy Res. 2010, 77, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.; Cajarville, C.; Repetto, J.L. Short communication: Intake, milk production, and milk fatty acid profile of dairy cows fed diets combining fresh forage with a total mixed ration. J. Dairy Sci. 2016, 99, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Al-Mabruk, R.M.; Beck, N.F.G.; Dewhurst, R.J. Effect of silage species and supplemental vitamin E on the oxidative stability of milk. J. Dairy Sci. 2004, 87, 406–412. [Google Scholar] [CrossRef]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M. The behaviour of housed dairy cattle with and without pasture access: A review. Appl. Anim. Behav. Sci. 2017, 192, 2–9. [Google Scholar] [CrossRef]
- Nejad, G.J.; Lee, B.H.; Kim, J.Y.; Sung, K.I.; Lee, H.G. Daytime Grazing in Mountainous Areas Increases Unsaturated Fatty Acids and Decreases Cortisol in the Milk of Holstein Dairy Cows. Animals 2021, 11, 3122. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Macoon, B.; Sollenberger, L.E.; Moore, J.E.; Staples, C.R.; Fike, J.H.; Portier, K.M. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture. J. Anim. Sci. 2003, 81, 2357–2366. [Google Scholar] [CrossRef]
- Lucas, A.; Rock, E.; Chamba, J.F.; Verdier-Metz, I.; Brachet, P.; Coulon, J.B. Respective effects of milk composition and the cheese-making process on cheese compositional variability in components of nutritional interest. Lait 2006, 86, 21–41. [Google Scholar] [CrossRef] [Green Version]
- AOAC (Association of Official Analytical Chemist). Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Mierliță, D. Fatty acid profile and health lipid indices in the raw milk of ewes grazing part-time and hemp seed supplementation of lactating ewes. S. Afr. J. Anim. Sci. 2016, 46, 237–246. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane, G.; Stanley, H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Roncero-Díaz, M.; Panea, B.; Argüello, A.; Alcalde, M.J. How Management System Affects the Concentration of Retinol and α-Tocopherol in Plasma and Milk of Payoya Lactating Goats: Possible Use as Traceability Biomarkers. Animals 2021, 11, 2326. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lindmark-Mansson, H.; Gorton, L.; Akesson, B. Antioxidant capacity of cow milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Mierliță, D.; Vicas, S. Dietary effect of silage type and combination with camelina seed on milk fatty acid profile and antioxidant capacity of sheep milk. S. Afr. J. Anim. Sci. 2015, 45, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.K.; Roche, J.R.; Kolver, E.S.; Thomson, N.A.; Baumgard, L.H. A comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows. J. Dairy Res. 2005, 72, 322–332. [Google Scholar] [CrossRef]
