Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates
Abstract
:Simple Summary
Abstract
1. Introduction: Vaccine and Diagnostic Strategies in Toxoplasmosis
2. Toxoplasma Life Cycle Stages Proteome and Proteomics
3. Vaccine and Diagnostic Proteins Identified in the Proteome of T. Gondii Developmental Stages
3.1. Actin Depolymerizing Factor (ADF)
3.2. Nucleoside-Triphosphatases (NTPases)
3.3. GRAs
3.4. SAG1
3.5. Triose-Phosphate Isomerase (TPI)
3.6. Protein Disulfide Isomerase (PDI)
3.7. MICs
3.8. ROPs
3.9. Heat Shock Proteins (HSP20 and HSP70)
3.10. Toxofilin, Coronin and Peroxiredoxin (Prx)
3.11. Apical Membrane Antigens (AMAs)
3.12. Protein Phosphatase 2C (PP2C) and Altered Thrombospondin Repeat Domain (SPATR)
3.13. Myc-Regulating Protein 1 (MYR1)
3.14. Embryogenesis-Related Protein (ERP)
4. Perspectives with Proteins Expressed in other Structures of T. Gondii
5. Immune Response-Based Candidates for Disease Management
Proteins | Vaccine/Diagnostics Utility | Vaccine/Diagnostics Efficacy | References |
---|---|---|---|
GRA4 | Edible vaccine | Eliciting both mucosal (the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells) and systemic (in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes) immune responses | [77] |
GRA5 | Diagnostic tool | Specificity: 93%, sensitivity: 96% | [78] |
GRA6 | DNA vaccine ADJ with LMS | High levels of anti-GRA6 IgG and splenocyte proliferation | [80] |
GRA7 | Live-attenuated vaccine ADJ with profilin | Enhancing expression of CD80 and CD86 in BMDCs and secretion of IL-6, IL-10 and IL-12 Eliciting a Th1-biased immunity through the induction of lymphocyte proliferation, activation of CD4+ T cells and increased IFN-γ production | [82] |
GRA9 | Live-attenuated vaccine | Inducing high levels of IFN-γ, IL-12, and IgG1/IgG2a levels (100% protection) | [81] |
GRA14 | DNA and Recombinant vaccine ADJ with CaPNs | Increasing antibody titers (increased levels of total IgG and IgG2a) and concentration of IFN-γ (a Th1 type response) | [86] |
GRA1 + GRA7 + ROP2 | DNA vaccine | Inducing Th1 response (a high ratio of specific IG2a to IgG1), increasing survival rate from 50% to at least 90%, decreasing the number of brain cysts | [76] |
GRA1 + GRA4 + GRA6 + GRA7 | DNA vaccine formulated into liposomes | GRA7: Inducing anti-GRA7 IgG2 and IFN-γ (Th1-like immune response), GRA1, GRA4 and GRA6: stimulating a IgG1 type antibody response with a limited IFN-γ response | [79] |
SAG1 | Recombinant SAG1 vaccine (encapsulated in PLGA nanosphere) | Eliciting elevated humoral responses of specific IgA and IgG2a | [89] |
rSAG1 (diagnostic tool) | Sensitivity and specificity of 98.5% and 100%, respectively | [92] | |
SAG1 + apicoplast ribosomal proteins + human TLR-4 | Multi-epitope vaccine | Inducing humoral (T- and B-cell mediated responses) and cellular (high levels of IFN-γ) immune responses | [91] |
SAG1 + GRA7 + ROP1 | Diagnostic tool | Sensitivity and specificity (undetermined) | [93] |
SAG1 + ROP2 + GRA1 + GRA4+ MIC3 | A synthetic multiepitope antigen (diagnostic tool) | Specificity: 88.6% and sensitivity 79.1% | [94] |
ROP1 | DNA and Recombinant vaccine | Inducing high IFN-γ level but low IL-4 level in the immunized mice | [115] |
ROP4 | Recombinant vaccine | Inducing specific production of IFN-γ as well as IL-2, the Th1-type cytokines, reducing brain cysts number approximately 46% in the rROP4-vaccinated mice) | [117] |
ROP5 + ROP18 | Cocktail DNA vaccine | High specific IgG2a titers, Th1 responses correlated with the production of IFN-γ, IL-2, IL-12, and cell-mediated activity with higher frequencies of CD8+ and CD4+ T cells | [122] |
ROP8 | DNA vaccine ADJ with IL-12 | Increasing the level of anti-Toxoplasma antibodies (IgG total and IgG2a), Th1-type cellular immune responses (IFN-γ and IL-4), lymphocyte proliferation, and also prolonged survival time in the immunized mice | [120] |
Diagnostic tool (using Western blotting technique) | In early acute (sensitivity 90%), acute (sensitivity 92%), and chronic toxoplasmosis (sensitivity 82%) (specificity 94% for all stages) | [161] | |
ROP1 + GRA7 | Multi-antigenic DNA vaccine ADJ with IL-12 | Increasing serum IgG2a titers, production of IFN-γ, IL-10, and TNF-α (increasing survival (50%) and decreasing cyst burdens (89%) in the brain of vaccinated mice) | [116] |
ROP18, MIC6, in combination with PF, ROP16, and CDPK3 | Cocktail DNA vaccine | Eliciting a mixed Th1/Th2 response, with a slightly elevated IgG2a to IgG1 ratio, the enhanced production of proinflammatory cytokines IL-2, IL-12 and IFN-γ, reduction in the parasite cyst burden (80.22%) | [17] |
ROP18 encapsulated in PLG | Recombinant vaccine | Inducing Th1-biased immune responses, with enhanced specific antibodies and T cells, high levels of INF-γ and IL-2, and strong lymphocyte proliferative responses | [123] |
MIC1-MAG1 | Diagnostic tool | Sensitivity: 90.8%, specificity: 100% | [100] |
MIC2 | Live-attenuated vaccine (MIC2-deficient) | Increasing survival of vaccinated mice correlated with lower parasite burden in infected tissues, decreasing inflammatory immune response, and induction of long-term protective immunity | [101] |
MIC3 | DNA vaccine ADJ with IL12 | Increasing the level of IFN-γ | [104] |
MIC1-3 | Live-attenuated vaccine | Inducing humoral and cellular Th1 response, >96% reduction in cysts in brain tissue | [105] |
