Hempseed By-Product in Diets of Italian Simmental Cull Dairy Cows and Its Effects on Animal Performance and Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Measurements and Sample Collection
2.3. Chemical Analysis
CLA)/(C14:1n-9c + C16:1n-9c + C18:1n-9c + CLA + C14:0 + C16:0 + C18:0 +
C18:1t).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Eurostat: Official EU Statistical Data. 2021. Available online: https://ec.europa.eu/eurostat/databrowser/explore/all/all_themes (accessed on 28 December 2021).
- Moreira, L.C.; Rosa, G.J.M.; Schaefer, D.M. Beef production from cull dairy cows: A review from culling to consumption. J. Anim. Sci. 2021, 99, skab192. [Google Scholar] [CrossRef] [PubMed]
- Dahl-Pedersen, K.; Herskin, M.S.; Houe, H.; Thomsen, P.T. A descriptive study of the clinical condition of cull dairy cows before transport to slaughter. Livest. Sci. 2018, 218, 108–113. [Google Scholar] [CrossRef]
- Smith, J.W.; Ely, L.O.; Chapa, A.M. Effect of region, herd size, and milk production on reasons cows leave the herd. J. Dairy Sci. 2000, 83, 2980–2987. [Google Scholar] [CrossRef]
- Panea, B.; Ripoll, G. Commercial alternatives for the low prince joints of culling cows: Hamburgers reduced in salt and fat. Preprints 2018, 2018050065. [Google Scholar] [CrossRef]
- Feuz, D.M. Marketing and Feeding Cull Cows. Cooperative Extension Services, Utah State University. 2010. Available online: https://digitalcommons.usu.edu (accessed on 3 January 2022).
- Gołębiewski, M.; Brzozowski, P. Comparison of meat performance of fattening bulls and culled cows of Montbeliarde and Polish Holstein-Friesian breeds and their influence on income value from their sale. Acta. Sci. Pol. 2011, 10, 31–38. [Google Scholar]
- Scollan, N.D.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, R.I.; Maloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenerg. 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Calzolari, D.; Magagnini, G.; Lucini, L.; Grassi, G. High added-value compounds from Cannabis threshing residues. Ind. Crops Prod. 2017, 108, 558–563. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Petrelli, R.; Ngahang Kamte, S.L.; Cappellacci, L.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018, 25, 10515–10525. [Google Scholar] [CrossRef]
- Bailoni, L.; Bacchin, E.; Trocino, A.; Arango, S. Hemp (Cannabis sativa L.) seed and co-products inclusion in diets for dairy ruminants: A review. Animals 2021, 11, 856. [Google Scholar] [CrossRef]
- Semwogerere, F.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Marufu, M.C.; Mapiye, C. Bioavailability and bioefficacy of hemp by-products in ruminant meat production and preservation: A review. Front. Vet. Sci. 2020, 7, 572906. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C. Hempseed as a nutritional resources: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Department of Health. Nutritional Aspects of Cardiovascular Disease; Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy; Report on Health and Social Subjects; Her Majesty’s Stationery Office: London, UK, 1994; Volume 46.