- Statistical Analysis System. SAS/STAT® User’s Guide; Version 9.1; SAS Institute, Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Radonjic, D.; Djordjevic, N.; Markovic, B.; Markovic, M.; Stesevic, D.; Dajic-Stevanovic, Z. Effect of phenological phase of dry grazing pasture on fatty acid composition of cows’ milk. Chil. J. Agric. Res. 2019, 79, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Bohacová, L.; Dvoraková, E.; Cermák, B.; Spicka, J.; Vávrová, L. The effect of the structure of the pasture growth on the substitution of fatty acids in the milk of grazing dairy cow. Zooteh. Biotehnol. 2009, 42, 225–231. [Google Scholar]
- Samková, E.; Koubová, J.; Hasonova, L.; Hanus, O.; Kala, R.; Kvác, M. Joint effects of breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. Mljekarstvo 2018, 68, 98–107. [Google Scholar] [CrossRef]
- Cabiddu, A.; Wencelová, M.; Bomboi, G.; Decandia, M.; Molle, G.; Salis, L. Fatty acid profile in two berseem clover (Trifolium alexandrinum L.) cultivars: Preliminary study of the effect of part of plant and phenological stage. Grassl. Sci. 2017, 63, 101–110. [Google Scholar] [CrossRef]
- De La Torre-Santos, S.; Royo, L.J.; Martínez-Fernández, A.; Menéndez-Miranda, M.; Rosa-García, R.; Vicente, F. Influence of the Type of Silage in the Dairy Cow Ration, with or without Grazing, on the Fatty Acid and Antioxidant Profiles of Milk. Dairy 2021, 2, 716–728. [Google Scholar] [CrossRef]
- Steinshamn, H. Effect of forage legumes on feed intake, milk production and milk quality—A review. Anim. Sci. Pap. Rep. 2010, 28, 195–206. [Google Scholar]
- Lahlou, M.N.; Kanneganti, R.; Massingill, L.J.; Broderick, G.A.; Park, Y.; Pariza, M.W.; Ferguson, J.D.; Wu, Z. Grazing increases the concentration of CLA in dairy cow milk. Animals 2014, 8, 1191–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahmani, P.; Glover, K.E.; Fredeen, A.H. Effects of pasture versus confinement and marine oil supplementation on the expression of genes involved in lipid metabolism in mammary, liver, and adipose tissues of lactating dairy cows. J. Dairy Sci. 2014, 97, 4174–4183. [Google Scholar] [CrossRef] [PubMed]
- Bargo, F.; Delahoy, J.E.; Schroeder, G.F.; Baumgard, L.H.; Muller, L.D. Supplementing total mixed rations with pasture increase the content of conjugated linoleic acid in milk. Anim. Feed Sci. Technol. 2006, 131, 226–240. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rego, O.A.; Cabrita, A.R.J.; Rosa, H.J.D.; Alves, S.P.; Duarte, V.; Fonseca, A.J.M.; Vouzela, C.F.M.; Pires, F.; Bessa, R.J.B. Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Ital. J. Anim. Sci. 2016, 15, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753. [Google Scholar] [CrossRef]
- De La Torre-Santos, S.; Royo, L.J.; Martínez-Fernández, A.; Chocarro, C.; Vicente, F. The Mode of Grass Supply to Dairy Cows Impacts on Fatty Acid and Antioxidant Profile of Milk. Foods 2020, 9, 1256. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Kholif, A.E.; Mohamed, D.A.; Matloup, O.H.; Anele, U.Y.; Sallam, S.M.A. Enhancing lactational performance of lactating Holstein dairy cows under commercial production: Malic acid as an option. J. Sci. Food Agri. 2019, 99, 885–892. [Google Scholar] [CrossRef]