MIC5/MIC16 | Cocktail DNA vaccine | Enhanced levels of IgG, IFN-γ, IL-2, IL-12p70, and IL-12p40 and CD4+ and CD8+ T cells, and prolonged mice survival time and decreased brain cysts (48.06%) | [108] |
AMA-1 | Diagnostic tool (ELISA) | Reacting with specific anti-Toxoplasma IgG (sensitivity: 99.4%) and IgM (sensitivity: 80.0%) | [133] |
Recombinant epitope vaccine | Inducing Th1/Th2 cytokines, the production of IgG1/IgG2a, increasing survival and partial protection against parasite-cyst formation | [132] | |
ADF | Recombinant vaccine | The increased levels of IgG, IL-2 and IFN-γ, increasing survival rate (36.36%) and decreasing tachyzoite load in the liver (67.77%) and brain (51.01%) | [74] |
NTPase-II | RNA vaccine | Inducing IgG and IFN-γ, prolonged survival time, reducing parasite load in the brain (46.4% and 62.1% in acute and chronic infections, respectively) | [75] |
HSP70 | Recombinant vaccine ADJ with alum | Reducing inflammation in the brain and anti-rHSP70 immune complexes in serum, inducing iNOS expression and decreasing brain parasitism | [127] |
Toxofilin | DNA vaccine ADJ with alum-MPLA | Changing Th2 to a Th1 response and provoking the humoral and Th1 responses, inducing survival time and decreasing cyst ratio | [128] |
SPATR | DNA vaccine | Activating humoral and mixed Th1/Th2 cellular responses (inducing IFN-γ, IL-2, IL-4, and IL-10) | [135] |
PP2C | DNA vaccine | The increased levels of IgG2a (a predominantly Th1 immune response) and cytokines (IFN-γ) | [67] |
PDI | Recombinant vaccine | Inducing higher levels of IFN-γ, IgG2a, IL-2, and IL-4 | [72] |
MYR1 | DNA vaccine | Increasing significant levels of Th1 and mixed Th1/Th2 cytokines | [70] |
ERP | Diagnostic tool (ELISA) | Specificity: 93.33%, sensitivity: 93.94% | [138] |
Prx | Diagnostic tool (Dot-IGSS) | Sensitivity 97.5% and specificity 100% | [130] |
Recombinant vaccine | Triggering IL-12p40 and IL-6, the activation of NF-κB, eliciting specific antibodies (IgG1 and IgG2c) | [131] |
6. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dubey, J.P. The history and life cycle of Toxoplasma gondii. In Toxoplasma gondii, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–19. [Google Scholar]
- Furtado, J.M.; Smith, J.R.; Belfort, R., Jr.; Gattey, D.; Winthrop, K.L. Toxoplasmosis: A global threat. J. Glob. Infect. Dis. 2011, 3, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Elsheikha, H.M.; Marra, C.M.; Zhu, X.-Q. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis. Clin. Microbiol. Rev. 2021, 34, e00115-19. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.; Murata, F.; Cerqueira-Cézar, C.; Kwok, O.; Yang, Y. Public Health Significance of Toxoplasma gondii Infections in Cattle: 2009–2020. J. Parasitol. 2020, 106, 772–788. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Congenital toxoplasmosis: Clinical features, outcomes, treatment, and prevention. Trop. Parasitol. 2016, 6, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-D.; Liu, H.-H.; Ma, Z.-X.; Ma, H.-Y.; Li, Z.-Y.; Yang, Z.-B.; Zhu, X.-Q.; Xu, B.; Wei, F.; Liu, Q. Toxoplasma gondii infection in immunocompromised patients: A systematic review and meta-analysis. Front. Microbiol. 2017, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-X.; Xin, H.; Zhang, X.-Y.; Wei, C.-Y.; Duan, Y.-H.; Wang, H.-F.; Niu, H.-T. Toxoplasma gondii infection in diabetes mellitus patients in China: Seroprevalence, risk factors, and case-control studies. Biomed Res. Int. 2018, 2018, 4723739. [Google Scholar] [CrossRef]
- Liu, Q.; Singla, L.D.; Zhou, H. Vaccines against Toxoplasma gondii: Status, challenges and future directions. Hum. Vaccin. Immunother. 2012, 8, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Bannantine, J.P.; Hines, M.E.; Bermudez, L.E.; Talaat, A.M.; Sreevatsan, S.; Stabel, J.R.; Chang, Y.-F.; Coussens, P.M.; Barletta, R.G.; Davis, W.C. A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front. Cell. Infect. Microbiol. 2014, 4, 126. [Google Scholar] [CrossRef]
- Solana, J.C.; Moreno, J.; Iborra, S.; Soto, M.; Requena, J.M. Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol. 2021, 38, 316–334. [Google Scholar] [CrossRef]
- Chu, K.-B.; Quan, F.-S. Advances in Toxoplasma gondii Vaccines: Current Strategies and Challenges for Vaccine Development. Vaccines 2021, 9, 413. [Google Scholar] [CrossRef]
- Yang, W.-B.; Wang, J.-L.; Gui, Q.; Zou, Y.; Chen, K.; Liu, Q.; Liang, Q.-L.; Zhu, X.-Q.; Zhou, D.-H. Immunization with a Live-attenuated RH: ΔNPT1 strain of Toxoplasma gondii induces strong protective immunity against Toxoplasmosis in mice. Front. Microbiol. 2019, 10, 1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-Y.; Chen, K.; Wang, J.-L.; Yang, B.; Zhu, X.-Q. Evaluation of protective immunity induced by recombinant calcium-dependent protein kinase 1 (TgCDPK1) protein against acute toxoplasmosis in mice. Microb. Pathog. 2019, 133, 103560. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, J.-L.; Huang, S.-Y.; Yang, W.-B.; Zhu, W.-N.; Zhu, X.-Q. Immune responses and protection after DNA vaccination against Toxoplasma gondii calcium-dependent protein kinase 2 (TgCDPK2). Parasite 2017, 24, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; An, R.; Chen, Y.; Chen, T.; Wen, H.; Yan, Q.; Shen, J.; Chen, L.; Du, J. Vaccination with recombinant Toxoplasma gondii CDPK3 induces protective immunity against experimental toxoplasmosis. Acta Trop. 2019, 199, 105148. [Google Scholar] [CrossRef]
