Latitudinal Variation in the Pattern of Temperature-Dependent Sex Determination in the Japanese Gecko, Gekko japonicus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species and Animal Collection
2.2. Egg Incubation and Hatchling Husbandry
2.3. Sex Identification
2.4. Statistical Analyses
3. Results
3.1. Air and Habitat Temperatures
3.2. Hatchling Sex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duffy, T.A.; Hice, L.A.; Conover, D.O. Pattern and scale of geographic variation in environmental sex determination in the Atlantic silverside, Menidia menidia. Evolution 2015, 69, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Bull, J.J. Sex determination in reptiles. Q. Rev. Biol. 1980, 55, 3–21. [Google Scholar] [CrossRef]
- Valenzuela, N.; Lance, V. Temperature Dependent Sex Determination in Vertebrates; Smithsonian Books: Washington, DC, USA, 2004. [Google Scholar]
- Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex determination: Why so many ways of doing it? PLoS Biol. 2014, 12, e1001899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewert, M.A.; Lang, J.W.; Nelson, C.E. Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). J. Zool. 2005, 265, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.L.; Bodensteiner, B.L.; Iverson, J.B.; Milne-Zelman, C.L.; Mitchell, T.S.; Refsnider, J.M.; Warner, D.A.; Janzen, F.J. Breadth of the thermal response captures individual and geographic variation in temperature-dependent sex determination. Funct. Ecol. 2019, 33, 1928–1939. [Google Scholar] [CrossRef]
- Bull, J.J.; Vogt, R.C.; McCoy, C.J. Sex determining temperatures in turtles: A geographic comparison. Evolution 1982, 36, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Du, W.G.; Wang, L.; Shen, J.W. Optimal temperatures for egg incubation in two Geoemydid turtles: Ocadia sinensis and Mauremys mutica. Aquaculture 2010, 305, 138–142. [Google Scholar] [CrossRef]
- Zhu, X.P.; Chen, Y.L.; Wei, C.Q.; Liu, Y.H.; Gui, J.-F. Temperature effects on sex determination in yellow pond turtle (Mauremys mutica Cantor). Acta Ecol. Sin. 2006, 26, 620–625. [Google Scholar]
- Mrosovsky, N. Pivotal temperatures for loggerhead turtles (Caretta caretta) from northern and southern nesting beaches. Can. J. Zool. 1988, 66, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, M.H.; Mrosovsky, N. Pivotal temperature for green sea turtles, Chelonia mydas, nesting in Suriname. Herpetol. J. 2006, 16, 55–61. [Google Scholar]
- Bentley, B.P.; Stubbs, J.L.; Whiting, S.D.; Mitchell, N.J. Variation in thermal traits describing sex determination and development in Western Australian sea turtle populations. Funct. Ecol. 2020, 34, 2302–2314. [Google Scholar] [CrossRef]
- Tokunaga, S. Temperature-dependent sex determination in Gekko japonicus (Gekkonidae, Reptilia). Dev. Growth Differ. 1985, 27, 117–120. [Google Scholar] [CrossRef]
- Ding, G.H.; Yang, J.; Wang, J.; Ji, X. Offspring sex in a TSD gecko correlates with an interaction between incubation temperature and yolk steroid hormones. Naturwissenschaften 2012, 99, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Peng, X.; Yu, D. Studies on the karyotypes of three species of the genus Gekko. Acta Herpetol. Sin. 1986, 5, 24–29. [Google Scholar]
- Zhao, K. Lacertidae; Science Press: Beijing, China, 1999. [Google Scholar]
- Zhang, Y.P.; Du, W.G.; Zhu, L.J. Differences in body size and female reproductive traits between two sympatric geckos, Gekko japonicus and Gekko hokouensis. Folia Zool. 2009, 58, 113–122. [Google Scholar]
- Xu, X.F.; Ji, X. Female reproduction and influence of incubation temperature on duration of incubation and hatchling traits in the Gecko, Gekko japonicus. Chin. J. Ecol. 2001, 290, 8–11. [Google Scholar]
- Zhang, Y.P.; Ping, J.; Hao, S.L.; Zhou, H.B. Temporal and spatial variation in life history traits of the Japanese gecko, Gekko japonicus. Herpetol. J. 2016, 26, 305–311. [Google Scholar]
- Girondot, M. Embryogrowth: Tools to Analyze the Thermal Reaction Norm of Embryo Growth, 8.2 ed.; The Comprehensive R Archive Network. 2019. Available online: https://cran.r-project.org/web/packages/embryogrowth/index.html (accessed on 3 April 2022).