- Akert, F.S.; Kreuzer, M.; Kunz, C.; Reidy, B.; Berard, J. Effects of full-time v. part-time grazing on seasonal changes in milk coagulation properties and fatty acid composition. J. Dairy Res. 2021, 88, 23–28. [Google Scholar] [CrossRef]
- Churakov, M.; Karlsson, J.; Edvardsson Rasmussen, A.; Holtenius, K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal 2021, 15, 100253. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, A.; Martin, B.; Pradel, P.; Coulon, J.B.; Chilliard, Y. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. J. Dairy Sci. 2006, 89, 4026–4041. [Google Scholar] [CrossRef] [Green Version]
- Scerra, M.; Chies, L.; Caparra, P.; Cilione, C.; Foti, F. Effect of Only Pasture on Fatty Acid Composition of Cow Milk and Ciminà Caciocavallo Cheese. J. Food Res. 2016, 5, 20–28. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, D.E.; Mather, I.H.; Wall, R.J.; Lock, A.L. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 2006, 89, 1235–1243. [Google Scholar] [CrossRef]
- Griinari, J.M.; Bauman, D.E. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In Advances in Conjugated Linoleic Acid Research; Yurawecz, M., Mossoba, M., Kramer, J., Pariza, M., Nelson, G., Eds.; AOCS Press: Champaign, IL, USA, 1999; Volume 1, pp. 180–199. [Google Scholar]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Cosentino, C.; Colonna, M.A.; Musto, M.; Dimotta, A.; Freschi, P.; Tarricone, S.; Ragni, M.; Paolino, R. Effects of dietary supplementation with extruded linseed and oregano in autochthonous goat breeds on the fatty acid profile of milk and quality of Padraccio cheese. J. Dairy Sci. 2021, 104, 1445–1453. [Google Scholar] [CrossRef]
- Ba, N.X.; Van Huu, N.; Ngoan, L.D.; Leddin, C.M.; Doyle, P.T. Effects of amount of concentrate supplement on forage intake, diet digestibility and live weight gain in yellow cattle in Vietnam. Asian-Australas. J. Anim. Sci. 2008, 21, 1736–1744. [Google Scholar] [CrossRef]
- Ferlay, A.; Agabriel, C.; Sibra, C.; Journal, C.; Martin, B.; Chilliard, Y. Tanker milk variability of fatty acids according to farm feeding and husbandry practices in a French semi-mountain area. Dairy Sci. Technol. 2008, 88, 193–215. [Google Scholar] [CrossRef] [Green Version]
- Descalzo, A.M.; Rossetti, L.; Paez, R.; Grigioni, G.; Garcia, P.T.; Costabel, L. Differential characteristics of milk produced in grazing systems and their impact on dairy products. In Milk Production: Advanced Genetic Traits, Cellular Mechanism, Animal Management and Health; Chaiyabutr, N., Ed.; IntechOpen: London, UK, 2012; pp. 339–368. [Google Scholar]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008, 18, 976–982. [Google Scholar] [CrossRef]
- Coppa, M.; Ferlay, A.; Borreani, G.; Revello-Chion, A.; Tabacco, E.; Tornambé, G. Effect of phenological stage and proportion of fresh herbage in cow diets on milk fatty acid composition. Anim. Feed Sci. Technol. 2015, 208, 66–78. [Google Scholar] [CrossRef]