- Wang, J.-L.; Li, T.-T.; Elsheikha, H.M.; Chen, K.; Cong, W.; Yang, W.-B.; Bai, M.-J.; Huang, S.-Y.; Zhu, X.-Q. Live Attenuated Pru: Δ cdpk2 Strain of Toxoplasma gondii Protects Against Acute, Chronic, and Congenital Toxoplasmosis. J. Infect. Dis. 2018, 218, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.-Z.; Gao, Q.; Wang, M.; Elsheikha, H.M.; Wang, B.; Wang, J.-L.; Zhang, F.-K.; Hu, L.-Y.; Zhu, X.-Q. Immunization with a DNA vaccine cocktail encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes protects mice against chronic toxoplasmosis. Front. Immunol. 2018, 9, 1505. [Google Scholar] [CrossRef] [Green Version]
- Taghipour, A.; Tavakoli, S.; Sabaghan, M.; Foroutan, M.; Majidiani, H.; Soltani, S.; Badri, M.; Ghaffari, A.D.; Soltani, S. Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for Toxoplasma gondii Vaccine. J. Parasitol. Res. 2021, 2021, 9974509. [Google Scholar] [CrossRef]
- Foroutan, M.; Ghaffari, A.D.; Soltani, S.; Majidiani, H.; Taghipour, A.; Sabaghan, M. Bioinformatics analysis of calcium-dependent protein kinase 4 (CDPK4) as Toxoplasma gondii vaccine target. BMC Res. Notes 2021, 14, 50. [Google Scholar] [CrossRef]
- Ybañez, R.H.D.; Ybañez, A.P.; Nishikawa, Y. Review on the current trends of toxoplasmosis serodiagnosis in humans. Front. Cell. Infect. Microbiol. 2020, 10, 204. [Google Scholar] [CrossRef]
- Sokol-Borrelli, S.L.; Coombs, R.S.; Boyle, J.P. A Comparison of Stage Conversion in the Coccidian Apicomplexans Toxoplasma gondii, Hammondia hammondi, and Neospora caninum. Front. Cell. Infect. Microbiol. 2020, 10, 760. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Zhou, C.-X.; Elsheikha, H.M.; He, S.; Zhou, D.-H.; Zhu, X.-Q. Proteomic differences between developmental stages of Toxoplasma gondii revealed by iTRAQ-based quantitative proteomics. Front. Microbiol. 2017, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Sarvi, S.; Sharif, M.; Hejazi, S.H.; sattar Pagheh, A.; Aghayan, S.A.; Daryani, A. A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb. Pathog. 2019, 126, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Gedik, Y.; İz, S.G.; Can, H.; Döşkaya, A.D.; Gürhan, S.İ.D.; Gürüz, Y.; Döşkaya, M. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model. Trials Vaccinol. 2016, 5, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Flores, C.J.; Cruz-Mirón, R.; Mondragón-Castelán, M.E.; González-Pozos, S.; Ríos-Castro, E.; Mondragón-Flores, R. Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii. J. Proteomics 2019, 208, 103490. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, L.; Zhang, R.; Ge, K.; Guo, H.; Liu, X.; Liu, J.; Kong, D.; Wang, Y. Identification of a TNF-α inducer MIC3 originating from the microneme of non-cystogenic, virulent Toxoplasma gondii. Sci. Rep. 2016, 6, 39407. [Google Scholar] [CrossRef]
- Stryiński, R.; Łopieńska-Biernat, E.; Carrera, M. Proteomic insights into the biology of the most important foodborne parasites in Europe. Foods 2020, 9, 1403. [Google Scholar] [CrossRef]
- Mansouri, R.; Ali-Hassanzadeh, M.; Shafiei, R.; Savardashtaki, A.; Karimazar, M.; Anvari, E.; Nguewa, P.; Rashidi, S. The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum. Parasitology 2020, 147, 1255–1262. [Google Scholar] [CrossRef]
- Rashidi, S.; Tuteja, R.; Mansouri, R.; Ali-Hassanzadeh, M.; Shafiei, R.; Ghani, E.; Karimazar, M.; Nguewa, P.; Manzano-Román, R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J. Proteom. 2021, 245, 104279. [Google Scholar] [CrossRef]
- Lima, B.S.d.S.; Esteves, B.B.; Fialho-Júnior, L.C.; Mendes, T.A.d.O.; Pires, S.d.F.; Chapeourouge, A.; Perales, J.; de Andrade, H.M. Study of the differentially abundant proteins among Leishmania amazonensis, L. braziliensis, and L. infantum. PLoS ONE 2020, 15, e0240612. [Google Scholar] [CrossRef]
- Rashidi, S.; Mojtahedi, Z.; Shahriari, B.; Kalantar, K.; Ghalamfarsa, G.; Mohebali, M.; Hatam, G. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog. Glob. Health 2019, 113, 124–132. [Google Scholar] [CrossRef]
- Herbison, R.; Evans, S.; Doherty, J.-F.; Algie, M.; Kleffmann, T.; Poulin, R. A molecular war: Convergent and ontogenetic evidence for adaptive host manipulation in related parasites infecting divergent hosts. Proc. Biol. Sci. 2019, 286, 20191827. [Google Scholar] [CrossRef] [PubMed]
- Sperk, M.; Van Domselaar, R.; Rodriguez, J.E.; Mikaeloff, F.; Sá Vinhas, B.; Saccon, E.; Sönnerborg, A.; Singh, K.; Gupta, S.; Végvári, Á. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J. Proteome Res. 2020, 19, 4259–4274. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.P.; Robinson, M.W. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021, 10, 348. [Google Scholar] [CrossRef] [PubMed]
- Barylyuk, K.; Koreny, L.; Ke, H.; Butterworth, S.; Crook, O.M.; Lassadi, I.; Gupta, V.; Tromer, E.; Mourier, T.; Stevens, T.J. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe 2020, 28, 752–766.e9. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, D.; Jiang, M.; Mi, J.; Liu, X.; Zhang, H.; Hu, Z.; Xu, X.; Hu, X. Label-free proteomic analysis of placental proteins during Toxoplasma gondii infection. J. Proteom. 2017, 150, 31–39. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, Q.; Singla, L.D.; Min, J.; He, S.; Cong, H.; Li, Y.; Su, C. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis. Exp. Parasitol. 2013, 133, 376–382. [Google Scholar] [CrossRef]
