Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Dietary Treatments
2.3. Housing and Management Routines
2.4. Feeding and Feeding System
2.5. Recordings and Measurements
2.6. Post-Mortem Examinations and Samplings
2.7. RNA-Sequencing
2.8. Blood Analysis
2.9. Statistical Analyses
3. Results
3.1. Diarrhoea Treatments
3.2. Growth Performance
3.3. Transcriptomic Analysis
3.4. Blood Analysis
3.5. Organ Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Maribo, H.; Kjeldsen, N.; Pluske, J.R. Effects of dietary protein level and zinc oxide supplementation on the incidence of post-weaning diarrhoea in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Livest. Sci. 2010, 133, 210–213. [Google Scholar] [CrossRef]
- Walk, C.L.; Wilcock, P.; Magowan, E. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal 2015, 9, 1145–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Lv, H.; Chen, Z.; Wang, L.; Wu, X.; Chen, Z.; Zhang, W.; Liang, R.; Jiang, Z. Dietary Zinc Oxide Modulates Antioxidant Capacity, Small Intestine Development, and Jejunal Gene Expression in Weaned Piglets. Biol. Trace Element Res. 2017, 175, 331–338. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. European Medicines Agency—News and Events. In Proceedings of the Committee for Medicinal Products for Veterinary Use (CVMP) Meeting, London, UK, 6–8 December 2016. [Google Scholar]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli. J. Anim. Sci. 2009, 87, 2833–2843. [Google Scholar] [CrossRef] [Green Version]
- Lynegaard, J.C.; Kjeldsen, N.J.; Bache, J.K.; Weber, N.R.; Hansen, C.F.; Nielsen, J.P.; Amdi, C. Low protein diets without medicinal zinc oxide for weaned pigs reduced diarrhoea treatments and average daily gain. Animal 2021, 15, 100075. [Google Scholar] [CrossRef]
- Stein, H.H.; Roth, J.A.; Sotak, K.M.; Rojas, O.J. Nutritional Value of Soy Products Fed to Pigs. In Swine Focus 4; University Illinois Urbana-Champaign: Champaign, IL, USA, 2013. [Google Scholar]
- Valencia, D.G.; Serrano, M.P.; Centeno, C.; Lázaro, R.; Mateos, G.G. Pea protein as a substitute of soya bean protein in diets for young pigs: Effects on productivity and digestive traits. Livest. Sci. 2008, 118, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Berrocoso, J.D.; Serrano, M.P.; Cámara, L.; López, A.; Mateos, G.G. Influence of source and micronization of soybean meal on nutrient digestibility and growth performance of weanling pigs. J. Anim. Sci. 2013, 91, 309–317. [Google Scholar] [CrossRef]
- Sohn, K.S.; Maxwell, C.V.; Buchanan, D.S.; Southern, L.L. Improved soybean protein sources for early-weaned pigs: I. Effects on performance and total tract amino acid digestibility. J. Anim. Sci. 1994, 72, 622–630. [Google Scholar] [CrossRef]
- Friesen, K.G.; Nelssen, J.L.; Goodband, R.D.; Behnke, K.C.; Kats, L.J. The effect of moist extrusion of soy products on growth performance and nutrient utilization in the early-weaned pig. J. Anim. Sci. 1993, 71, 2099–2109. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, P.; Saldaña, B.; Cámara, L.; Mateos, G.G. Influence of soybean protein source on growth performance and nutrient digestibility of piglets from 21 to 57 days of age. Anim. Feed Sci. Technol. 2016, 222, 75–86. [Google Scholar] [CrossRef]