- Agabriel, C.; Cornu, A.; Journal, C.; Sibra, C.; Grolier, P.; Martin, B. Tanker milk variability according to farm feeding practices: Vitamins A and E, carotenoids, color, and terpenoids. J. Dairy Sci. 2007, 90, 4884–4896. [Google Scholar] [CrossRef] [PubMed]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty acid and fat soluble antioxidant concentrations in milk from high-and low-input conventional and organic systems: Seasonal variation. J. Sci. Food Agric. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant Activity of Milk and Dairy Products. Animals 2022, 12, 245. [Google Scholar] [CrossRef]
- White, S.L.; Benson, G.A.; Washburn, S.P.; Green, J.T., Jr. Milk production and economic measures in confinement or pasture systems using seasonally calved Holstein and Jersey cows. J. Dairy Sci. 2002, 85, 95–104. [Google Scholar] [CrossRef]
- Calligaris, S.; Manzocco, M.; Anese, L.; Nicoli, M.C. Effect of heat-treatment on the antioxidant and pro-oxidant activity of milk. Int. Dairy J. 2004, 14, 421–427. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Sahin, S. Comparison of antioxidant capacity of cow and ewe milk kefirs. J. Dairy Sci. 2018, 101, 3788–3798. [Google Scholar] [CrossRef]
- Zulueta, A.; Maurizi, A.; Frígola, A.; Esteve, M.J.; Coli, R.; Burini, G. Antioxidant capacity of cow milk, whey and deproteinized milk. Int. Dairy J. 2009, 19, 380–385. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ayaz, M.; Ajmal, M.; Ellahi, M.Y.; Khalique, A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids Health Dis. 2017, 16, 163. [Google Scholar] [CrossRef] [Green Version]
- Ertan, K.; Bayana, D.; Gokce, O.; Alatossava, J.T.; Yilmaz, Y.; Gursoy, O. Total antioxidant capacity and phenolic content of pasteurized and UHT-treated cow milk samples marketed in Turkey. Akademik Gıda 2017, 15, 103–108. [Google Scholar] [CrossRef] [Green Version]
Item | TMR | Pasture | Grazing Period # | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | S | P | |||||
Chemical composition (% of DM): | |||||||||
DM (dry matter), % | 53.65 | 31.53 | 27.15 c | 32.90 b | 34.55 a | 0.217 | *** | ** | |
Crude protein (CP) | 17.26 | 14.78 | 15.74 a | 14.40 b | 13.71 b | 0.181 | ** | * | |
OM (organic matter) | 91.77 | 92.07 | 91.70 | 92.12 | 92.40 | 0.157 | n.s. | n.s. | |
Ether extract (EE) | 2.69 | 2.89 | 2.82 | 2.93 | 2.92 | 0.031 | n.s. | n.s. | |
Crude fiber (CF) | 15.85 | 28.10 | 26.71 b | 28.17 a | 29.92 a | 0.176 | *** | ** | |
Nitrogen free extractive (NFE) 1 | 55.97 | 46.30 | 46.43 | 46.62 | 45.85 | 0.417 | ** | n.s. | |
Ca 2 | 0.76 | - | - | - | - | - | |||
P 2 | 0.37 | - | - | - | - | - | |||
NEL (Mcal/kg DM) 2 | 1.66 | 1.44 | 1.47 | 1.44 | 1.42 | 0.005 | ** | n.s. | |
Fatty acids profile (% of total FA): | |||||||||
Total FA (g/kg DM) | 15.84 | 17.81 | 21.74 a | 17.48 b | 14.22 c | 0.236 | * | ** | |
C16:0 | 14.91 | 13.88 | 12.80 b | 13.75 b | 15.10 a | 0.417 | n.s. | * | |
C18:0 | 7.32 | 2.20 | 1.78 | 2.06 | 2.75 | 0.194 | *** | n.s. | |
