Wheat and Barley Grass Juice Addition to a Plant-Based Feed Improved Growth and Flesh Quality of Common Carp (Cyprinus carpio)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Wheat and Barley Grass and Juice Production
2.2. Nutrient Composition Analyses of Wheat and Barley Grass Juice
2.3. Fish Trial
2.4. Experimental Diets
2.5. Fish Growth Parameters
2.6. Proximate Fish Meat Composition Analysis
2.7. Mineral Elements Analysis of Fish Meat
2.8. Fatty Acids (FA) Analysis of Fish Meat
2.9. Statistical Analysis
3. Results
3.1. Proximate Composition of Diets
3.2. Chemical Composition of Wheat and Barley Grass Juice
3.3. Growth Performance of Fish
3.4. Proximate Composition of Fish Meat
3.5. Elemental Composition of Fish Meat
3.6. Fatty Acid Composition of Fish Meat
4. Discussion
4.1. Chemical Composition of Wheat and Barley Grass Juices by GC-MS
4.2. Effects of Phytogenics on Growth Performance of Fish
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, D.K.; Sahu, N.P.; Sardar, P.; Deo, A.D.; Bedekar, M.K.; Singha, K.P.; Maiti, M.K. Feeding turmeric in combination with ginger or garlic enhances the digestive enzyme activities, growth and immunity in Labeo rohita fingerlings. Anim. Feed Sci. Technol. 2021, 277, 114964. [Google Scholar] [CrossRef]
- Armanini, E.H.; Boiago, M.M.; de Oliveira, P.V.; Roscamp, E.; Strapazzon, J.V.; de Lima, A.G.; Copetti, P.M.; Morsch, V.M.; de Oliveira, F.C.; Wagner, R.; et al. Inclusion of a phytogenic bend in broiler diet as a performance enhancer and anti-aflatoxin agent: Impacts on health, performance, and meat quality. Res. Vet. Sci. 2021, 137, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Saccol, E.M.H.; Parrado-Sanabria, Y.A.; Gagliardi, L.; Jerez-Cepa, I.; Mourão, R.H.V.; Heinzmann, B.M.; Baldisserotto, B.; Pavanato, M.A.; Mancera, J.M.; Martos-Sitcha, J.A. Myrcia sylvatica essential oil in the diet of gilthead sea bream (Sparus aurata L.) attenuates the stress response induced by high stocking density. Aquac. Nutr. 2018, 24, 1381–1392. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Plasus, M.M.; Christopher, M. Plant and fruit waste products as phytogenic feed additives in aquaculture. AACL Bioflux. 2019, 12, 261–268. [Google Scholar]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.; Dawood, M.A.O. Dietary oregano essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 104, 1–7. [Google Scholar] [CrossRef]
- Talpur, A.D. Mentha piperita (pepermint) As feed additive enhanced growth performance survival, immune system, and disease resistance of Asian seabass, Lates calcarifer (Bloch) against Vibrio harvey infection. Aquaculture 2014, 420, 71–78. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szulc, P.; Szczepaniak, O.; Dziedziński, M.; Szymanowska, D.; Szymandera-Buszka, K.; Goryńska-Goldmann, E.; Gazdecki, M.; Telichowska, A.; Ligaj, M. Variability of Hordeum vulgare L. cultivars in yield, antioxidant potential, and cholinesterase inhibitory activity. Sustainability 2020, 12, 1938. [Google Scholar] [CrossRef] [Green Version]