- Gloaguen, M.; Le Floc’h, N.; Corrent, E.; Primot, Y.; van Milgen, J. The use of free amino acids allows formulating very low crude protein diets for piglets. J. Anim. Sci. 2014, 92, 637–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeser, A.J.; Klok, C.V.; Ryan, K.A.; Wooten, J.G.; Little, D.; Cook, V.L.; Blikslager, A. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G173–G181. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, L.; Li, P.; Li, X.; Zhou, H.; Wang, F.; Li, D.; Yin, Y.; Wu, G. Gene Expression Is Altered in Piglet Small Intestine by Weaning and Dietary Glutamine Supplementation. J. Nutr. 2008, 138, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- The Danish Ministry of Justice Animal Testing Act. Consolidation Act. No 729 of 9 September 1993 (As Amended by Act. No. 1081 of 20 December 1995); The Danish Ministry of Justice: Copenhagen, Denmark, 1995. [Google Scholar]
- Lynegaard, J.C.; Kjeldsen, N.J.; Bache, J.K.; Weber, N.R.; Hansen, C.F.; Nielsen, J.P.; Amdi, C. A Very Low CP Level Reduced Diarrhoea and Productivity in Weaner Pigs, but No Differences between Post-Weaning Diets Including Soybean Meal or Soy Protein Concentrate Were Found. Animals 2021, 11, 678. [Google Scholar] [CrossRef]
- Tybirk, P.; Sloth, N.M.; Kjeldsen, N.J.; Shooter, L. Danish Nutrient Requirement Standards, 28th ed; SEGES Danish Pig Research Centre: Copenhagen, Denmark, 2018. [Google Scholar]
- Tybirk, P.; Sloth, N.M.; Kjeldsen, N.; Lisbeth, O.G. Danish Nutrient Requirement Standards; Seges Danish Pig Research Centre: Copenhagen, Denmark, 2019. [Google Scholar]
- Amdi, C.; Pedersen, M.L.M.; Klaaborg, J.; Myhill, L.J.; Engelsmann, M.N.; Williams, A.R.; Thymann, T. Pre-weaning adaptation responses in piglets fed milk replacer with gradually increasing amounts of wheat. Br. J. Nutr. 2020, 126, 375–382. [Google Scholar] [CrossRef]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Feeding a diet with a decreased protein content reduces both nitrogen content in the gastrointestinal tract and post-weaning diarrhoea but does not affect apparent nitrogen digestibility in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Anim. Feed Sci. Technol. 2010, 160, 148–159. [Google Scholar] [CrossRef]
- Nyachoti, C.M.; Omogbenigun, F.O.; Rademacher, M.; Blank, G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 2006, 84, 125–134. [Google Scholar] [CrossRef]
- Sargeant, H.R.; McDowall, K.J.; Miller, H.M.; Shaw, M.-A. Dietary zinc oxide affects the expression of genes associated with inflammation: Transcriptome analysis in piglets challenged with ETEC K88. Veter-Immunol. Immunopathol. 2010, 137, 120–129. [Google Scholar] [CrossRef]
- Pluske, J.R.; Kim, J.C.; Black, J.L. Manipulating the immune system for pigs to optimise performance. Anim. Prod. Sci. 2018, 58, 666–680. [Google Scholar] [CrossRef]