- Ahady, M.T.; Hoghooghi-Rad, N.; Madani, R.; Rastaghi, A.R.E. Identification of antigenic and immunogenic proteins of Toxoplasma gondii in human and sheep by immunoproteomics. Iran. J. Parasitol. 2018, 13, 39–48. [Google Scholar]
- Zhou, D.H.; Zhao, F.R.; Nisbet, A.J.; Xu, M.J.; Song, H.Q.; Lin, R.Q.; Huang, S.Y.; Zhu, X.Q. Comparative proteomic analysis of different Toxoplasma gondii genotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry. Electrophoresis 2014, 35, 533–545. [Google Scholar] [CrossRef]
- Doliwa, C.; Xia, D.; Escotte-Binet, S.; Newsham, E.L.; Aubert, D.; Randle, N.; Wastling, J.M.; Villena, I. Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE). Int. J. Parasitol. Drugs Drug Resist. 2013, 3, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-H.; Kim, T.Y.; Park, S.G.; Cha, G.-H.; Shin, D.-W.; Chai, J.-Y.; Lee, Y.-H. Proteomic analysis of Toxoplasma gondii KI-1 tachyzoites. Korean J. Parasitol. 2010, 48, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Hruzik, A.; Asif, A.; Gross, U. Identification of Toxoplasma gondii SUB1 antigen as a marker for acute infection by use of an innovative evaluation method. J. Clin. Microbiol. 2011, 49, 2419–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.-M.; Ji, Y.-S.; Elashram, S.A.; Lu, Z.-M.; Liu, X.-Y.; Suo, X.; Chen, Q.-J.; Wang, H. Identification of antigenic proteins of Toxoplasma gondii RH strain recognized by human immunoglobulin G using immunoproteomics. J. Proteom. 2012, 77, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zou, J.; Huang, X.; Wen, H.; Suo, X.; Liu, X. Identification of candidate antigens by 2-DE Immunoblotting for diagnosis of Toxoplasma gondii infection in chickens and rabbits. Exp. Parasitol. 2019, 204, 107723. [Google Scholar] [CrossRef] [PubMed]
- Khammari, I.; Lakhal, S.; Westermann, B.; Benkahla, A.; Bouratbine, A.; Van Dorsselaer, A.; Saïd, M.B.; Schaeffer-Reiss, C.; Saghrouni, F. Characterization of soluble and membrane-Bound proteins of Toxoplasma gondii as diagnostic markers of infection. J. Bacteriol. Parasitol. 2015, 6, 4. [Google Scholar]
- Ma, G.-Y.; Zhang, J.-Z.; Yin, G.-R.; Zhang, J.-H.; Meng, X.-L.; Zhao, F. Toxoplasma gondii: Proteomic analysis of antigenicity of soluble tachyzoite antigen. Exp. Parasitol. 2009, 122, 41–46. [Google Scholar] [CrossRef]
- Zhou, C.-X.; Zhu, X.-Q.; Elsheikha, H.M.; He, S.; Li, Q.; Zhou, D.-H.; Suo, X. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. J. Proteom. 2016, 148, 12–19. [Google Scholar] [CrossRef]
- Tu, V.; Mayoral, J.; Sugi, T.; Tomita, T.; Han, B.; Ma, Y.F.; Weiss, L.M. Enrichment and proteomic characterization of the cyst wall from in vitro Toxoplasma gondii cysts. MBio 2019, 10, e00469-19. [Google Scholar] [CrossRef] [Green Version]
- Nadipuram, S.M.; Thind, A.C.; Rayatpisheh, S.; Wohlschlegel, J.A.; Bradley, P.J. Proximity biotinylation reveals novel secreted dense granule proteins of Toxoplasma gondii bradyzoites. PLoS ONE 2020, 15, e0232552. [Google Scholar] [CrossRef]
- Hill, D.; Coss, C.; Dubey, J.; Wroblewski, K.; Sautter, M.; Hosten, T.; Muñoz-Zanzi, C.; Mui, E.; Withers, S.; Boyer, K. Identification of a sporozoite-specific antigen from Toxoplasma gondii. J. Parasitol. 2011, 97, 328–337. [Google Scholar] [CrossRef]
- Fritz, H.M.; Bowyer, P.W.; Bogyo, M.; Conrad, P.A.; Boothroyd, J.C. Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance. PLoS ONE 2012, 7, e29955. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00461-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, M.M.; Moreira, G.M.S.G.; Mendonça, M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2020, 267, 118919. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Sibley, L.D. Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J. Biol. Chem. 2010, 285, 6835–6847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, C.M.; Ambaru, B.; Bajaj, R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front. Cell Dev. Biol. 2020, 8, 587685. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Hu, X.; Pan, C.-W.; Ding, J.-Q.; Chen, X.-G. Monoclonal antibodies against nucleoside triphosphate hydrolase-II can reduce the replication of Toxoplasma gondii. Parasitol. Int. 2010, 59, 141–146. [Google Scholar] [CrossRef]
- Sansom, F.M.; Robson, S.C.; Hartland, E.L. Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol. Mol. Biol. Rev. 2008, 72, 765–781. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, F.; Sharif, M.; Sarvi, S.; Hejazi, S.H.; Aghayan, S.; Pagheh, A.S.; Dodangeh, S.; Daryani, A. A systematic review on the role of GRA proteins of Toxoplasma gondii in host immunization. J. Microbiol. Methods 2019, 165, 105696. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, H. Research progress on surface antigen 1 (SAG1) of Toxoplasma gondii. Parasit. Vectors 2014, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ozuna, J.F.; Hernández-García, M.S.; Brieba, L.G.; Benítez-Cardoza, C.G.; Ortega-López, J.; González-Robles, A.; Arroyo, R. The glycolytic enzyme triosephosphate isomerase of Trichomonas vaginalis is a surface-associated protein induced by glucose that functions as a laminin-and fibronectin-binding protein. Infect. Immun. 2016, 84, 2878–2894. [Google Scholar] [CrossRef] [Green Version]
- Ben Chaabene, R.; Lentini, G.; Soldati-Favre, D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol. Microbiol. 2021, 115, 453–465. [Google Scholar] [CrossRef]
