Postmortem Electrical Conductivity Changes of Dicentrarchus labrax Skeletal Muscle: Root Mean Square (RMS) Parameter in Estimating Time since Death
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Experimental Procedures
2.2. Hematological Analyses and Electrolytes Measurements
2.3. Experimental Animal Groups
2.4. Experimental Setup and Measurements
2.5. Statistical Tools
3. Results
3.1. Study Population and Blood Parameters
- Group I (Troom = 25.0 °C): specimens #1–6; Body weight: 134.89 ± 12.59 g; length: 26.50 ± 4.72 cm);
- Group II (Troom = 20.0 °C): specimens #7–12; Body weight: 130.05 ± 11.13 g; length: 21.40 ± 3.51 cm;
- Group III (Troom = 15.0 °C): specimens #13–18; Body weight: 133.34 ± 12.27 g; length: 21.10 ± 3.49 cm).
3.2. Experimental Data: Muscular Electrical Conductivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, J.W. Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval. Vet. Pathol. 2016, 53, 929–940. [Google Scholar] [CrossRef]
- Munro, R.; Munro, H.M.C. Some Challenges in Forensic Veterinary Pathology: A Review. J. Comp. Pathol. 2013, 149, 57–73. [Google Scholar] [CrossRef]
- Proctor, K.W.; Kelch, W.J.; New, J.C. Estimating the Time of Death in Domestic Canines. J. Forensic Sci. 2009, 54, 1433–1437. [Google Scholar] [CrossRef]
- Perper, J. Time of death and changes after death. In Medicolegal Investigation of Death: Guidelines for the Application of Pathology to Crime Investigation, 4th ed.; Spitz, W.U., Spitz, D.J., Eds.; Charles C. Thomas: Springfield, IL, USA, 2006; pp. 87–183. [Google Scholar]
- Hubig, M.; Muggenthaler, H.; Sinicina, I.; Mall, G. Temperature Based Forensic Death Time Estimation: The Standard Model in Experimental Test. Leg. Med. 2015, 17, 381–387. [Google Scholar] [CrossRef]
- Muggenthaler, H.; Sinicina, I.; Hubig, M.; Mall, G. Database of Post-Mortem Rectal Cooling Cases under Strictly Controlled Conditions: A Useful Tool in Death Time Estimation. Int. J. Legal. Med. 2012, 126, 79–87. [Google Scholar] [CrossRef]
- Kaliszan, M.; Hauser, R.; Kaliszan, R.; Wiczling, P.; Buczyñski, J.; Penkowski, M. Verification of the Exponential Model of Body Temperature Decrease after Death in Pigs. Exp. Physiol. 2005, 90, 727–738. [Google Scholar] [CrossRef]
- Baccino, E.; De Saint Martin, L.; Schuliar, Y.; Guilloteau, P.; Le Rhun, M.; Morin, J.F.; Leglise, D.; Amice, J. Outer Ear Temperature and Time of Death. Forensic Sci. Int. 1996, 83, 133–146. [Google Scholar] [CrossRef]
- Donaldson, A.E.; Lamont, I.L. Biochemistry Changes That Occur after Death: Potential Markers for Determining Post-Mortem Interval. PLoS ONE 2013, 8, e82011. [Google Scholar] [CrossRef] [Green Version]
- Sampaio-Silva, F.; Magalhães, T.; Carvalho, F.; Dinis-Oliveira, R.J.; Silvestre, R. Profiling of RNA Degradation for Estimation of Post Morterm Interval. PLoS ONE 2013, 8, e56507. [Google Scholar] [CrossRef]
- Poloz, Y.O.; O’Day, D.H. Determining Time of Death: Temperature-Dependent Postmortem Changes in Calcineurin A, MARCKS, CaMKII, and Protein Phosphatase 2A in Mouse. Int. J. Legal. Med. 2009, 123, 305–314. [Google Scholar] [CrossRef]