C18:1 cis-9 | 18.22 | 1.71 | 1.38 | 1.78 | 1.97 | 0.210 | *** | n.s. | |
C18:2 cis-9, cis-12 | 39.82 | 12.18 | 10.42 c | 12.02 b | 14.10 a | 0.308 | *** | * | |
C18:3 cis-9, cis-12, cis-15 | 8.65 | 64.47 | 68.10 a | 64.77 b | 60.54 c | 1.172 | *** | *** | |
C18:2/C18:3 | 4.60 | 0.19 | 0.15 b | 0.19 ab | 0.23 a | 0.000 | *** | ** | |
Other | 11.08 | 5.56 | 5.52 | 5.62 | 5.54 | 0.343 | *** | n.s. | |
Fat-soluble antioxidants (mg/kg DM): | |||||||||
α-tocopherol | 8.64 | 26.91 | 34.41 a | 26.14 b | 20.18 c | 0.447 | *** | *** | |
All-trans β-carotene | 6.73 | 66.97 | 82.32 a | 67.12 b | 51.47 c | 0.851 | *** | *** |
Item | TMR | pTMR | Grazing Period # | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | S | P | |||||
Body weight (kg): | |||||||||
- initial | 526 | 520 | 520 | 516 | 514 | 24.3 | n.s. | n.s. | |
- final | 535 | 514 | 516 | 514 | 514 | 27.1 | ** | n.s. | |
- change | +9 | −7 | −4 a | −2 ab | −1 b | 0.56 | *** | * | |
Energy requirements—NEL (Mcal/day) 1: | |||||||||
- maintenance | 8.60 | 8.60 | 8.60 | 8.60 | 8.60 | - | - | - | |
- milk production | 20.63 | 19.79 | 20.64 | 19.70 | 18.72 | - | - | - | |
- movement | - | 2.0 | 2.0 | 2.0 | 2.0 | - | - | - | |
- change of BW | +0.83 | −0.46 | −0.97 | −0.49 | −0.25 | - | - | - | |
Dry Matter Intake (kg/day) | |||||||||
- TMR, from which: | 18.11 | 13.80 | 13.05 b | 13.50 a | 13.74 a | 0.418 | *** | * | |
- forage | 10.73 | 8.18 | 7.74 | 8.00 | 8.15 | 0.283 | ** | n.s. | |
- concentrate | 7.38 | 5.62 | 5.31 | 5.50 | 5.59 | 0.382 | ** | n.s. | |
- pasture | - | 4.82 | 5.85 a | 5.07 b | 4.46 c | 0.291 | - | ** | |
Total: —kg DM/day | 18.11 | 18.62 | 18.90 | 18.57 | 18.20 | 0.415 | n.s. | n.s. | |
—kg DM/100 kg BW | 3.42 | 3.60 | 3.65 | 3.60 | 3.54 | 0.132 | n.s. | n.s. | |
NEL (Mcal/day) | |||||||||
- Total, from which: | 30.06 | 29.93 | 30.27 | 29.81 | 29.32 | 1.072 | n.s. | n.s. | |
- TMR | 30.06 | 22.90 | 21.67 | 22.41 | 22.81 | 0.985 | *** | n.s. | |
- pasture | - | 7.03 | 8.60 a | 7.40 b | 6.51 c | 0.268 | - | ** | |
Differences from the requirements | +0.83 | −0.46 | −0.97 | −0.49 | −0.25 | - | - | - | |
Feed conversion ratios (FCR) | |||||||||
NEL (Mcal/kg milk), from which: | 1.21 | 1.32 | 1.28 | 1.32 | 1.36 | 0.059 | * | n.s. | |
- TMR | 1.21 | 1.01 | 0.92 | 0.99 | 1.06 | 0.055 | * | n.s. | |
- pasture | - | 0.31 | 0.36 | 0.33 | 0.30 | 0.006 | - | * | |
Concentrate (g/kg milk) | 296.8 | 247.0 | 223.8 | 242.9 | 259.7 | 8.421 | ** | * |
Item | TMR | pTMR | Grazing Period # | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | S | P | |||||
Raw milk yield (kg/d) | 24.86 | 22.75 | 23.72 a | 22.64 b | 21.52 c | 0.555 | * | ** | |
Corrected milk yield: | |||||||||
- FCM—3.5% (kg/d) | 28.81 | 28.14 | 28.64 | 27.67 | 27.49 | 0.622 | n.s. | n.s. | |
- ECM (kg/d) | 29.23 | 28.36 | 29.21 a | 27.75 ab | 27.33 b | 0.528 | n.s. | * | |
Milk content (%): | |||||||||
- fat | 4.48 | 4.96 | 4.78 b | 4.87 b | 5.21 a | 0.202 | ** | * | |
- protein | 3.91 | 4.04 | 4.15 | 3.90 | 3.91 | 0.094 | n.s. | n.s. | |