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The performance and potentiality of monoecius hemp (Cannabis sativa L.) cultivars as a multipurpose crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Gibb, D.J.; Shah, M.A.; Mir, P.S.; McAllister, T.A. Effect of full-fat hemp seed on performance and tissue fatty acids of feedlot cattle. Can. J. Anim. Sci. 2005, 85, 223–230. [Google Scholar] [CrossRef]
- Hessle, A.; Eriksson, M.; Nadeau, E.; Turner, T.; Johansson, B. Cold-pressed hempseed cake as a protein feed for growing cattle. Acta Agric. Scand. A Anim. Sci. 2008, 58, 136–145. [Google Scholar] [CrossRef]
- Turner, T.; Hessle, A.; Lundström, K.; Pickova, J. Influence of hempseed cake and soybean meal on lipid fractions in bovine M. longissimus dorsi. Acta Agric. Scand. A Anim. Sci. 2008, 58, 152–160. [Google Scholar] [CrossRef]
- Winders, T.; Serum, E.; Smith, D.J.; Neville, B.W.; Mia, K.; Amat, S.; Dahlen, C.R.; Swanson, K.C. Evaluation of hempseed cake on cattle performance, carcass characteristics and feeding behavior in finishing diets. J. Anim. Sci. 2021, 99, 184–185. [Google Scholar] [CrossRef]
- Karlsson, L.; Finell, M.; Martinsson, K. Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal 2010, 4, 1854–1860. [Google Scholar] [CrossRef] [Green Version]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Agabriel, J. Alimentation Des Bovins, Ovins et Caprins. Besoins des animaux—Valeurs des aliments: Tables Inra 2010, 1st ed.; Quae: Versailles, France, 2010; p. 315. [Google Scholar]
- EFSA. Scientific opinion on the safety of hemp (Cannabis genus) for use as animal feed. EFSA J. 2011, 9, 2011. [Google Scholar] [CrossRef]
- Pahl, C.; Hartung, E.; Grothmann, A.; Mahlkow-Nerge, K.; Haeussermann, A. Suitability of feeding and chewing time for estimation of feed intake in dairy cows. Animal 2016, 10, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, O.P.; Smith, T.R. Factors affecting pasture intake and total dry matter intake in grazing dairy cows. J. Dairy Sci. 2000, 83, 2301–2309. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Buldgen, A.; Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 2009, 13, 559–573. [Google Scholar]
- Berry, N.R.; Jewell, P.L.; Sutter, F.; Edwards, P.J.; Kreuzer, M. Selection, intake and excretion of nutrients by Scottish Highland suckler beef cows and calves, and Brown Swiss dairy cows in contrasting Alpine grazing systems. J. Agric. Sci. 2002, 139, 437–453. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis; AOAC International: Arlington, VA, USA, 2016. [Google Scholar]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Ulbritch, T.L.V.; Southgate, D.A.T. Coronary heart disease, seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Pilarczyk, R.; Wójcik, J. Fatty acids profile and health lipid indices in the Longissimus lumborum muscle of different beef cattle breeds reared under intensive production systems. Acta Sci. Pol. Zootech. 2015, 14, 109–126. [Google Scholar]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Bartoň, L.; Bureš, D.; Kudrna, V. Meat quality and fatty acid profile of the muscle Longissimus lomborum in Czech Fleckvieh, Charolais, Charolais × Czech Fleckvieh bulls fed different types of silage. Czech J. Anim. Sci. 2010, 55, 479–487. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 30 June 2021).