- El-Harouny, M.; El-Dakroory, S.; Attalla, S.; Hasan, N.; Hassab El-Nabi, S. The relationship between postmortem interval and DNA degradation in different tissues of drowned rats. Int. J. Forensic Sci. 2008, 16, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Sabucedo, A.J.; Furton, K.G. Estimation of Postmortem Interval Using the Protein Marker Cardiac Troponin I. Forensic Sci. Int. 2003, 134, 11–16. [Google Scholar] [CrossRef]
- Fountoulakis, M.; Hardmeier, R.; Höger, H.; Lubec, G. Postmortem Changes in the Level of Brain Proteins. Exp. Neurol. 2001, 167, 86–94. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.; Zhang, Y.; Li, G.; Liang, Q. Estimating freshness of carp based on EIS morphological characteristic. J. Food Eng. 2017, 193, 58–67. [Google Scholar] [CrossRef]
- Zhang, H.; Taxipalati, M.; Que, F.; Feng, F. Microstructure Characterization of a Food-Grade U-Type Microemulsion System by Differential Scanning Calorimetry and Electrical Conductivity Techniques. Food Chem. 2013, 141, 3050–3055. [Google Scholar] [CrossRef]
- Fosgate, G.T.; Petzer, I.M.; Karzis, J. Sensitivity and Specificity of a Hand-Held Milk Electrical Conductivity Meter Compared to the California Mastitis Test for Mastitis in Dairy Cattle. Vet. J. 2013, 196, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Schaupp, L.; Feichtner, F.; Schaller-Ammann, R.; Mautner, S.; Ellmerer, M.; Pieber, T.R. Recirculation—A Novel Approach to Quantify Interstitial Analytes in Living Tissue by Combining a Sensor with Open-Flow Microperfusion. Anal. Bioanal. Chem. 2014, 406, 549–554. [Google Scholar] [CrossRef]
- Grychtol, B.; Adler, A. Choice of Reconstructed Tissue Properties Affects Interpretation of Lung EIT Images. Physiol. Meas. 2014, 35, 1035–1050. [Google Scholar] [CrossRef] [Green Version]
- Pringle, J.K.; Jervis, J.R.; Hansen, J.D.; Jones, G.M.; Cassidy, N.J.; Cassella, J.P. Geophysical Monitoring of Simulated Clandestine Graves Using Electrical and Ground-Penetrating Radar Methods: 0-3 Years after Burial. J. Forensic Sci. 2012, 57, 1467–1486. [Google Scholar] [CrossRef] [Green Version]
- Praveena, S.M.; Siraj, S.S.; Aris, A.Z.; Al-Bakri, N.M.; Suleiman, A.K.; Zainal, A.A. Assessment of Tidal and Anthropogenic Impacts on Coastal Waters by Exploratory Data Analysis: An Example from Port Dickson, Strait of Malacca, Malaysia. Environ. Forensics 2013, 14, 146–154. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Zhai, X.D.; Liu, B.B.; Zheng, Z.; Zhao, L.L.; Mo, Y.N. Relationship between Electrical Conductivity and Decomposition Rate of Rat Postmortem Skeletal Muscle. J. Forensic Med. 2017, 33, 17–20. [Google Scholar]
- Xia, Z.; Zhai, X.; Liu, B.; Mo, Y. Conductometric titration to determine total volatile basic nitrogen (TVB-N) for post-mortem interval (PMI). J. Forensic Leg. Med. 2016, 44, 133–137. [Google Scholar] [CrossRef]
- Xia, Z.; Zhai, X.; Liu, B.; Mo, Y. Determination of Electrical Conductivity of Cadaver Skeletal Muscle: A promising method for the estimation of late postmortem interval. J. Sci. Med. 2015, 1, 16–20. [Google Scholar]