- Blicharz-Kania, A.; Andrejko, D.; Kluza, F.; Rydzak, L.; Kobus, Z. Assessment of the potential use of young barley shoots and leaves for the production of green juices. Sustainability 2019, 11, 3960. [Google Scholar] [CrossRef] [Green Version]
- Fortuna, M.E.; Vasilache, V.; Ignat, M.; Silion, M.; Vicol, T.; Patras, X.; Miron, I.; Lobiuc, A. Elemental and macromolecular modifications in Triticum aestivum L. plantlets under different cultivation conditions. PLoS ONE 2018, 13, e0202441. [Google Scholar]
- Dumitru, G.; Dirvariu, L.; Barbacariu, C.A.; Miron, I.; Sandu, I.; Todirascu Ciornea, E. The effect of wheatgrass juice administration on physiological state and oxidative stress in carp. Rev. Chim. 2018, 69, 4046–4051. [Google Scholar] [CrossRef]
- Barbacariu, C.-A.; Burducea, M.; Dîrvariu, L.; Oprea, E.; Lupu, A.-C.; Teliban, G.-C.; Agapie, A.L.; Stoleru, V.; Lobiuc, A. Evaluation of diet supplementation with wheat grass juice on growth performance, body composition and blood biochemical profile of carp (Cyprinus carpio L.). Animals 2021, 11, 2589. [Google Scholar] [CrossRef] [PubMed]
- Iantcheva, A.; Dincheva, I.; Nedeva, R.; Naydenova, G.; Badjakov, I.; Radkova, M.; Revalska, M.; Apostolov, A. An innovative approach for the assessment of Bulgarian soybean cultivars. Biotechnol. Biotechnol. Equip. 2021, 35, 1099–1117. [Google Scholar] [CrossRef]
- Hummel, J.; Strehmel, N.; Selbig, J.; Walther, D.; Kopka, J. Decision tree supported substructure prediction of metabolites from GC–MS profiles. Metabolomics 2010, 6, 322–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manion, R.E.; Huie, R.D.; Levin, D.R.; Burgess, D.R., Jr.; Orkin, V.L.; Tsang, W.; McGivern, W.S.; Hudgens, J.W.; Knyazev, V.D.; Atkinson, D.B.; et al. NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015; pp. 20899–208320. Available online: http://kinetics.nist.gov/ (accessed on 1 December 2021).
- Dediu, L.; Docan, A.; Crețu, M.; Grecu, I.; Mogodan, A.; Maereanu, M.; Oprea, L. Effects of stocking density on growth performance and stress responses of bester and bester ♀ × beluga ♂ juveniles in recirculating aquaculture systems. Animals 2021, 11, 2292. [Google Scholar] [CrossRef] [PubMed]
- Untea, A.E.; Panaite, T.D.; Varzaru, I.; Turcu, R.P.; Gavris, T.; Lupu, A. Study on the influence of dietary sea buckthorn meal on nutritional properties of laying hen eggs. Czech. J. Anim. Sci. 2021, 66, 225–234. [Google Scholar] [CrossRef]
- Panaite, T.D.; Nour, V.; Saracila, M.; Turcu, R.P.; Untea, A.E.; Vlaicu, P.A. Effects of linseed meal and carotenoids from different sources on egg characteristics, yolk fatty acid and carotenoid profile and lipid peroxidation. Foods 2021, 10, 1246. [Google Scholar] [CrossRef] [PubMed]
- Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.-M. Blue and red led illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.L.; Hasan, R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Sales, J. The effect of fish meal replacement by soyabean products on fish growth: A meta-analysis. Br. J. Nutr. 2009, 102, 1709–1722. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutrional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Aguiar, A.C.; Boroski, M.; Bonafé, E.G.; Almeida, V.V.; Souza, N.E.; Visentainer, J.V. Evaluation of omega-3 fatty acids content and antioxidant activity in wheat leaves (Triticum aestivum L.). Cienc. E Agrotecnologia 2011, 35, 12. [Google Scholar] [CrossRef]