- Wu, G. Intestinal Mucosal Amino Acid Catabolism. J. Nutr. 1998, 128, 1249–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; He, L.Q.; Cui, Z.J.; Liu, G.; Yao, K.; Wu, F.; Li, J.; Li, T.J. Effects of reducing dietary protein on the expression of nutrition sensing genes (amino acid transporters) in weaned piglets. J. Zhejiang Univ. Sci. B 2015, 16, 496–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Gu, W.; Tang, X.; Geng, M.; Fan, M.; Li, T.; Chu, W.; Shi, C.; Huang, R.; Zhang, H.; et al. Molecular cloning, tissue distribution and ontogenetic expression of the amino acid transporter b0,+ cDNA in the small intestine of Tibetan suckling piglets. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2009, 154, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Lallès, J.-P.; Bosi, P.; Smidt, H.; Stokes, C.R. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 2007, 66, 260–268. [Google Scholar] [CrossRef]
- Abdulhussein, A.A.; Wallace, H.M. Polyamines and membrane transporters. Amino Acids 2014, 46, 655–660. [Google Scholar] [CrossRef]
- Jensen, B.B. The impact of feed additives on the microbial ecology of the gut in young pigs. J. Anim. Feed Sci. 1998, 7, 45–64. [Google Scholar] [CrossRef]
- Larsen, C.; Lynegaard, J.C.; Pedersen, A.Ø.; Kjeldsen, N.J.; Hansen, C.F.; Nielsen, J.P.; Amdi, C. A reduced CP level without medicinal zinc oxide does not alter the intestinal morphology in weaned pigs 24 days post-weaning. Animal 2021, 15, 100188. [Google Scholar] [CrossRef]
- Eggum, B.O.; Chwalibog, A.; Danielsen, V. The influence of dietary concentration of amino acids on protein and energy utilization in growing rats and piglets. 3. Diets of high biological value but with different protein concentrations. J. Anim. Physiol. Anim. Nutr. 1987, 57, 52–64. [Google Scholar] [CrossRef]
- Whang, K.Y.; Easter, R.A. Blood Urea Nitrogen as an Index of Feed Efficiency and Lean Growth Potential in Growing-Finishing Swine. Asian-Australas. J. Anim. Sci. 2000, 13, 811–816. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jongbloed, A.W.; Lenis, N.P. Alteration of nutrition as a means to reduce environmental pollution by pigs. Livest. Prod. Sci. 1992, 31, 75–94. [Google Scholar] [CrossRef]
- Heo, J.; Kim, J.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R.; Kim, J.; Hansen, C.F.; Mullan, B.P. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr. 2008, 62, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.H.; Jin, Y.H.; Do, S.H.; Hong, J.S.; Kim, B.O.; Han, T.H.; Kim, Y.Y. Effects of dietary energy and crude protein levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs. J. Anim. Sci. Technol. 2019, 61, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhu, W.; Hang, S. Effects of low-protein diet on the intestinal morphology, digestive enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned pigs. Arch. Anim. Nutr. 2019, 73, 287–305. [Google Scholar] [CrossRef]
- Fang, L.H.; Jin, Y.H.; Do, S.H.; Hong, J.S.; Kim, B.O.; Han, T.H.; Kim, Y.Y. Effects of dietary energy and crude protein levels on growth performance, blood profiles, and nutrient digestibility in weaning pigs. Asian-Australas. J. Anim. Sci. 2019, 32, 556–563. [Google Scholar] [CrossRef]