- Mao, S.; Dong, X.; Fu, F.; Seese, R.R.; Wang, Z. Estimation of Postmortem Interval Using an Electric Impedance Spectroscopy Technique: A Preliminary Study. Sci. Justice 2011, 51, 135–138. [Google Scholar] [CrossRef]
- Miklavčič, D.; Pavšelj, N.; Hart, F.X. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering; Akay, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; p. ebs0403. ISBN 9780471740360. [Google Scholar]
- Querido, D. Temperature-correction of abdominal impedance: Improved relationship between impedance and postmortem interval. Forensic Sci. Int. 2000, 109, 39–50. [Google Scholar] [CrossRef]
- Querido, D. A preliminary study of changes in scalp impedance during the early post-mortem period in rats. Forensic Sci. Int. 1999, 101, 123–130. [Google Scholar] [CrossRef]
- Querido, D. A preliminary investigation into postmortem changes in skinfold impedance during the early postmortem period in rats. Forensic Sci. Int. 1998, 96, 107–114. [Google Scholar] [CrossRef]
- Querido, D.; Phillips, M.R.B. Transcellular and extracellular impedances of the intact abdomen in putrefying rat cadavers. Forensic Sci. Int. 1997, 90, 185–195. [Google Scholar] [CrossRef]
- Martinsen, Ø.G.; Grimnes, S.; Mirtaheri, P. Non-invasive measurements of post-mortem changes in dielectric properties of haddock muscle–A pilot study. J. Food Eng. 2000, 43, 189–192. [Google Scholar] [CrossRef]
- Fazio, F.; Ferrantelli, V.; Piccione, G.; Saoca, C.; Levanti, M.; Mucciardi, M. Biochemical and Hematological Parameters in European Sea Bass (Dicentrarchus labrax Linnaeus, 1758) and Gilthead Sea Bream (Sparus aurata Linnaeus, 1758) in Relation to Temperature. Vet. Arh. 2018, 88, 397–411. [Google Scholar] [CrossRef]
- Fazio, F.; Marafioti, S.; Filiciotto, F.; Buscaino, G.; Panzera, M.; Faggio, C. Blood hemogram profiles of farmed onshore and offshore gilthead sea bream (Sparus aurata) from Sicily, Italy. Turk. J. Fish. Aquat. Sci. 2013, 13, 415–422. [Google Scholar] [CrossRef]
- Fazio, F.; Filiciotto, F.; Marafioti, S.; Di Stefano, V.; Assenza, A.; Placenti, F.; Buscaino, G.; Piccione, G.; Mazzola, S. Automatic Analysis to Assess Haematological Parameters in Farmed Gilthead Sea Bream (Sparus aurata Linnaeus, 1758). Mar. Freshw. Behav. Physiol. 2012, 45, 63–73. [Google Scholar] [CrossRef]
- Gersing, E. Impedance spectroscopy of the heart during ischemia. In Thoracic Impedance Measurements in Clinical Cardiology; Winter, U.J., Klocke, R.K., Kubicek, W.G., Niederlag, W., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 1994; pp. 222–228. [Google Scholar]
- Schäfer, M.; Schlegel, C.; Kirlum, H.J.; Gersing, E.; Gebhard, M.M. Monitoring of damage to skeletal muscle tissue caused by ischemia. Bioelectrochemistry Bioenerg. 1998, 45, 151–155. [Google Scholar] [CrossRef]
- Le, T.T.; Nguyen, H.T.; Pham, M.A. Rigor mortis development and effects of filleting conditions on the quality of Tra catfish (Pangasius hypophthalmus) fillets. J. Food Sci. Technol. 2020, 57, 1320–1330. [Google Scholar] [CrossRef]