- Schulte, L.R.; Ballard, T.; Samarakoon, T.; Yao, L.; Vadlani, P.; Staggenborg, S.; Rezac, M. Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Ind. Crops Prod. 2013, 51, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Jandacek, R.J. Linoleic Acid: A Nutritional Quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, E.I.; McKessor, A. Glycerin-Based Hydrogel for Infection Control. Adv. Wound Care 2012, 1, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Ndakalimwe, N.G.; González-Redondo, P. Review on the progress in the role of herbal extracts in tilapia culture. Cogent Food Agric. 2019, 5, 1. [Google Scholar] [CrossRef]
- Mauerwerk, M.T.; Zadinelo, I.V.; Meurer, F. Use of glycerol in fish nutrition: A review. Rev. Aquac. 2020, 13, 853–861. [Google Scholar] [CrossRef]
- Gonçalves, L.U.; Cortegano, C.A.A.; Barone, R.S.C.; Lorenz, E.K.; Cyrino, J.E.P. Effects of dietary linolenic acid to linoleic acid ratio on growth performance, proximate composition and fatty acid contents of pacu (Piaractus mesopotamicus). Aquac. Res. 2021, 108, 1565–1584. [Google Scholar] [CrossRef]
- Prabhu, P.A.J.; Fountoulaki, E.; Maas, R.; Heinsbroek, L.T.N.; Eding, E.H.; Kaushik, S.J.; Schrama, J.W. Dietary ingredient composition alters faecal characteristics and waste production in common carp reared in recirculation system. Aquaculture 2019, 512, 734357. [Google Scholar] [CrossRef]
- Mocanu, E.; Athanasopoulo, L.; Patriche, N.; Tenciu, M.; Jecu, E. Effect of phyto-additives diets on growth parameters and biochemical composition of carp species (Cyprinus carpio) in recirculating system. Sci. Pap. Anim. Sci. Ser. 2019, 71, 139–145. [Google Scholar]
- Reverter, M.; Tapissier-Bontemps, N.; Sarter, S.; Caruso, D. Moving towards more sustainable aquaculture practices: A meta-analysis on the potential of plant-enriched diets to improve fish growth, immunity and disease resistance. Rev. Aquac. 2021, 13, 537–555. [Google Scholar] [CrossRef]
- Maas, P.; Grzegrzółka, B.; Kreß, P.; Oberle, M.; Judas, M.; Kremer-Rücker, P.V. Prediction of body composition in mirror carp (Cyprinus carpio) by using linear measurements in vivo and computed tomography post-mortem. Arch. Anim. Breed. 2020, 63, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowska, E.; Bogucka, J.; Mazurkiewicz, J.; Mateusz, R.; Szymon, R.; Magdalena, S. Effects of a trans-galactooligosaccharide on minerals content of common carp (Cyprinus carpio L.) tissues. Biol. Trace. Elem. Res. 2021, 199, 4792–4804. [Google Scholar] [CrossRef] [PubMed]