- lactose | 4.72 | 4.58 | 4.44 | 4.53 | 4.65 | 0.045 | * | n.s. | |
- urea-N | 19.80 | 25.21 | 28.72 a | 25.80 b | 24.62 b | 0.850 | ** | * | |
- SNF | 9.46 | 9.69 | 9.57 | 9.23 | 9.45 | 0.097 | n.s. | n.s. | |
Milk yield (kg/d): | |||||||||
- fat | 1.114 | 1.128 | 1.133 | 1.103 | 1.121 | 0.038 | n.s. | n.s. | |
- protein | 0.972 | 0.919 | 0.984 a | 0.883 b | 0.841 b | 0.023 | n.s. | * | |
- lactose | 1.173 | 1.042 | 1.053 | 1.026 | 1.001 | 0.028 | n.s. | n.s. | |
SCC (×1000 cells/mL) | 143.7 | 245.6 | 285.3 | 254.4 | 195.2 | 21.43 | ** | * |
FA, % | TMR | pTMR | Grazing Period # | SEM | p-Values | ||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | S | P | |||||
C4:0 | 1.20 | 1.15 | 1.39 | 1.30 | 1.09 | 0.114 | n.s. | n.s. | |
C6:0 | 1.51 | 1.49 | 1.54 a | 1.42 ab | 1.21 b | 0.110 | n.s. | * | |
C8:0 | 0.98 | 0.99 | 1.20 | 1.15 | 1.15 | 0.102 | n.s. | n.s. | |
C10:0 | 2.54 | 2.29 | 2.73 | 2.77 | 2.41 | 0.314 | n.s. | n.s. | |
C12:0 | 2.76 | 2.47 | 4.01 | 3.36 | 3.22 | 0.261 | n.s. | n.s. | |
C14:0 | 11.37 | 9.51 | 8.26 | 9.92 | 9.56 | 0.512 | * | n.s. | |
C14:1 | 1.07 | 1.22 | 0.98 | 1.15 | 1.18 | 0.034 | n.s. | n.s. | |
C16:0 | 31.24 | 28.41 | 25.69 b | 27.99 a | 28.82 a | 1.437 | * | ** | |
C16:1 | 1.38 | 1.54 | 1.57 | 1.56 | 1.53 | 0.122 | n.s. | n.s. | |
C18:0 | 12.75 | 13.61 | 13.33 b | 13.71 ab | 14.69 a | 0.726 | * | * | |
C18:1 trans-11 (VA) | 1.40 | 3.46 | 4.00 a | 3.20 b | 2.59 c | 0.389 | *** | ** | |
C18:1 cis-9 (OA) | 23.01 | 24.23 | 24.71 a | 22.69 b | 22.90 b | 0.507 | * | * | |
C18:2 cis-9, cis-12 (LA) | 3.36 | 2.73 | 2.90 b | 2.86 b | 3.44 a | 0.052 | * | * | |
Total CLA | 1.07 | 2.10 | 2.58 a | 1.83 b | 1.96 b | 0.283 | ** | * | |
cis-9, trans-11 CLA (RA) | 0.99 | 2.01 | 2.49 a | 1.75 b | 1.84 b | 0.008 | *** | ** | |
trans-10, cis-12 CLA | 0.07 | 0.08 | 0.09 | 0.08 | 0.08 | 0.004 | n.s. | n.s. | |
C18:3 c9, c12, c15 (ALA) | 0.58 | 1.33 | 1.54 a | 1.30 b | 1.27 | 0.091 | *** | * | |
C20:4 (AA) | 0.16 | 0.13 | 0.14 | 0.10 | 0.11 | 0.004 | n.s. | n.s. | |
C20:5 n-3 (EPA) | 0.08 | 0.14 | 0.14 | 0.12 | 0.11 | 0.006 | * | n.s. | |
C22:5 n-3 (DPA) | 0.12 | 0.19 | 0.20 | 0.18 | 0.18 | 0.008 | * | n.s. | |
Unidentified fatty acids | 3.22 | 2.93 | 3.09 | 3.39 | 3.08 | 0.054 | n.s. | n.s. | |
SFA | 64.54 | 59.95 | 58.65 b | 61.62 a | 62.15 a | 0.610 | ** | ** | |
UFA | 32.23 | 37.07 | 38.76 a | 35.49 b | 35.77 b | 0.851 | ** | * | |
MUFA | 26.88 | 30.46 | 31.26 a | 29.10 b | 29.20 b | 0.376 | ** | * | |
PUFA | 5.35 | 6.61 | 7.50 a | 6.39 b | 6.57 b | 0.217 | ** | * | |
hFA | 29.81 | 34.33 | 36.21 a | 32.28 b | 32.56 b | 0.725 | *** | ** | |
HFA | 45.39 | 40.39 | 37.96 b | 41.27 a | 41.60 a | 0.854 | ** | ** | |
n-3 FA | 0.79 | 1.67 | 1.88 a | 1.60 b | 1.56 b | 0.032 | ** | * | |
n-6 FA | 3.52 | 2.86 | 3.04 | 2.96 | 3.55 | 0.112 | * | n.s. | |
Product/substrate ratios: | |||||||||
C14:1/C14:0 | 0.097 | 0.13 | 0.119 | 0.116 | 0.123 | 0.008 | n.s. | n.s. | |
C16:1/C16:0 | 0.044 | 0.055 | 0.061 | 0.056 | 0.053 | 0.003 | n.s. | n.s. | |