- Wang, J.; Zamar, R.; Marazzi, A.; Yohai, V.; Salibian-Barrera, M.; Maronna, R.; Zivot, E.; Rocke, D.; Martin, D.; Maechler, M.; et al. Robust: Port of the S+ “Robust Library”, R Package Version 0.6–1; 2021. Available online: https://CRAN.R-project.org/package=robust (accessed on 3 January 2022).
- Saunders, W.B. Diseases of the Alimentary Tract–Ruminant. In Veterinary Medicine; Constable, P.D., Hinchcliff, K.W., Done, S.H., Grünberg, W., Eds.; Elsevier: St. Louis, MO, USA, 2017; pp. 436–621. [Google Scholar]
- Grünberg, W.; Constable, P.D. Function and dysfunction of the ruminant forestomach. In Food Animal Practice; Anderson, D.E., Rings, D.M., Eds.; Elsevier: St. Louis, MO, USA, 2009; pp. 12–19. [Google Scholar]
- Mustafa, A.F.; McKinnon, J.J.; Christensen, D.A. The nutritive value of hemp meal for ruminants. Can. J. Anim. Sci. 1999, 79, 91–95. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, R.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High fiber cakes from Mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lardy, G.P.; Loken, B.A.; Anderson, V.L.; Larson, D.M.; Maddock-Carlin, K.R.; Ilse, B.R.; Maddock, R.; Leupp, J.L.; Clark, R.; Paterson, J.A.; et al. Effects of increasing field pea (Pisum sativum) level in high-concentrate diets on growth performance and carcass traits in finishing steers and heifers. J. Anim. Sci. 2009, 87, 3335–3341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corazzin, M.; Piasentier, E.; Saccà, E.; Bazzoli, I.; Bovolenta, S. Organic meat quality of dual purpose young bulls supplemented with pea (Pisum sativum L.) or soybean. J. Sci. Food Agric. 2018, 98, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.; Sturaro, E.; Bittante, G. Body traits, carcass characteristics and price of cull cows as affected by farm type, breed, age and calving to culling interval. Animals 2017, 11, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, J.K.; Wulf, D.M.; Schwotzer, T.R. A survey of beef muscle colour and pH. J. Anim. Sci. 2001, 79, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Jurie, C.; Picard, B.; Hocquette, J.F.; Dransfield, E.; Micol, D.; Listrat, A. Muscle and meat quality characteristics of Holstein and Salers cull cows. Meat Sci. 2007, 77, 459–466. [Google Scholar] [CrossRef]
- Miller, M.F.; Carr, M.A.; Ramsey, C.B.; Crockett, K.L.; Hoover, L.C. Consumer thresholds for establishing the value of beef tenderness. J. Anim. Sci. 2001, 79, 3062–3068. [Google Scholar] [CrossRef]
- Boleman, S.J.; Boleman, S.L.; Miller, R.K.; Taylor, J.T.; Cross, H.R.; Wheeler, T.L.; Koohmaraie, M.; Shackelford, S.D.; Miller, M.F.; West, R.L.; et al. Consumer evaluation of beef of known categories of tenderness. J. Anim. Sci. 1997, 75, 1521–1524. [Google Scholar] [CrossRef]
- Dos Santos Fontes, M.M.; Costa, T.C.; Lopes, M.M.; Souza, R.O.; Carneiro, L.S.; Paulino, P.V.R.; Chizzotti, M.L.; Silva, F.F.; Serão, N.V.L.; Duarte, M.S. Intramuscular collagen characteristics and expression of related genes in skeletal muscle of cull cows receiving a high-energy diet. Meat Sci. 2021, 177, 108495. [Google Scholar] [CrossRef]
- Alvarenga, T.I.R.C.; Palendeng, M.; Thennadil, S.; McGilchrist, P.; Café, L.M.; Almeida, A.K.; Hopkins, D.L. Is meat from cull cows tougher? Meat Sci. 2021, 177, 108498. [Google Scholar] [CrossRef] [PubMed]