- Ljubojević, D.; Ćirković, M.; Đorđević, V.; Puvača, N.; Trbović, D.; Vukadinov, J.; Plavša, N. Fat quality of marketable fresh water fish species in the Republic of Serbia. Czech. J. Food Sci. 2013, 31, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, T. Essential fatty acid requirements in carp. Arch. Für Tierernaehrung 1996, 49, 23–32. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional characteristics assessment of sunflower seeds, oil and cake. perspective of using sunflower oilcakes as a functional ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Wang, L.S.; Shi, Z.; Gao, R.; Su, B.C.; Wang, H.; Shi, B.M.; Shan, A.S. Effects of conjugated linoleic acid or betaine on the growth performance and fatty acid composition in backfat and belly fat of finishing pigs fed dried distillers grains with solubles. Animal 2015, 9, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Woyann, L.G.; Meira, D.; Zdziarski, A.D.; Matei, G.; Milioli, A.S.; Rosa, A.C.; Madella, L.A.; Benin, G. Multiple-trait selection of soybean for biodiesel production in Brazil. Ind. Crops Prod. 2019, 40, 111721. [Google Scholar] [CrossRef]
- Ciurescu, G.; Toncea, I.; Ropotă, M.; Hăbeanu, M. Seeds composition and their nutrients quality of some pea (Pisum sativum L.) and lentil (Lens culinaris medik.) Cultivars. Rom. Agric. Res. 2018, 35, 2067–5720. [Google Scholar]
- He, M.L.; Yang, W.Z.; Dugan, M.E.R.; Beauchemin, K.A.; McKinnon, J.J.; McAllister, T.A. Substitution of wheat dried distillers grains with solubles for barley silage and barley grain in a finishing diet increases polyunsaturated fatty acids including linoleic and alpha-linolenic acids in beef. Anim. Feed Sci. Technol. 2012, 175, 114–120. [Google Scholar] [CrossRef]
- Kouřimská, L.; Pokhrel, K.; Božik, M.; Tilami, S.K.; Horčička, P. Fat content and fatty acid profiles of recently registered varieties of naked and hulled oats with and without husks. J. Cereal Sci. 2021, 99, 103216. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. J. Agric. Food Chem. 2010, 58, 7502–7509. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Rengasamy Kannan, R.R.; Eun-Young, K.; Jung-Tae, K.; Young-Soo, K. Korean maize hybrids present significant diversity in fatty acid composition: An investigation to identify PUFA-rich hybrids for a healthy diet. Front. Nutr. 2020, 7, 578761. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Nithiyanantham, S.; Sarikurkcu, G.; Uysal, S.; Ceylan, R.; Ramya, K.S.; Maskovic, P.; Aktumsek, A. Identification of phenolic profiles, fatty acid compositions, antioxidant activities, and enzyme inhibition effects of seven wheat cultivars grown in Turkey: A phytochemical approach for their nutritional value. Int. J. Food Prop. 2017, 20, 2373–2382. [Google Scholar] [CrossRef] [Green Version]
- Burducea, M.; Lobiuc, A.; Dirvariu, L.; Oprea, E.; Olaru, S.M.; Teliban, G.-C.; Stoleru, V.; Poghirc, V.A.; Cara, I.G.; Filip, M. A assessment of the fertilization capacity of the aquaculture sediment for wheat grass as sustainable alternative use. Plants 2022, 11, 634. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control | Con+WGJ | Con+BGJ |
---|---|---|---|
% | |||
Sunflower meal | 25 | 24.5 | 24.5 |
DDGS | 25 | 24.5 | 24.5 |
Soybean | 15 | 14.7 | 14.7 |
Peas | 15 | 14.7 | 14.7 |
Barley | 4 | 3.92 | 3.92 |
Oat | 4 | 3.92 | 3.92 |
Rapeseed | 4 | 3.92 | 3.92 |
Corn | 4 | 3.92 | 3.92 |
Wheat | 4 | 3.92 | 3.92 |
Wheat grass juice | - | 2 | - |
Barley grass juice | - | - | 2 |
Parameter | Con | Con+WGJ | Con+BGJ | Anova p-Value |