- Sorensen, N.K.; Brataas, R.; Nyvold, T.E.; Lauritzen, K. Influence of early processing (pre-rigor) on fish quality. In Seafood from Producer to Consumer, Integrated Approach to Quality; Luten, J.B., Borresen, T., Oehlenschlager, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 253–263. [Google Scholar]
- Ostenfeld, T.; Thomsen, S.; Ingolfdottir, S.; Ronsholdt, B.; McLean, E. Evaluation of the effect of live haulage on metabolites and fillet texture of rainbow-trout (Oncorhynchus mykiss). Water Sci. Technol. 1995, 31, 233–237. [Google Scholar] [CrossRef]
- Roth, B.; Slinde, E.; Arildsen, J. Pre or post mortem muscle activity in Atlantic salmon (Salmo salar). The effect on rigor mortis and the physical properties of flesh. Aquaculture 2006, 257, 504–510. [Google Scholar] [CrossRef]
- Roth, B.; Birkeland, S.; Oyarzun, F. Stunning pre-slaughter and filleting conditions of Atlantic salmon and subsequent effect on flesh quality on fresh and smoked fillets. Aquaculture 2009, 289, 350–356. [Google Scholar] [CrossRef]
- Bjørnevik, M.; Solbakken, V. Preslaughter Stress and Subsequent Effect on Flesh Quality in Farmed Cod. Aquac. Res. 2010, 41, e467–e474. [Google Scholar] [CrossRef]
- Haque, M.E.; Kamal, M.; Ahmed, K.; Faruk, M.A.R.; Khan, M.N.A. Postmortem changes in hilsa fish-I. Studies on rigor-mortis, typical yields and protein composition of dark and white muscle of hilsa fish (Tenualosa ilisha Ham.). Bangladesh J. Fish Res. 1997, 1, 91–99. [Google Scholar]
- Cantürk, İ.; Karabiber, F.; Çelik, S.; Şahin, M.F.; Yağmur, F.; Kara, S. An Experimental Evaluation of Electrical Skin Conductivity Changes in Postmortem Interval and Its Assessment for Time of Death Estimation. Comput. Biol. Med. 2016, 69, 92–96. [Google Scholar] [CrossRef]
- Ocano-Higuera, V.M.; Maeda-Martinez, A.N.; Lugo-Sanchez, M.E.; Pacheco-Aguilar, R. Postmortem Biochemical and Textural Changes In The Adductor Muscle Of Catarina Scallop Stored At 0 °C. J. Food Biochem. 2006, 30, 373–389. [Google Scholar] [CrossRef]
- Tavichakorntrakool, R.; Prasongwattana, V.; Sriboonlue, P.; Puapairoj, A.; Pongskul, J.; Khuntikeo, N.; Hanpanich, W.; Yenchitsomanus, P.; Wongkham, C.; Thongboonkerd, V. Serial Analyses of Postmortem Changes in Human Skeletal Muscle: A Case Study of Alterations in Proteome Profile, Histology, Electrolyte Contents, Water Composition, and Enzyme Activity. Prot. Clin. Appl. 2008, 2, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Wendelaar Bonga, S.E.; Pang, P.K. Control of Calcium Regulating Hormones in the Vertebrates: Parathyroid Hormone, Calcitonin, Prolactin, and Stanniocalcin. Int. Rev. Cytol. 1991, 128, 139–213. [Google Scholar] [CrossRef]
- Hambleton, J.; Hodgkinson, A. Post-mortem changes in blood electrolytes with particular reference to calcium. Proc. Assoc. Clin. Biochem. 1968, 5, 77. [Google Scholar] [CrossRef]
- George, G.O.; Ajayi, O.B. Investigation of electrolyte changes in bovine vitreous at different postmortem interval. J. Clin. Exp. Ophthalmol. 2016, 7, 5. [Google Scholar] [CrossRef] [Green Version]