- Delorme-Walker, V.; Abrivard, M.; Lagal, V.; Anderson, K.; Perazzi, A.; Gonzalez, V.; Page, C.; Chauvet, J.; Ochoa, W.; Volkmann, N. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion. J. Cell Sci. 2012, 125, 4333–4342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, E.-S.; Song, K.-J.; Shin, J.-C.; Nam, H.-W. Molecular cloning and characterization of peroxiredoxin from Toxoplasma gondii. Korean J. Parasitol. 2001, 39, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, E.S.; Elshekiha, H.M.; Hakimi, M.-A.; Flynn, R.J. Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-1β secretion enhances parasite replication. Vet. Res. 2011, 42, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, J.; Tonkin, M.L.; Grujic, O.; Boulanger, M.J. Structural characterization of apical membrane antigen 1 (AMA1) from Toxoplasma gondii. J. Biol. Chem. 2010, 285, 15644–15652. [Google Scholar] [CrossRef] [Green Version]
- Huynh, M.-H.; Boulanger, M.J.; Carruthers, V.B. A conserved apicomplexan microneme protein contributes to Toxoplasma gondii invasion and virulence. Infect. Immun. 2014, 82, 4358–4368. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Yao, S.; Yao, Y.; Zhou, J.; Li, Q.; Cao, Y.; He, S. Epitope Analysis and Efficacy Evaluation of Phosphatase 2C (PP2C) DNA Vaccine Against Toxoplasma gondii Infection. J. Parasitol. 2020, 106, 513–521. [Google Scholar] [CrossRef]
- Xiang, W.; Qiong, Z.; Li-peng, L.; Kui, T.; Jian-wu, G.; Heng-ping, S. The location of invasion-related protein MIC3 of Toxoplasma gondii and protective effect of its DNA vaccine in mice. Vet. Parasitol. 2009, 166, 1–7. [Google Scholar] [CrossRef]
- Mayoral, J.; Shamamian, P.; Weiss, L.M. In vitro characterization of protein effector export in the bradyzoite stage of Toxoplasma gondii. Mbio 2020, 11, e00046-20. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Ding, J.; Lou, D.; Tong, Q.; Zhuo, X.; Ding, H.; Kong, Q.; Lu, S. The Virulence-Related MYR1 Protein of Toxoplasma gondii as a Novel DNA Vaccine Against Toxoplasmosis in Mice. Front. Microbiol. 2019, 10, 734. [Google Scholar] [CrossRef] [Green Version]
- de Miguel, N.; Lebrun, M.; Heaslip, A.; Hu, K.; Beckers, C.J.; Matrajt, M.; Dubremetz, J.F.; Angel, S.O. Toxoplasma gondii HSP20 is a stripe-arranged chaperone-like protein associated with the outer leaflet of the inner membrane complex. Biol. Cell 2008, 100, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-L.; Li, Y.-Q.; Yin, L.-T.; Meng, X.-L.; Guo, M.; Zhang, J.-H.; Liu, H.-L.; Liu, J.-J.; Yin, G.-R. Toxoplasma gondii protein disulfide isomerase (TgPDI) is a novel vaccine candidate against toxoplasmosis. PLoS ONE 2013, 8, e70884. [Google Scholar]
- Tomita, T.; Mukhopadhyay, D.; Han, B.; Yakubu, R.; Tu, V.; Mayoral, J.; Sugi, T.; Ma, Y.; Saeij, J.P.; Weiss, L.M. Toxoplasma gondii Matrix Antigen 1 Is a Secreted Immunomodulatory Effector. Mbio 2021, 12, e00603–e00621. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yin, L.; Li, Y.; Yuan, F.; Zhang, X.; Ma, J.; Liu, H.; Wang, Y.; Zheng, K.; Cao, J. Intranasal immunization with recombinant Toxoplasma gondii actin depolymerizing factor confers protective efficacy against toxoplasmosis in mice. BMC Immunol. 2016, 17, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, F.; Zheng, L.; Hu, Y.; Liu, S.; Wang, Y.; Xiong, Z.; Hu, X.; Tan, F. Induction of protective immunity against Toxoplasma gondii in mice by nucleoside triphosphate hydrolase-II (NTPase-II) self-amplifying RNA vaccine encapsulated in lipid nanoparticle (LNP). Front. Microbiol. 2017, 8, 605. [Google Scholar] [CrossRef] [PubMed]
- Vercammen, M.; Scorza, T.; Huygen, K.; De Braekeleer, J.; Diet, R.; Jacobs, D.; Saman, E.; Verschueren, H. DNA vaccination with genes Encoding Toxoplasma gondii antigens GRA1, GRA7, and ROP2 induces partially protective immunity against lethal challenge in mice. Infect. Immun. 2000, 68, 38–45. [Google Scholar] [CrossRef] [Green Version]
- del L Yácono, M.; Farran, I.; Becher, M.L.; Sander, V.; Sanchez, V.R.; Martín, V.; Veramendi, J.; Clemente, M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. Plant Biotechnol. J. 2012, 10, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
- Arab-Mazar, Z.; Javadi Mamaghani, A.; Fallahi, S.; Rajaeian, S.; Koochaki, A.; Seyyed Tabaei, S.J.; Rezaee, H. Immunodiagnosis and molecular validation of Toxoplasma gondii-recombinant dense granular (GRA) 5 protein for the detection of toxoplasmosis in hemodialysis patients. Semin Dial 2021, 34, 332–337. [Google Scholar] [CrossRef]
- Hiszczyńska-Sawicka, E.; Olędzka, G.; Holec-Gąsior, L.; Li, H.; Xu, J.B.; Sedcole, R.; Kur, J.; Bickerstaffe, R.; Stankiewicz, M. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet. Parasitol. 2011, 177, 281–289. [Google Scholar] [CrossRef]
- Sun, X.-M.; Zou, J.; AA, E.S.; Yan, W.-C.; Liu, X.-Y.; Suo, X.; Wang, H.; Chen, Q.-J. DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partial protection against toxoplasmosis in BALB/c mice. Parasit. Vectors 2011, 4, 213. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Galon, E.M.; Guo, H.; Liu, M.; Li, Y.; Ji, S.; Zafar, I.; Gao, Y.; Zheng, W.; Moumouni, P.F.A. PLK: Δgra9 live attenuated strain induces protective immunity against acute and chronic toxoplasmosis. Front. Microbiol. 2021, 12, 619335. [Google Scholar] [CrossRef]