---|---|---|---|---|
Moisture (%) | 9.77 ± 0.04 | 9.74 ± 0.03 | 9.71 ± 0.05 | 0.549 |
Protein (%) | 27.36 ± 0.28 | 27.38 ± 0.20 | 27.59 ± 0.18 | 0.727 |
Fat (%) | 7.57 ± 0.04 | 7.56 ± 0.03 | 7.63 ± 0.02 | 0.237 |
Fiber (%) | 7.08 ± 0.14 | 6.93 ± 0.20 | 6.81 ± 0.45 | 0.822 |
Starch (%) | 19.60 ± 0.26 | 19.60 ± 0.26 | 19.60 ± 0.26 | 1.00 |
Ash (%) | 8.89 ± 0.18 | 9.00 ± 0.10 | 8.63 ± 0.20 | 0.334 |
Sugar (%) | 3.57 ± 0.08 | 3.69 ± 0.11 | 3.53 ± 0.12 | 0.571 |
Calcium (%) | 2.96 ± 0.02 | 2.81 ± 0.13 | 2.92 ± 0.03 | 0.471 |
Phosphorus (%) | 1.09 ± 0.01 | 1.12 ± 0.04 | 1.10 ± 0.03 | 0.681 |
Parameter | Con | Con+WGJ | Con+BGJ | ANOVA p-Value |
---|---|---|---|---|
IBW (g) | 51.33 ± 0.88 | 51.67 ± 0.88 | 51.00 ± 1.00 | 0.888 |
FBW (g) | 82.33 ± 1.45 b | 90.33 ± 0.33 a | 90.67 ± 0.88 a | 0.002 |
WG (%) | 60.39 ± 0.23 b | 74.93 ± 2.57 a | 77.86 ± 2.43 a | 0.002 |
FCR (g/g) | 2.48 ± 0.02 | 2.01 ± 0.12 | 1.93 ± 0.10 | 0.915 |
CF | 3.27 ± 0.03 | 3.20 ± 0.05 | 3.26 ± 0.01 | 0.352 |
VSI | 10.41 ± 0.15 | 10.22 ± 0.06 | 10.19 ± 0.1 | 0.369 |
HSI | 5.10 ± 0.13 | 5.13 ± 0.05 | 5.11 ± 0.03 | 0.973 |
Parameter | Con | Con+WGJ | Con+BGJ | ANOVA p-Value |
---|---|---|---|---|
Fat (%) | 5.7 ± 0.21 a | 2.63 ± 0.09 b | 3.0 ± 0.21 b | 0.000 |
Moisture (%) | 73.17 ± 0.09 c | 75.43 ± 0.23 a | 74.23 ± 0.23 b | 0.001 |
Protein (%) | 15.13 ± 0.19 | 15.47 ± 0.37 | 16.07 ± 0.17 | 0.105 |
Collagen (%) | 1.43 ± 0.03 | 1.6 ± 0.21 | 1.37 ± 0.13 | 0.535 |
Salt (%) | 0.70 ± 0.12 | 0.13 ± 0.03 | 0.47 ± 0.20 | 0.067 |
Ash (%) | 1.57 ± 0.07 a | 1.07 ± 0.15 b | 1.17 ± 0.07 ab | 0.027 |
Parameter | Con | Con+WGJ | Con+BGJ | ANOVA p-Value |
---|---|---|---|---|
Fe (mg/kg) | 28.79 ± 0.09 | 29.61 ± 2.93 | 35.43 ± 3.07 | 0.210 |
Cu (mg/kg) | 0.52 ± 0.05 | 0.40 ± 0.02 | 0.22 ± 0.01 | 0.020 |
Mn (mg/kg) | 0.83 ± 0.10 | 0.64 ± 0.06 | 0.89 ± 0.01 | 0.021 |
Zn (mg/kg) | 63.76 ± 2.87 | 69.49 ± 7.42 | 78.81 ± 2.41 | 0.167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burducea, M.; Dincheva, I.; Dirvariu, L.; Oprea, E.; Zheljazkov, V.D.; Barbacariu, C.-A. Wheat and Barley Grass Juice Addition to a Plant-Based Feed Improved Growth and Flesh Quality of Common Carp (Cyprinus carpio). Animals 2022, 12, 1046. https://doi.org/10.3390/ani12081046
Burducea M, Dincheva I, Dirvariu L, Oprea E, Zheljazkov VD, Barbacariu C-A. Wheat and Barley Grass Juice Addition to a Plant-Based Feed Improved Growth and Flesh Quality of Common Carp (Cyprinus carpio). Animals. 2022; 12(8):1046. https://doi.org/10.3390/ani12081046
Chicago/Turabian StyleBurducea, Marian, Ivayla Dincheva, Lenuta Dirvariu, Eugen Oprea, Valtcho D. Zheljazkov, and Cristian-Alin Barbacariu. 2022. "Wheat and Barley Grass Juice Addition to a Plant-Based Feed Improved Growth and Flesh Quality of Common Carp (Cyprinus carpio)" Animals 12, no. 8: 1046. https://doi.org/10.3390/ani12081046
APA StyleBurducea, M., Dincheva, I., Dirvariu, L., Oprea, E., Zheljazkov, V. D., & Barbacariu, C.-A. (2022). Wheat and Barley Grass Juice Addition to a Plant-Based Feed Improved Growth and Flesh Quality of Common Carp (Cyprinus carpio). Animals, 12(8), 1046. https://doi.org/10.3390/ani12081046