- Amaefule, R.A.; Iwuji, T.C.; Ogbuewu, I.P.; Etuk, I.F. Blood chemistry of growing male pigs in response to low protein and energy diets with EnziBlend Plus supplementation. Comp. Clin. Pathol. 2020, 29, 1157–1164. [Google Scholar] [CrossRef]
- Toledo, J.B.; Furlan, A.C.; Pozza, P.C.; Carraro, J.; Moresco, G.; Ferreira, S.L.; Gallego, A.G. Reduction of the crude protein content of diets supplemented with essential amino acids for piglets weighing 15 to 30 kilograms. Rev. Bras. Zootec. 2014, 43, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Tactacan, G.B.; Cho, S.-Y.; Cho, J.H.; Kim, I.H. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australas. J. Anim. Sci. 2016, 29, 998–1003. [Google Scholar] [CrossRef] [Green Version]
- Andres, R.H.; Ducray, A.D.; Schlattner, U.; Wallimann, T.; Widmer, H.R. Functions and effects of creatine in the central nervous system. Brain Res. Bull. 2008, 76, 329–343. [Google Scholar] [CrossRef]
- Brosnan, J.T.; da Silva, R.P.; Brosnan, M.E. The metabolic burden of creatine synthesis. Amino Acids 2011, 40, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
Dietary Treatment 1 | Phase 1 | Phase 2 | Phase 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PC | NC | SP | SB | XLA | PC NC | SP | SB | XLA | PC NC | SP SB XLA | |
Chemical composition | |||||||||||
CP2, g/kg | 187.9 | 188.4 | 176.0 | 175.9 | 155.3 | 187.2 | 176.0 | 176.1 | 151.4 | 190.6 | 190.0 |
Calcium, g/kg | 7.5 | 8.0 | 7.3 | 7.1 | 7.3 | 8.0 | 6.9 | 7.1 | 7.8 | 8.8 | 8.6 |
Phosphorous, g/kg | 6.5 | 6.0 | 6.1 | 5.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.2 | 5.4 | 5.4 |
Zinc, mg/kg | 2740 | 140 | 138 | 166 | 70 | 139 | 138 | 132 | 130 | 144 | 135 |
Copper, mg/kg | 150 | 125 | 125 | 122 | 38 | 93 | 96 | 88 | 71 | 74 | 65 |
Total amino acids, g/kg | |||||||||||
Lys | 12.9 | 13.6 | 13.2 | 13.2 | 13.0 | 13.3 | 13.5 | 13.1 | 13.0 | 13.2 | 12.8 |
Met | 4.2 | 4.3 | 4.2 | 4.3 | 4.5 | 4.0 | 4.2 | 4.0 | 4.4 | 4.0 | 3.8 |
Met + Cys | 7.1 | 7.2 | 6.9 | 7.1 | 6.9 | 7.0 | 7.1 | 6.8 | 6.8 | 7.0 | 6.9 |
Thr | 8.3 | 8.5 | 8.3 | 8.5 | 8.2 | 8.4 | 8.5 | 8.4 | 7.9 | 8.0 | 8.1 |
Val | 9.4 | 9.4 | 8.7 | 8.9 | 8.6 | 9.3 | 8.7 | 8.7 | 8.4 | 9.0 | 9.1 |
His | 4.1 | 4.2 | 3.8 | 3.8 | 3.7 | 4.3 | 3.9 | 4.0 | 3.6 | 4.3 | 4.4 |
Ile | 7.3 | 7.4 | 6.7 | 6.8 | 6.1 | 7.3 | 6.7 | 6.6 | 6.2 | 6.9 | 7.0 |
Leu | 13.7 | 13.9 | 12.6 | 12.8 | 12.0 | 13.6 | 12.6 | 12.3 | 11.9 | 12.7 | 12.8 |
Phe | 9.1 | 9.2 | 8.4 | 8.4 | 7.3 | 9.1 | 8.4 | 8.3 | 7.3 | 6.6 | 8.7 |
Digestible amino acids 2, g/kg | |||||||||||
SID CP | 164.3 | 165.1 | 154.1 | 154.0 | 135.9 | 164.4 | 153.9 | 152.8 | 155.8 | 166.7 | 166.4 |
SID Lys | 11.6 | 12.3 | 12.0 | 12.0 | 12.0 | 12.1 | 12.4 | 12.2 | 12.1 | 12.0 | 11.6 |
SID Met | 3.9 | 3.9 | 3.9 | 4.0 | 4.3 | 3.7 | 4.0 | 3.7 | 4.1 | 3.7 | 3.6 |
SID Met + Cys | 6.2 | 6.3 | 6.1 | 6.3 | 6.2 | 6.2 | 6.2 | 6.0 | 6.1 | 6.2 | 6.1 |
SID Thr | 7.3 | 7.4 | 7.4 | 7.5 | 7.4 | 7.4 | 7.5 | 7.3 | 7.1 | 7.0 | 7.1 |
SID Val | 8.1 | 8.1 | 7.5 | 7.6 | 7.5 | 8.1 | 7.5 | 7.5 | 7.4 | 7.8 | 7.9 |