- Arcon, N.; Picchio, M.S.; Fenoy, I.M.; Moretta, R.E.; Soto, A.S.; Sibilia, M.D.P.; Sánchez, V.R.; Prato, C.A.; Tribulatti, M.V.; Goldman, A. Synergistic effect of GRA7 and profilin proteins in vaccination against chronic Toxoplasma gondii infection. Vaccine 2021, 39, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Koblansky, A.A.; Jankovic, D.; Oh, H.; Hieny, S.; Sungnak, W.; Mathur, R.; Hayden, M.S.; Akira, S.; Sher, A.; Ghosh, S. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 2013, 38, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.M.S.; Shehata, H.; O’connell, M.J.; Yang, Y.; Moreno-Fernandez, M.E.; Chougnet, C.A.; Aliberti, J. Toxoplasma gondii-derived profilin triggers human toll-like receptor 5-dependent cytokine production. J. Innate Immun. 2014, 6, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Ihara, F.; Fereig, R.M.; Himori, Y.; Kameyama, K.; Umeda, K.; Tanaka, S.; Ikeda, R.; Yamamoto, M.; Nishikawa, Y. Toxoplasma gondii Dense Granule Proteins 7, 14, and 15 Are Involved in Modification and Control of the Immune Response Mediated via NF-κB Pathway. Front. Immunol. 2020, 11, 1709. [Google Scholar] [CrossRef]
- Pagheh, A.S.; Sarvi, S.; Gholami, S.; Asgarian-Omran, H.; Valadan, R.; Hassannia, H.; Ahmadpour, E.; Fasihi-Ramandie, M.; Dodangeh, S.; Hosseni-Khah, Z. Protective efficacy induced by DNA prime and recombinant protein boost vaccination with Toxoplasma gondii GRA14 in mice. Microb. Pathog. 2019, 134, 103601. [Google Scholar] [CrossRef]
- Karimi, M.; Tabaei, S.J.S.; Ranjbar, M.M.; Fathi, F.; Jalili, A. Construction of a synthetic gene encoding the Multi-Epitope of Toxoplasma gondii and demonstration of the relevant recombinant protein production: A vaccine candidate. Galen Med. J. 2020, 9, e1708. [Google Scholar] [CrossRef]
- Charles, E.; Callegan, M.C.; Blader, I.J. The SAG1 Toxoplasma gondii surface protein is not required for acute ocular toxoplasmosis in mice. Infect. Immun. 2007, 75, 2079–2083. [Google Scholar] [CrossRef] [Green Version]
- Naeem, H.; Sana, M.; Islam, S.; Khan, M.; Riaz, F.; Zafar, Z.; Akbar, H.; Shehzad, W.; Rashid, I. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Pagheh, A.S.; Sarvi, S.; Sharif, M.; Rezaei, F.; Ahmadpour, E.; Dodangeh, S.; Omidian, Z.; Hassannia, H.; Mehrzadi, S.; Daryani, A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101414. [Google Scholar] [CrossRef]
- Asghari, A.; Shamsinia, S.; Nourmohammadi, H.; Majidiani, H.; Fatollahzadeh, M.; Nemati, T.; Irannejad, H.; Nouri, H.R.; Ghasemi, E.; Shams, M. Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches. Eur. J. Pharm. Sci. 2021, 162, 105837. [Google Scholar] [CrossRef]
- Akbar, H.; Shabbir, M.Z.; Ullah, U.; Rashid, M.I. Development of Human Toxo IgG ELISA Kit, and False-Positivity of Latex Agglutination Test for the Diagnosis of Toxoplasmosis. Pathogens 2021, 10, 1111. [Google Scholar]
- Mamaghani, A.J.; Tabaei, S.J.S.; Ranjbar, M.M.; Haghighi, A.; Spotin, A.; Dizaji, P.A.; Rezaee, H. Designing Diagnostic Kit for Toxoplasma gondii Based on GRA7, SAG1, and ROP1 Antigens: An In Silico Strategy. Int. J. Pept. Res. Ther. 2020, 26, 2269–2283. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Y.; Pan, K.; Shen, B.; Fang, R.; Hu, M.; Zhao, J. Characterization and Evaluation of a Recombinant Multiepitope Peptide Antigen MAG in the Serological Diagnosis of Toxoplasma Gondii. Infect. Pigs 2021, 14, 408. [Google Scholar] [CrossRef]
- Fleige, T.; Fischer, K.; Ferguson, D.J.; Gross, U.; Bohne, W. Carbohydrate metabolism in the Toxoplasma gondii apicoplast: Localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot. Cell 2007, 6, 984–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.; Yadav, N.K.; Rawat, K.; Kumar, V.; Ali, R.; Sahasrabuddhe, A.A.; Siddiqi, M.I.; Haq, W.; Sundar, S.; Dube, A. Immunogenicity and protective efficacy of T-cell epitopes derived from potential Th1 stimulatory proteins of Leishmania (Leishmania) donovani. Front. Immunol. 2019, 10, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushawaha, P.K.; Gupta, R.; Tripathi, C.D.P.; Khare, P.; Jaiswal, A.K.; Sundar, S.; Dube, A. Leishmania donovani triose phosphate isomerase: A potential vaccine target against visceral leishmaniasis. PLoS ONE 2012, 7, e45766. [Google Scholar] [CrossRef] [Green Version]
- Zinsser, V.L.; Farnell, E.; Dunne, D.W.; Timson, D.J. Triose phosphate isomerase from the blood fluke Schistosoma mansoni: Biochemical characterisation of a potential drug and vaccine target. FEBS Lett. 2013, 587, 3422–3427. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ye, B. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus. Parasitol. Res. 2016, 115, 3991–3998. [Google Scholar] [CrossRef]
- Holec-Gąsior, L.; Ferra, B.; Drapała, D.; Lautenbach, D.; Kur, J. A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxoplasmosis. Clin. Vaccine Immunol. 2012, 19, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Huynh, M.-H.; Carruthers, V.B. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog. 2006, 2, e84. [Google Scholar] [CrossRef] [Green Version]
- Meira, C.S.; Pereira-Chioccola, V.L.; Vidal, J.E.; de Mattos, C.C.B.; Motoie, G.; Costa-Silva, T.A.; Gava, R.; Frederico, F.B.; de Mattos, L.C. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels. Front. Microbiol. 2014, 5, 492. [Google Scholar] [PubMed]
- Dodangeh, S.; Fasihi-Ramandi, M.; Daryani, A.; Valadan, R.; Asgarian-Omran, H.; Hosseininejad, Z.; Chegeni, T.N.; Pagheh, A.S.; Javidnia, J.; Sarvi, S. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice. Microb.Pathog. 2021, 153, 104764. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarifar, F.; Jafarimodrek, M.; Vazini, H.; Sharifi, Z.; Dalimi, A.; Dayer, M.S. Assessment of DNA vaccine encoding Toxoplasma gondii microneme complete gene and IL-12 as adjuvant in BALB/c mice. Iran. Basic Med. Sci. 2019, 22, 901–907. [Google Scholar]