- Abreu-Grobois, F.A.; Morales-Mérida, B.A.; Hart, C.E.; Guillon, J.M.; Godfrey, M.H.; Navarro, E.; Girondot, M. Recent advances on the estimation of the thermal reaction norm for sex ratios. Peer J. 2020, 8, e8451. [Google Scholar] [CrossRef] [Green Version]
- Ewert, M.A.; Etchberger, C.R.; Nelson, C.E. Turtle sex determining modes and TSD patterns, and some TSD pattern correlates. In Temperature-dependent Sex Determination in Vertebrates; Valenzuela, N., Lance, V.A., Eds.; Smithsonian Books: Washington, DC, USA, 2004; pp. 21–32. [Google Scholar]
- Refsnider, J.M.; Milne-Zelman, C.; Warner, D.A.; Janzen, F.J. Population sex ratios under differing local climates in a reptile with environmental sex determination. Evol. Ecol. 2014, 28, 977–989. [Google Scholar] [CrossRef]
- Warner, D.A.; Shine, R. The adaptive significance of temperature-dependent sex determination: Experimental tests with a short-lived lizard. Evolution 2005, 59, 2209–2221. [Google Scholar] [CrossRef]
- Doody, J.S.; Guarino, E.; Georges, A.; Corey, B.; Murray, G.; Ewert, M. Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evol. Ecol. 2006, 20, 307–330. [Google Scholar] [CrossRef]
- Hulin, V.; Delmas, V.; Girondot, M.; Godfrey, M.H.; Guillon, J.-M. Temperature-dependent sex determination and global change: Are some species at greater risk? Oecologia 2009, 160, 493–506. [Google Scholar] [CrossRef] [PubMed]
- González, E.J.; Martínez-López, M.; Morales-Garduza, M.A.; García-Morales, R.; Charruau, P.; Gallardo-Cruz, J.A. The sex-determination pattern in crocodilians: A systematic review of three decades of research. J. Anim. Ecol. 2019, 88, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Elf, P.K. Yolk steroid hormones and sex determination in reptiles with TSD. Gen. Comp. Endocr. 2003, 132, 349–355. [Google Scholar] [CrossRef]
- Bowden, R.M.; Ewert, M.A.; Nelson, C.E. Environmental sex determination in a reptile varies seasonally and with yolk hormones. Proc. Roy Soc. B 2000, 267, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Bowden, R.M.; Paitz, R.T. Temperature fluctuations and maternal estrogens as critical factors for understanding temperature-dependent sex determination in nature. J. Exp. Zool. Part A 2018, 329, 177–184. [Google Scholar] [CrossRef]
- Radder, R. Maternally derived egg yolk steroid hormones and sex determination: Review of a paradox in reptiles. J. Biosci. 2007, 32, 1213–1220. [Google Scholar] [CrossRef]
- Conover, D.O.; Heins, S.W. Adaptive variation in environmental and genetic sex determination in a fish. Nature 1987, 326, 496–498. [Google Scholar] [CrossRef]
- Warner, D.A.; Uller, T.; Shine, R. Fitness effects of the timing of hatching may drive the evolution of temperature-dependent sex determination in short-lived lizards. Evol. Ecol. 2007, 23, 281–294. [Google Scholar] [CrossRef]
- Pen, I.; Uller, T.; Feldmeyer, B.; Harts, A.; While, G.M.; Wapstra, E. Climate-driven population divergence in sex-determining systems. Nature 2010, 468, 436–438. [Google Scholar] [CrossRef]
- Du, W.G.; Shen, J.W.; Wang, L. Embryonic development rate and hatchling phenotypes in the Chinese three-keeled pond turtle (Chinemys reevesii): The influence of fluctuating temperature versus constant temperature. J. Therm. Biol. 2009, 34, 250–255. [Google Scholar] [CrossRef]