- Corazzin, M.; Bovolenta, S.; Sepulcri, A.; Piasentier, E. Effect of whole linseed addition on meat production and quality of Italian Simmental and Holstein young bulls. Meat Sci. 2012, 90, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Savell, J.W.; Cross, H.R. The role of fat in the palatability of beef, pork, and lamb. In Designing Foods: Animal Product Options in the Marketplace; Robbins, G.J., Ed.; National Academy Press: Washington, DC, USA, 1988. [Google Scholar]
- Antunović, Z.; Šalavardić, Z.K.; Steiner, Z.; Đidara, M.; Ćavar, S.; Ronta, M.; Šabić, A.M.; Pavić, V.; Novoselec, J. The influence of hempseed cake on production traits, metabolic profile and antioxidant status of Merinolandschaf lambs. Ann. Anim. Sci. 2021, 21, 991–1006. [Google Scholar] [CrossRef]
- Turner, T.D.; Karlsson, L.; Mapiye, C.; Rolland, D.C.; Martinsson, K.; Dugan, M.E.R. Dietary influence on the m. longissimus dorsi fatty acid composition of lambs in relation to protein source. Meat Sci. 2012, 91, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Dufour, C.; van Vuuren, A.M.; Cabrita, A.M.R.; Dewhurst, R.J.; Demeyer, D.; Fievez, V. Potential of odd and branched chain fatty acids as microbial markers: Evaluation in rumen contents and milk. J. Dairy Sci. 2005, 88, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Liu, X.; Strable, M.S.; Ntambi, J.M. Stearoyl CoA Desaturase 1: Role in cellular inflammation and stress. Adv. Nutr. 2011, 2, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Mierliţá, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Waters, S.M.; Kelly, J.P.; O’Boyle, P.; Moloney, A.P.; Kenny, D.A. Effect of level and duration of dietary n-3 polyunsaturated fatty acid supplementation on the transcriptional regulation of ∆9-desaturase in muscle of beef cattle. J. Anim. Sci. 2009, 87, 244–252. [Google Scholar] [CrossRef]
- Stelzleni, A.M.; Johnson, D.D. Benchmarking sensory off-flavor score, off-flavor descriptor and fatty acid profiles for muscles from commercially available beef and dairy cull cow carcasses. Livest. Sci. 2010, 131, 31–38. [Google Scholar] [CrossRef]
- Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef] [PubMed]
SB | HEMP | |
---|---|---|
Chemical composition (unit kg−1 DM) | ||
Crude Protein (g) | 120.5 | 119.2 |
Crude fiber (g) | 191.5 | 197.5 |
Ether extract (g) | 23.9 | 27.2 |
Ash (g) | 73.2 | 71.7 |
NEl (MJ) | 6.2 | 6.2 |
Fatty acid composition (g kg−1 fatty acids) | ||
C14:0 | 7.0 | 6.6 |
C16:0 | 228.3 | 215.9 |
C18:0 | 27.1 | 27.8 |
C18:1n-9 | 147.6 | 139.6 |
C18:2n-6 | 391.9 | 397.5 |
C18:3n-3 | 158.6 | 166.1 |
Item | Diet | RSD | p-Value | |
---|---|---|---|---|
SB | HEMP | |||
Slaughter weight (kg) | 700.9 | 717.1 | 79.96 | 0.611 |
Daily gain (kg/d) | 0.794 | 0.826 | 0.287 | 0.780 |
Carcass weight (kg) | 348.3 | 344.2 | 43.16 | 0.812 |
Dressing Percentage (%) | 49.7 | 48.1 | 2.587 | 0.138 |
Gain/feed 1 | 0.051 | 0.057 | 0.015 | 0.386 |
Intake DM (kg/d) | ||||
Forage | 9.95 | 9.52 | 2.18 | 0.621 |
Total | 14.9 | 15.2 | 2.32 | 0.706 |
Carcass | ||||
Conformation score (points) 2 | 2.62 | 2.39 | 0.599 | 0.337 |
Fatness score (points) 3 | 2.33 | 2.33 | 0.649 | 0.999 |
pH rumen | 6.53 | 6.54 | 0.177 | 0.836 |
Item | Diet | RSD | p-Value | |
---|---|---|---|---|
SB | HEMP | |||
pH 48 h | 5.45 | 5.48 | 0.029 | 0.910 |