WBC (103/μL) | Rbc (106/μL) | Hgb (g/dL) | Hct (%) | MCV (fL) | MCH (pg) | MCHC (%) | TC (103/μL) | Calcium (mg/dL) | Sodium (mmol/L) | Potassium (mmol/L) | Chloride (mmol/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD Group I (25 °C) | 14.57 ± 1.88 | 2.61 ± 0.53 | 7.18 ± 1.31 | 30.22 ± 6.87 | 116.70 ± 16.99 | 27.90 ± 3.48 | 24.04 ± 2.1 | 56.23 ± 13.54 | 13.12 ± 1.87 | 187.67 ± 14.02 | 4.83 ± 1.97 | 156.18 ± 11.79 |
Mean ± SD Group II (20 °C) | 14.83 ± 0.75 | 2.92 ± 0.26 | 6.77 ± 0.95 | 28.58 ± 1.49 | 115.51 ± 10.62 | 27.60 ± 2.16 | 24.52 ± 1.50 | 54.60 ± 9.03 | 12.17 ± 1.94 | 191.5 ± 14.36 | 5.3 ± 1.35 | 162.35 ± 6.19 |
Mean ± SD Group III (15 °C) | 15.41 ± 0.70 | 2.68 ± 0.40 | 6.86 ± 0.46 | 29.24 ± 2.93 | 118.91 ± 9.48 | 27.74 ± 1.02 | 23.93 ± 1.16 | 55.69 ± 8.87 | 12.65 ± 3.01 | 186.7 ± 9.40 | 3.67 ± 1.54 | 158.33 ± 10.31 |
Tukey’s Multiple Comparisons Test | Mean Diff. | 95.00% CI of Diff. | Significant? | Adjusted p Value |
---|---|---|---|---|
tMAX 25 vs. tMAX 20 | −3.233 | −4.710 to −1.757 | Yes | 0.002 |
tMAX 25 vs. tMAX 15 | −6.995 | −8.153 to −5.837 | Yes | <0.0001 |
tMAX 20 vs. tMAX 15 | −3.762 | −5.306 to −2.217 | Yes | 0.0012 |
Specimen | gender | Troom [°C] | tMAX [h] | ΔV [V] | Area [V⋅h] |
---|---|---|---|---|---|
1 | M | 25 | 6.84 | 0.23 | 2.43 |
2 | F | 25 | 5.80 | 0.20 | 2.68 |
3 | M | 25 | 5.67 | 0.15 | 1.83 |
4 | M | 25 | 7.49 | 0.22 | 2.38 |
5 | M | 25 | 6.03 | 0.16 | 2.20 |
6 | M | 25 | 6.52 | 0.22 | 2.26 |
7 | M | 20 | 9.27 | 0.23 | 2.59 |
8 | M | 20 | 9.28 | 0.24 | 3.06 |
9 | M | 20 | 10.80 | 0.39 | 6.05 |
10 | F | 20 | 10.82 | 0.38 | 5.90 |
11 | M | 20 | 9.19 | 0.22 | 2.44 |
12 | M | 20 | 8.39 | 0.18 | 2.91 |
13 | M | 15 | 12.80 | 0.28 | 4.93 |
14 | M | 15 | 13.30 | 0.19 | 3.37 |
15 | F | 15 | 13.50 | 0.28 | 4.88 |
16 | M | 15 | 13.32 | 0.27 | 4.79 |
17 | M | 15 | 13.30 | 0.18 | 3.18 |
18 | F | 15 | 14.10 | 0.50 | 9.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbate, J.M.; Grifò, G.; Capparucci, F.; Arfuso, F.; Savoca, S.; Cicero, L.; Consolo, G.; Lanteri, G. Postmortem Electrical Conductivity Changes of Dicentrarchus labrax Skeletal Muscle: Root Mean Square (RMS) Parameter in Estimating Time since Death. Animals 2022, 12, 1062. https://doi.org/10.3390/ani12091062
Abbate JM, Grifò G, Capparucci F, Arfuso F, Savoca S, Cicero L, Consolo G, Lanteri G. Postmortem Electrical Conductivity Changes of Dicentrarchus labrax Skeletal Muscle: Root Mean Square (RMS) Parameter in Estimating Time since Death. Animals. 2022; 12(9):1062. https://doi.org/10.3390/ani12091062
Chicago/Turabian StyleAbbate, Jessica Maria, Gabriele Grifò, Fabiano Capparucci, Francesca Arfuso, Serena Savoca, Luca Cicero, Giancarlo Consolo, and Giovanni Lanteri. 2022. "Postmortem Electrical Conductivity Changes of Dicentrarchus labrax Skeletal Muscle: Root Mean Square (RMS) Parameter in Estimating Time since Death" Animals 12, no. 9: 1062. https://doi.org/10.3390/ani12091062
APA StyleAbbate, J. M., Grifò, G., Capparucci, F., Arfuso, F., Savoca, S., Cicero, L., Consolo, G., & Lanteri, G. (2022). Postmortem Electrical Conductivity Changes of Dicentrarchus labrax Skeletal Muscle: Root Mean Square (RMS) Parameter in Estimating Time since Death. Animals, 12(9), 1062. https://doi.org/10.3390/ani12091062