c-9 C18:1/C18:0 | 1.83 | 1.82 | 1.85 a | 1.65 ab | 1.56 b | 0.193 | n.s. | * | |
c-9, t-11 CLA/t-11 C18:1 | 0.73 | 0.58 | 0.62 b | 0.55 b | 0.71 a | 0.028 | * | * | |
∆9-desaturase index | 0.318 | 0.346 | 0.37 | 0.33 | 0.33 | 0.043 | n.s. | n.s. |
Parameter | TMR | pTMR | Grazing Period # | SEM | p-Values | |||
---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | S | P | ||||
PUFA/SFA | 0.082 | 0.110 | 0.128 a | 0.104 b | 0.106 b | 0.008 | * | * |
n-6/n-3 FA | 4.45 | 1.75 | 1.62 b | 1.85 b | 2.27 a | 0.398 | *** | ** |
AI | 2.55 | 1.97 | 1.73 b | 2.11 a | 2.05 a | 0.114 | * | * |
TI | 3.49 | 2.79 | 2.48 b | 2.92 a | 3.00 a | 0.095 | ** | * |
h/H | 0.65 | 0.85 | 0.95 a | 0.78 b | 0.78 b | 0.032 | * | * |
HPI | 0.68 | 0.87 | 0.95 a | 0.82 b | 0.82 b | 0.026 | * | * |
Parameter | Groups | Milk | ||
---|---|---|---|---|
Raw | Pasteurized | Stored 4 Days | ||
α-tocopherol (mg/100 g) | TMR | 0.27 ± 0.02 y | 0.24 ± 0.03 y | 0.24 ± 0.02 y |
pTMR | 0.74 ± 0.03 a,x | 0.68 ± 0.03 a,x | 0.63 ± 0.02 b,x | |
Retinol (µg/100 g) | TMR | 57.51 a ± 1.39 y | 50.82 ± 1.15 ab,y | 49.74 ± 1.35 b,y |
pTMR | 125.62 ± 3.81 a,x | 101.31 ± 2.95 a,x | 97.82 ± 1.64 b,x | |
All-trans β-carotene (µg/100 g) | TMR | 0.41 ± 0.02 y | 0.37 ± 0.04 y | 0.35 ± 0.02 y |
pTMR | 0.69 ± 0.04 a,x | 0.55 ± 0.03 b,x | 0.42 ± 0.04 c,x | |
TAC (µmol TE/mL) | TMR | 2.53 ± 0.21 y | 2.47 ± 0.27 y | 2.40 ± 0.18 |
pTMR | 3.02 ± 0.43 a,x | 2.73 ± 0.24 b,x | 2.58 ± 0.35 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șanta, A.; Mierlita, D.; Dărăban, S.; Socol, C.T.; Vicas, S.I.; Șuteu, M.; Maerescu, C.M.; Stanciu, A.S.; Pop, I.M. The Effect of Sustainable Feeding Systems, Combining Total Mixed Rations and Pasture, on Milk Fatty Acid Composition and Antioxidant Capacity in Jersey Dairy Cows. Animals 2022, 12, 908. https://doi.org/10.3390/ani12070908
Șanta A, Mierlita D, Dărăban S, Socol CT, Vicas SI, Șuteu M, Maerescu CM, Stanciu AS, Pop IM. The Effect of Sustainable Feeding Systems, Combining Total Mixed Rations and Pasture, on Milk Fatty Acid Composition and Antioxidant Capacity in Jersey Dairy Cows. Animals. 2022; 12(7):908. https://doi.org/10.3390/ani12070908
Chicago/Turabian StyleȘanta, Anita, Daniel Mierlita, Stelian Dărăban, Claudia Terezia Socol, Simona Ioana Vicas, Mihai Șuteu, Cristina Maria Maerescu, Alina Stefania Stanciu, and Ioan Mircea Pop. 2022. "The Effect of Sustainable Feeding Systems, Combining Total Mixed Rations and Pasture, on Milk Fatty Acid Composition and Antioxidant Capacity in Jersey Dairy Cows" Animals 12, no. 7: 908. https://doi.org/10.3390/ani12070908
APA StyleȘanta, A., Mierlita, D., Dărăban, S., Socol, C. T., Vicas, S. I., Șuteu, M., Maerescu, C. M., Stanciu, A. S., & Pop, I. M. (2022). The Effect of Sustainable Feeding Systems, Combining Total Mixed Rations and Pasture, on Milk Fatty Acid Composition and Antioxidant Capacity in Jersey Dairy Cows. Animals, 12(7), 908. https://doi.org/10.3390/ani12070908