- Ismael, A.B.; Dimier-Poisson, I.; Lebrun, M.; Dubremetz, J.-F.; Bout, D.; Mévélec, M.-N. Mic1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital toxoplasmosis in mice. J. Infect. Dis. 2006, 194, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Sardinha-Silva, A.; Mendonça-Natividade, F.C.; Pinzan, C.F.; Lopes, C.D.; Costa, D.L.; Jacot, D.; Fernandes, F.F.; Zorzetto-Fernandes, A.L.; Gay, N.J.; Sher, A. The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathog 2019, 15, e1007871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffari, A.D.; Dalimi, A.; Ghaffarifar, F.; Pirestani, M.; Majidiani, H. Immunoinformatic analysis of immunogenic B-and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin. Exp. Vaccine Res. 2021, 10, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-C.; Ma, L.-J.; Zhang, J.-L.; Liu, J.-F.; He, Y.; Feng, J.-Y.; Chen, J. Protective Immunity Induced by TgMIC5 and TgMIC16 DNA Vaccines Against Toxoplasmosis. Front. Cell. Infect. Microbiol. 2021, 11, 686004. [Google Scholar] [CrossRef]
- Ihara, F.; Nishikawa, Y. Toxoplasma gondii manipulates host cell signaling pathways via its secreted effector molecules. Parasitol. Int. 2021, 83, 102368. [Google Scholar] [CrossRef]
- Rommereim, L.M.; Fox, B.A.; Butler, K.L.; Cantillana, V.; Taylor, G.A.; Bzik, D.J. Rhoptry and Dense Granule Secreted Effectors Regulate CD8+ T Cell Recognition of Toxoplasma gondii Infected Host Cells. Front. Immunol. 2019, 10, 2104. [Google Scholar] [CrossRef] [Green Version]
- Mamaghani, A.J.; Fathollahi, A.; Arab-Mazar, Z.; Fathollahi, M.; Spotin, A.; Bashiri, H.; Bozorgomid, A. Toxoplasma gondii vaccine candidates: A concise review. Ir. J. Med. Sci. 2022, 1–31. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, D.-H.; Li, Z.-Y.; Petersen, E.; Huang, S.-Y.; Song, H.-Q.; Zhu, X.-Q. Toxoplasma gondii: Protective immunity induced by rhoptry protein 9 (TgROP9) against acute toxoplasmosis. Exp. Parasitol. 2014, 139, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Xie, Q.; Li, P.; Nan, X.; Kong, L.; Zeng, D.; Ding, Z.; Wang, S. The molecular characterization and immunity identification of rhoptry protein 22 of Toxoplasma gondii as a DNA vaccine candidate against toxoplasmosis. J. Eukaryot. Microbiol. 2019, 66, 147–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Li, Y.; Liang, Y.; Wang, S.; Xie, Q.; Nan, X.; Li, P.; Hong, G.; Liu, Q.; Li, X. Molecular characterization and protective immunity of rhoptry protein 35 (ROP35) of Toxoplasma gondii as a DNA vaccine. Vet. Parasitol. 2018, 260, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Sonaimuthu, P.; Ching, X.T.; Fong, M.Y.; Kalyanasundaram, R.; Lau, Y.L. Induction of protective immunity against toxoplasmosis in BALB/c mice vaccinated with Toxoplasma gondii Rhoptry-1. Front. Microbiol. 2016, 7, 808. [Google Scholar] [CrossRef]
- Quan, J.-H.; Chu, J.-Q.; Ismail, H.A.H.A.; Zhou, W.; Jo, E.-K.; Cha, G.-H.; Lee, Y.-H. Induction of protective immune responses by a multiantigenic DNA vaccine encoding GRA7 and ROP1 of Toxoplasma gondii. Clin. Vaccine Immunol. 2012, 19, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Dziadek, B.; Gatkowska, J.; Brzostek, A.; Dziadek, J.; Dzitko, K.; Dlugonska, H. Toxoplasma gondii: The immunogenic and protective efficacy of recombinant ROP2 and ROP4 rhoptry proteins in murine experimental toxoplasmosis. Exp. Parasitol. 2009, 123, 81–89. [Google Scholar] [CrossRef]
- Weiss, L.M.; Fiser, A.; Angeletti, R.H.; Kim, K. Toxoplasma gondii proteomics. Exp. Rev. Proteom. 2009, 6, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Clough, B.; Frickel, E.-M. The Toxoplasma parasitophorous vacuole: An evolving host–parasite frontier. Trends Parasitol. 2017, 33, 473–488. [Google Scholar] [CrossRef]
- Foroutan, M.; Barati, M.; Ghaffarifar, F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice. Microb. Pathog. 2020, 147, 104435. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Wang, M.; Xie, Q.; Li, P.; Zuo, S.; Kong, L.; Wang, C.; Wang, S. Immune protection of rhoptry protein 21 (ROP21) of Toxoplasma gondii as a DNA vaccine against toxoplasmosis. Front. Microbiol. 2018, 9, 909. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-C.; He, Y.; Liu, J.-F.; Chen, J. Adjuvantic cytokine IL-33 improves the protective immunity of cocktailed DNA vaccine of ROP5 and ROP18 against Toxoplasma gondii infection in mice. Parasite 2020, 27, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.-Z.; Xu, Y.; Wang, M.; Chen, J.; Huang, S.-Y.; Gao, Q.; Zhu, X.-Q. Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly (lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC Infect. Dis. 2016, 16, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coceres, V.M.; Alonso, A.M.; Alomar, M.L.; Corvi, M.M. Rabbit antibodies against Toxoplasma HSP20 are able to reduce parasite invasion and gliding motility in Toxoplasma gondii and parasite invasion in Neospora caninum. Exp. Parasitol. 2012, 132, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Makino, M.; Uemura, N.; Moroda, M.; Kikumura, A.; Piao, L.-X.; Mohamed, R.M.; Aosai, F. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization. Vaccine 2011, 29, 1899–1905. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Aosai, F.; Chen, M.; Mun, H.-S.; Norose, K.; Belal, U.S.; Piao, L.-X.; Yano, A. Induction of protective immunity by DNA vaccination with Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 2003, 21, 2852–2861. [Google Scholar] [CrossRef]