SID His | 3.6 | 3.7 | 3.3 | 3.3 | 3.2 | 3.7 | 3.4 | 3.5 | 3.2 | 3.7 | 3.8 |
SID Ile | 6.4 | 6.5 | 5.8 | 5.8 | 5.4 | 6.3 | 5.9 | 5.7 | 5.5 | 6.1 | 6.1 |
SID Leu | 12.2 | 12.3 | 11.2 | 11.3 | 10.7 | 11.9 | 11.0 | 10.8 | 10.5 | 11.2 | 11.3 |
SID CP | 164.3 | 165.1 | 154.1 | 154.0 | 135.9 | 164.4 | 153.9 | 152.8 | 155.8 | 166.7 | 166.4 |
Dietary Treatment 1 Ingredient (%) | Phase 1 | Phase 2 | Phase 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PC | NC | SP | SB | XLA | PC NC | SP | SB | XLA | PC NC | SP SB XLA | |
Wheat | 46.6 | 47.7 | 53.0 | 51.7 | 59.4 | 52.1 | 59.1 | 54.9 | 65.4 | 49.8 | 49.7 |
Barley | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Soybean meal | 7.0 | 7.0 | 0.5 | 7.0 | 0.5 | 14.0 | 6.0 | 14.0 | 2.2 | 21.0 | 22.5 |
Soy protein concentrate 2 | 6.5 | 6.4 | 7.5 | 2.2 | 0 | 2.9 | 2.6 | 0.85 | 0 | 2.1 | 0.5 |
Potato protein conc. | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 3.0 | 3.0 | 2.0 | 3.0 | 0 | 0 |
Fishmeal | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0 | 2.0 | 0 | 0.5 | 0 | 0 |
Whey powder | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fatty acid distillate | 2.4 | 2.1 | 1.7 | 1.9 | 1.2 | 2.7 | 1.9 | 2.5 | 1.5 | 1.9 | 2.0 |
Monocalcium phosphate | 1.4 | 1.2 | 1.3 | 1.3 | 1.5 | 0.2 | 0.1 | 0.2 | 0.1 | 0.9 | 0.9 |
Limestone | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5 | 1.5 |
Sodium chloride | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 1.3 | 1.2 | 1.3 | 1.5 | 0.5 | 0.5 |
Sodium bicarbonate | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.6 | 0.6 | 0.6 | 0.6 | 0.1 | 0.1 |
Lysine sulphate 70% | 0.69 | 0.69 | 0.90 | 0.86 | 1.25 | 0.1 | 0.1 | 0.1 | 0.1 | 0.72 | 0.81 |
Methionine 98% | 0.11 | 0.11 | 0.15 | 0.15 | 0.23 | 0.76 | 0.93 | 0.93 | 1.35 | 0.14 | 0.16 |
Threonine 98% | 0.13 | 0.13 | 0.20 | 0.20 | 0.33 | 0.13 | 0.15 | 0.17 | 0.24 | 0.17 | 0.21 |
Tryptophan 99% | 0.05 | 0.05 | 0.07 | 0.07 | 0.12 | 0.16 | 0.22 | 0.23 | 0.36 | 0.03 | 0.04 |
Valine 96.5% | 0.03 | 0.03 | 0.05 | 0.05 | 0.20 | 0.05 | 0.07 | 0.06 | 0.12 | 0.06 | 0.09 |
Mineral-vitamin premix 3 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.05 | 0.07 | 0.08 | 0.23 | 0.40 | 0.40 |
Phytase 4 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.40 | 0.40 | 0.40 | 0.40 | 0.03 | 0.03 |
Benzoic acid | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.03 | 0.03 | 0.03 | 0.03 | 0.50 | 0.50 |
Calcium formate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.50 | 0.50 | 0.50 | 0 | 0 |
Microgrits Green 5 | 0.05 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0.05 | 0 |
Microgrits Blue 5 | 0 | 0 | 0.05 | 0 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0.05 |
Zinc oxide | 0.30 | 0 | 0 | 0 | 0 | 0 | 0.05 | 0 | 0 | 0 | 0 |
Isoleucine 98.5% | 0 | 0 | 0 | 0 | 0.12 | 0 | 0 | 0 | 0.14 | 0 | 0 |
Leucine 98.5% | 0 | 0 | 0 | 0 | 0.22 | 0 | 0 | 0 | 0.26 | 0 | 0 |
Histidine 98.5% | 0 | 0 | 0 | 0 | 0.08 | 0 | 0 | 0 | 0.09 | 0 | 0 |
Phenylalanine 98.5% | 0 | 0 | 0 | 0 | 0.08 | 0 | 0 | 0 | 0.1 | 0 | 0 |
Tyrosine 98.5% | 0 | 0 | 0 | 0 | 0.15 | 0 | 0 | 0 | 0.17 | 0 | 0 |
Dietary Group 1 | p-Value | |||||