- Valenzuela, N.; Literman, R.; Neuwald, J.L.; Mizoguchi, B.; Iverson, J.B.; Riley, J.L.; Litzgus, J.D. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 2019, 9, 4254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paitz, R.T.; Clairardin, S.G.; Griffin, A.M.; Holgersson, M.C.N.; Bowden, R.M. Temperature fluctuations affect offspring sex but not morphological, behavioral, or immunological traits in the Northern Painted Turtle (Chrysemys picta). Can. J. Zool. 2010, 88, 479–486. [Google Scholar] [CrossRef]
- Warner, D.A.; Shine, R. Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination. Proc. R Soc. B 2011, 278, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Temperatures (°C) | Yancheng | Wenzhou | Statistic Value |
---|---|---|---|
maximum | 29.4 ± 0.6 | 30.8 ± 0.3 | F1, 10 = 4.462, p = 0.061 |
mean | 25.0 ± 0.3 | 27.8 ± 0.2 | F1, 10 = 52.504, p < 0.001 |
minimum | 22.0 ± 0.1 | 25.5 ± 0.3 | F1, 10 = 71.414, p < 0.001 |
range | 7.4 ± 0.5 | 5.3 ± 0.5 | F1, 10 = 8.440, p = 0.016 |
Population | Incubation Temperature/°C | Female: Male (Unidentified) | Sex Ratio Departure Test |
---|---|---|---|
Yancheng | 24 | 47: 12 (0) | χ2 = 20.763, df = 1, p < 0.001 |
26 | 44: 25 (2) | χ2 = 5.232, df = 1, p = 0.022 | |
28 | 16: 44 (1) | χ2 = 13.067, df = 1, p < 0.001 | |
30 | 29: 42 (2) | χ2 = 2.380, df = 1, p = 0.123 | |
32 | 39: 10 (0) | χ2 = 17.163, df = 1, p < 0.001 | |
Chuzhou | 24 | 22: 3 (0) | χ2 = 14.440, df = 1, p < 0.001 |
26 | 25: 12 (3) | χ2 = 4.568, df = 1, p = 0.033 | |
28 | 8: 13 (0) | χ2 = 1.190, df = 1, p = 0.275 | |
30 | 7: 20 (2) | χ2 = 6.259, df = 1, p = 0.012 | |
32 | 17: 1 (0) | χ2 = 14.222, df = 1, p < 0.001 | |
Wenzhou | 24 | 41: 8 (3) | χ2 = 22.224, df = 1, p < 0.001 |
26 | 34: 44 (6) | χ2 = 1.282, df = 1, p = 0.258 | |
28 | 24: 24 (1) | χ2 = 0.000, df = 1, p = 1.000 | |
30 | 43: 46 (0) | χ2 = 0.101, df = 1, p = 0.750 | |
32 | 51: 18 (1) | χ2 = 15.783, df = 1, p < 0.001 |
Population | Parameters | Female to Male | Male to Female | ||||
---|---|---|---|---|---|---|---|
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | ||
Yancheng | Tpiv (°C) | 25.8 | 26.4 | 27.0 | 30.2 | 30.7 | 31.2 |
TRT(°C) | 6.7 | 9.3 | 11.6 | 4.2 | 6.3 | 10.0 | |
Chuzhou | Tpiv (°C) | 26.4 | 27.2 | 28.1 | 30.3 | 30.9 | 31.8 |
TRT(°C) | 6.4 | 9.6 | 11.7 | 0.6 | 2.6 | 6.3 | |
Wenzhou | Tpiv (°C) | 25.1 | 25.7 | 26.4 | 29.3 | 30.0 | 30.7 |
TRT(°C) | 4.7 | 8.1 | 11.5 | 8.5 | 10.9 | 19.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xu, Z.; Luo, L.; Ping, J.; Zhou, H.; Xie, L.; Zhang, Y. Latitudinal Variation in the Pattern of Temperature-Dependent Sex Determination in the Japanese Gecko, Gekko japonicus. Animals 2022, 12, 942. https://doi.org/10.3390/ani12080942
Li S, Xu Z, Luo L, Ping J, Zhou H, Xie L, Zhang Y. Latitudinal Variation in the Pattern of Temperature-Dependent Sex Determination in the Japanese Gecko, Gekko japonicus. Animals. 2022; 12(8):942. https://doi.org/10.3390/ani12080942
Chicago/Turabian StyleLi, Shuran, Zhiwang Xu, Laigao Luo, Jun Ping, Huabin Zhou, Lei Xie, and Yongpu Zhang. 2022. "Latitudinal Variation in the Pattern of Temperature-Dependent Sex Determination in the Japanese Gecko, Gekko japonicus" Animals 12, no. 8: 942. https://doi.org/10.3390/ani12080942
APA StyleLi, S., Xu, Z., Luo, L., Ping, J., Zhou, H., Xie, L., & Zhang, Y. (2022). Latitudinal Variation in the Pattern of Temperature-Dependent Sex Determination in the Japanese Gecko, Gekko japonicus. Animals, 12(8), 942. https://doi.org/10.3390/ani12080942