Cooking Loss (%) | 27.76 | 28.70 | 3.364 | 0.485 |
WBSF | 37.57 | 37.27 | 6.397 | 0.907 |
Composition | ||||
DM (%) | 26.15 | 26.54 | 1.511 | 0.516 |
Ash (%) | 1.05 | 1.03 | 0.034 | 0.409 |
Ether extract (%) | 3.89 | 4.55 | 1.657 | 0.324 |
Protein (%) | 20.34 | 20.23 | 0.502 | 0.586 |
Color | ||||
L* | 31.66 | 32.86 | 1.733 | 0.199 |
a* | 16.17 | 15.91 | 1.930 | 0.741 |
b* | 16.13 | 16.13 | 1.357 | 0.999 |
Item | Diet | RSD | p Value | |
---|---|---|---|---|
SB | HEMP | |||
C14:0 | 3.14 | 3.39 | 0.461 | 0.071 |
C15:0iso | 0.21 | 0.22 | 0.043 | 0.952 |
C15:0anteiso | 0.20 | 0.29 | 0.076 | 0.387 |
C14:1n-9c | 0.28 | 0.24 | 0.143 | 0.493 |
C15:0 | 0.44 | 0.47 | 0.093 | 0.762 |
C16:0iso | 0.23 | 0.26 | 0.074 | 0.238 |
C16:0 | 27.77 | 28.42 | 2.060 | 0.101 |
C17:0iso | 0.32 | 0.34 | 0.061 | 0.378 |
C16:1n-7c | 0.27 | 0.24 | 0.050 | 0.972 |
C16:1n-9c | 2.55 | 2.77 | 0.711 | 0.428 |
C17:0anteiso | 0.64 | 0.64 | 0.140 | 0.933 |
C17:0 | 1.16 | 1.18 | 0.210 | 0.891 |
C17:1n-9c | 0.54 | 0.52 | 0.116 | 0.626 |
C18:0 | 20.05 | 20.26 | 3.300 | 0.872 |
C18:1n-11t | 1.34 | 1.58 | 0.515 | 0.247 |
C18:1t 2 | 0.38 | 0.29 | 0.105 | 0.434 |
C18:1n-9c | 34.13 | 32.42 | 2.724 | 0.125 |
C18:1n-11c | 0.97 | 0.96 | 0.196 | 0.863 |
C18:1c 3 | 0.61 | 0.63 | 0.129 | 0.622 |
C18:2n-6t | 0.47 | 0.47 | 0.109 | 0.963 |
C18:2n-6c | 2.28 | 2.37 | 0.376 | 0.559 |
C19:1 | 0.11 | 0.12 | 0.034 | 0.818 |
C20:0 | 0.17 | 0.17 | 0.066 | 0.182 |
C18:3n-3 | 0.40 | 0.43 | 0.089 | 0.315 |
C20:3n-6 | 0.13 | 0.13 | 0.047 | 0.832 |
C20:4n-6 | 0.23 | 0.18 | 0.080 | 0.898 |
CLA 4 | 0.31 | 0.26 | 0.117 | 0.256 |
OBCFA 5 | 3.27 | 3.47 | 0.763 | 0.507 |
SFA 6 | 54.65 | 56.00 | 3.569 | 0.294 |
MUFA 7 | 41.31 | 39.93 | 4.171 | 0.317 |
PUFA 8 | 4.05 | 4.07 | 0.540 | 0.910 |
PUFAn-3 | 0.55 | 0.57 | 0.131 | 0.702 |
PUFAn-6 | 3.19 | 3.25 | 0.485 | 0.764 |
PUFAn-6/PUFAn-3 | 6.08 | 6.50 | 1.451 | 0.801 |
AI 6 | 0.90 | 0.97 | 0.104 | 0.131 |
DFA 7 | 65.40 | 64.27 | 2.248 | 0.049 |
h/H 8 | 1.30 | 1.20 | 0.130 | 0.062 |
∆9 desaturase index 9 | 41.60 | 39.89 | 3.476 | 0.222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncogo Nchama, C.N.; Fabro, C.; Baldini, M.; Saccà, E.; Foletto, V.; Piasentier, E.; Sepulcri, A.; Corazzin, M. Hempseed By-Product in Diets of Italian Simmental Cull Dairy Cows and Its Effects on Animal Performance and Meat Quality. Animals 2022, 12, 1014. https://doi.org/10.3390/ani12081014
Ncogo Nchama CN, Fabro C, Baldini M, Saccà E, Foletto V, Piasentier E, Sepulcri A, Corazzin M. Hempseed By-Product in Diets of Italian Simmental Cull Dairy Cows and Its Effects on Animal Performance and Meat Quality. Animals. 2022; 12(8):1014. https://doi.org/10.3390/ani12081014
Chicago/Turabian StyleNcogo Nchama, Castro Ndong, Carla Fabro, Mario Baldini, Elena Saccà, Vinicius Foletto, Edi Piasentier, Angela Sepulcri, and Mirco Corazzin. 2022. "Hempseed By-Product in Diets of Italian Simmental Cull Dairy Cows and Its Effects on Animal Performance and Meat Quality" Animals 12, no. 8: 1014. https://doi.org/10.3390/ani12081014
APA StyleNcogo Nchama, C. N., Fabro, C., Baldini, M., Saccà, E., Foletto, V., Piasentier, E., Sepulcri, A., & Corazzin, M. (2022). Hempseed By-Product in Diets of Italian Simmental Cull Dairy Cows and Its Effects on Animal Performance and Meat Quality. Animals, 12(8), 1014. https://doi.org/10.3390/ani12081014