---|---|---|---|---|---|---|
PC | NC | SP | SB | XLA | ||
Pigs (n) | 583 | 1165 | 582 | 584 | 584 | |
AB treated pigs (%) | ||||||
Day 10 | 1.9 a | 12.1 b | 11.2 b | 9.6 b | 2.9 a | <0.001 |
Day 24 | 32.7 a | 50.8 b | 40.5 c | 44.8 c | 11.8 d | <0.001 |
Day 39 | 43.5 a | 63.9 b | 53.4 c | 52.1 c | 24.4 d | <0.001 |
Removed pigs | ||||||
Day 10 | 2 | 3 | 2 | 0 | 0 | ns |
Day 24 | 14 | 58 | 12 | 10 | 14 | ns |
Day 39 | 25 | 102 | 19 | 26 | 22 | ns |
AB | Dietary Treatment 1 | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | NC | SP | SB | XLA | PC | NC | SP | SB | XLA | ||||
Untreated | Treated | Diet | AB 2 | ||||||||||
Pigs (n) | |||||||||||||
d 10 | 569 | 1021 | 515 | 528 | 566 | 11 | 141 | 65 | 56 | 17 | - | - | |
d 24 | 369 | 534 | 327 | 305 | 484 | 179 | 552 | 223 | 248 | 65 | - | ||
d 39 | 293 | 369 | 244 | 249 | 394 | 226 | 652 | 652 | 271 | 127 | - | ||
Bodyweight (kg) | |||||||||||||
d 10 | 8.35 a | 8.23 a,b | 8.21 a,b | 8.24 a,b | 8.09 b | 8.39 a | 8.27 a,b | 8.26 a,b | 8.28 a,b | 8.13 b | 0.18 | 0.009 | 0.63 |
d 24 | 13.18 a | 12.48 b | 12.18 b | 12.62 b | 11.40 d | 13.61 a | 12.91 b | 12.61 b | 13.06 b | 11.84 d | 0.28 | <0.001 | <0.001 |
d 39 | 22.68 a | 21.94 a,b | 21.07 b | 21.67 a,b | 19.38 c | 23.10 a | 22.37 a,b | 21.49 b | 22.10 a,b | 19.80 c | 0.55 | <0.001 | 0.14 |
ADG 2 (g/d) | |||||||||||||
d 1–10 | 138.48 a | 130.62 a | 129.01 a | 131.23 a | 115.99 b | 118.36 a | 110.50 a | 108.88 a | 111.11 a | 95.87 b | 8.75 | <0.001 | <0.001 |
d 10–24 | 346.20 a | 303.73 b | 286.19 c | 314.75 b | 234.31 d | 364.56 a | 322.09 b | 304.55 c | 333.10 b | 252.67 d | 8.97 | <0.001 | <0.001 |
d 24–39 | 768.35 a | 759.12 a | 707.79 a,b | 729.41 a,b | 656.93 b | 785.34 a | 776.11 a | 724.79 a,b | 746.39 a,b | 673.92 b | 107.8 | <0.001 | 0.36 |
d 1–39 | 420.85 a | 401.14 a,b | 377.53 b | 393.88 a,b | 332.73 c | 427.80 a | 408.09 a,b | 384.48 b | 400.83 a,b | 339.68 c | 16.45 | <0.001 | 0.34 |
Dietary Group 1 | SEM | p-Value | ||
---|---|---|---|---|
PC | XLA | |||
Pigs (n) | 17 | 20 | ||
Albumin (g/L) | 30.5 | 26.5 | 1.09 | 0.014 |
Protein (g/L) | 58.3 | 50.4 | 2.13 | 0.013 |
Alkaline phosphatase (U/L) | 565 | 559 | 38.7 | 0.913 |
Alanine–aminotransferase (U/L) | 60.4 | 66.9 | 5.14 | 0.377 |
Bilirubin (umol/L) | 0.06 | 0.19 | 0.13 | 0.478 |
Cholesterol (mmol/L) | 2.20 | 2.09 | 0.15 | 0.596 |
Creatinine (umol/L) | 65.8 | 57.0 | 2.96 | 0.043 |
Iron (mmol/L) | 30.1 | 31.4 | 3.04 | 0.777 |
Phosphate (mmol/L) | 3.31 | 3.25 | 0.12 | 0.725 |
Aspartate–aminotransferase (U/L) | 72.4 | 178.2 | 39.0 | 0.064 |
Blood urea nitrogen (mmol/L) | 1.85 | 0.89 | 0.22 | 0.005 |
Gamma–glutamyl transferase (U/L) | 30.8 | 28.5 | 2.60 | 0.528 |
Calcium (mmol/L) | 3.01 | 2.75 | 0.10 | 0.069 |
Magnesium (mmol/L) | 1.04 | 0.91 | 0.06 | 0.162 |
Sodium (mmol/L) | 161 | 148 | 4.83 | 0.079 |
Potassium (mmol/L) | 7.93 | 7.00 | 0.31 | 0.046 |
Column Head | Dietary Treatment 1 | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | NC | SP | SB | XLA | PC | NC | SP | SB | XLA | ||||
Day 10 Post-Weaning | Day 24 Post-Weaning | Diet | Age | ||||||||||
n | 20 | 20 | 20 | 20 | 20 | 18 | 20 | 19 | 17 | 20 | |||
Bodyweight (kg) | 8.93 a | 8.32 a,b | 8.99 a | 8.30 a,b | 7.68 b | 13.61 | 12.98 | 13.66 | 12.97 | 12.36 | 0.419 | 0.025 | <0.001 |
Absolute organ weight | |||||||||||||
Full stomach (g) | 362.6 | 337.3 | 344.2 | 384.7 | 313.8 | 547.8 | 522.6 | 529.4 | 569.9 | 499.0 | 41.06 | 0.305 | 0.002 |
Empty stomach (g) | 75.5 a | 71.7 a,b | 68.9 a,b | 73.8 a | 63.7 b | 115.1 a | 111.3 a,b | 108.5 a,b | 113.4 a | 103.2 b | 4.73 | 0.019 | <0.001 |
Full small intestine (g) | 664.9 a | 655.6 a | 676.2 a | 646.5 a | 495.8 b | 1166.2 a | 1157.0 a | 1177.6 a | 1147.9 a | 997.2 b | 47.60 | <0.001 | <0.001 |
Empty small intestine (g) | 408.7 a | 396.9 a | 417.0 a | 395.6 a | 320.0 b | 730.7 a | 719.6 a | 739.6 a | 718.2 a | 642.6 b | 27.88 | 0.003 | <0.001 |
Full colon (g) | 379.2 a | 347.4 a | 334.1 | 343.9 a | 264.1 b | 651.6 a | 619.8 a | 606.5 | 616.4 a | 536.4 b | 26.36 | 0.002 | <0.001 |
Empty colon (g) | 148.6 a | 140.3 a,b | 137.7 a,b | 138.9 a,b | 119.5 b | 248.6 a | 240.3 a,b | 237.7 a,b | 238.9 a,b | 219.5 b | 7.61 | 0.025 | <0.001 |
Small intestine length (m) | 9.74 | 9.63 | 9.96 | 9.74 | 9.38 | 11.29 | 11.19 | 11.51 | 11.29 | 10.93 | 0.436 | 0.247 | 0.015 |
Relative organ weight (%) | |||||||||||||
Full stomach | 4.03 | 4.01 | 3.93 | 4.53 | 4.06 | 3.98 | 3.95 | 3.89 | 4.48 | 4.00 | 0.260 | 0.232 | 0.824 |
Empty stomach | 0.85 a,b | 0.85 a,b | 0.79 a | 0.87b | 0.83 a,b | 0.86 a,b | 0.86 a,b | 0.80 a | 0.89 b | 0.84 a,b | 0.026 | 0.016 | 0.662 |
Full small intestine | 7.36 a,b | 7.75 a | 7.50 a | 7.67 a | 6.76 b | 8.59 a,b | 8.98 a | 8.73 a | 8.89 a | 7.99 b | 0.262 | 0.005 | <0.001 |
Empty small intestine | 4.48 a,b | 4.73 a | 4.64 a,b | 4.70 a | 4.31 b | 5.34 a,b | 5.59 a | 5.50 a,b | 5.57 a | 5.17 b | 0.155 | 0.029 | <0.001 |
Full colon | 4.13 | 4.13 | 3.84 | 4.16 | 3.56 | 4.83 | 4.83 | 4.54 | 4.86 a | 4.25 b | 0.192 | 0.023 | 0.002 |
Empty colon | 1.64 | 1.68 | 1.57 | 1.67 | 1.58 | 1.83 | 1.88 | 1.77 | 1.87 | 1.77 | 0.055 | 0.166 | 0.004 |
Small intestine length | 1.13 | 1.16 | 1.14 | 1.18 | 1.19 | 0.83 | 0.87 | 0.85 | 0.89 | 0.90 | 0.031 | 0.193 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynegaard, J.C.; Kjeldsen, N.J.; Hansen, C.F.; Williams, A.R.; Nielsen, J.P.; Amdi, C. Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning. Animals 2022, 12, 989. https://doi.org/10.3390/ani12080989
Lynegaard JC, Kjeldsen NJ, Hansen CF, Williams AR, Nielsen JP, Amdi C. Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning. Animals. 2022; 12(8):989. https://doi.org/10.3390/ani12080989
Chicago/Turabian StyleLynegaard, Julie C., Niels J. Kjeldsen, Christian F. Hansen, Andrew R. Williams, Jens Peter Nielsen, and Charlotte Amdi. 2022. "Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning" Animals 12, no. 8: 989. https://doi.org/10.3390/ani12080989
APA StyleLynegaard, J. C., Kjeldsen, N. J., Hansen, C. F., Williams, A. R., Nielsen, J. P., & Amdi, C. (2022). Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning. Animals, 12(8), 989. https://doi.org/10.3390/ani12080989