- Czarnewski, P.; Araújo, E.C.; Oliveira, M.C.; Mineo, T.W.; Silva, N.M. Recombinant TgHSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression. Front. Cell. Infect. Microbiol. 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; He, S.; Zhou, A.; Lv, G.; Guo, J.; Zhou, J.; Han, Y.; Zhou, H.; Hao, Z.; Cong, H. Vaccination with toxofilin DNA in combination with an alum-monophosphoryl lipid A mixed adjuvant induces significant protective immunity against Toxoplasma gondii. BMC Infect. Dis. 2017, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Mode, R.; Pieters, J. From phagocytes to immune defense: Roles for coronin proteins in dictyostelium and mammalian immunity. Front. Cell. Infect. Microbiol. 2018, 8, 77. [Google Scholar] [CrossRef]
- Liu, Z.-z.; Li, X.-y.; Fu, L.-l.; Yuan, F.; Tang, R.-x.; Liu, Y.-s.; Zheng, K.-y. Evaluation of toxoplasmosis in pregnant women using dot-immunogold-silver staining with recombinant Toxoplasma gondii peroxiredoxin protein. BMC Infect. Dis. 2020, 20, 694. [Google Scholar] [CrossRef]
- Fereig, R.M.; Kuroda, Y.; Terkawi, M.A.; Mahmoud, M.E.; Nishikawa, Y. Immunization with Toxoplasma gondii peroxiredoxin 1 induces protective immunity against toxoplasmosis in mice. PLoS ONE 2017, 12, e0176324. [Google Scholar] [CrossRef]
- Gatkowska, J.; Dzitko, K.; Ferra, B.T.; Holec-Gąsior, L.; Kawka, M.; Dziadek, B. The Immunogenic and Immunoprotective Activities of Recombinant Chimeric T. gondii Proteins Containing AMA1 Antigen Fragments. Vaccines 2020, 8, 724. [Google Scholar] [CrossRef] [PubMed]
- Ferra, B.; Holec-Gąsior, L.; Gatkowska, J.; Dziadek, B.; Dzitko, K. Toxoplasma gondii recombinant antigen AMA1: Diagnostic utility of protein fragments for the detection of IgG and IgM antibodies. Pathogens 2020, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, L.A.; Ravindran, S.; Turetzky, J.M.; Boothroyd, J.C.; Bradley, P.J. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot. Cell 2007, 6, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Ding, J.; Chen, X.; Yu, H.; Lou, D.; Tong, Q.; Kong, Q.; Lu, S. Immuno-efficacy of a T. gondii secreted protein with an altered thrombospondin repeat (TgSPATR) as a novel DNA vaccine candidate against acute toxoplasmosis in BALB/c mice. Front. Microbiol. 2017, 8, 216. [Google Scholar] [CrossRef]
- Franco, M.; Panas, M.W.; Marino, N.D.; Lee, M.-C.W.; Buchholz, K.R.; Kelly, F.D.; Bednarski, J.J.; Sleckman, B.P.; Pourmand, N.; Boothroyd, J.C. A novel secreted protein, MYR1, is central to Toxoplasma’s manipulation of host cells. MBio 2016, 7, e02231-15. [Google Scholar] [CrossRef] [Green Version]
- García, G.Á.; Davidson, R.; Jokelainen, P.; Klevar, S.; Spano, F.; Seeber, F. Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology-Current Status and Future Perspectives. Microorganisms 2021, 9, 2346. [Google Scholar] [CrossRef]
- Mangiavacchi, B.; Vieira, F.; Bahia-Oliveira, L.; Hill, D. Salivary IgA against sporozoite-specific embryogenesis-related protein (TgERP) in the study of horizontally transmitted toxoplasmosis via T. gondii oocysts in endemic settings. Epidemiol. Infect. 2016, 144, 2568–2577. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Flores, C.J.; Cruz-Mirón, R.; Arroyo, R.; Mondragón-Castelán, M.E.; Nopal-Guerrero, T.; González-Pozos, S.; Ríos-Castro, E.; Mondragón-Flores, R. Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells. Parasitol. Res. 2019, 118, 289–306. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, A.; Lu, G.; Zhao, G.; Sha, W.; Wang, L.; Guo, J.; Zhou, J.; Zhou, H.; Cong, H. DNA vaccines encoding Toxoplasma gondii cathepsin C 1 induce protection against Toxoplasmosis in mice. Korean J. Parasitol. 2017, 55, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Song, X.; Kong, X.; Zhang, N.; Qu, S.; Zhu, W.; Yang, Y.; Wang, Q. Immunization with Toxoplasma gondii aspartic protease 3 increases survival time of infected mice. Acta Trop. 2017, 171, 17–23. [Google Scholar] [CrossRef]
- Xu, D.; Bai, X.; Xu, J.; Wang, X.; Dong, Z.; Shi, W.; Xu, F.; Li, Y.; Liu, M.; Liu, X. The immune protection induced by a serine protease from the Trichinella spiralis adult against Trichinella spiralis infection in pigs. PLoS Negl. Trop. Dis. 2021, 15, e0009408. [Google Scholar] [CrossRef] [PubMed]
- de Matos Guedes, H.L.; da Silva Costa, B.L.; Chaves, S.P.; de Oliveira Gomes, D.C.; Nosanchuk, J.D.; De Simone, S.G.; Rossi-Bergmann, B. Intranasal vaccination with extracellular serine proteases of Leishmania amazonensis confers protective immunity to BALB/c mice against infection. Parasit. Vectors 2014, 7, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroutan, M.; Zaki, L.; Tavakoli, S.; Soltani, S.; Taghipour, A.; Ghaffarifar, F. Rhomboid antigens are promising targets in the vaccine development against Toxoplasma gondii. EXCLI J. 2019, 18, 259–279. [Google Scholar] [PubMed]
- Engelberg, K.; Chen, C.T.; Bechtel, T.; Sánchez Guzmán, V.; Drozda, A.A.; Chavan, S.; Weerapana, E.; Gubbels, M.J. The apical annuli of Toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. Cell. Microbiol. 2020, 22, e13112. [Google Scholar] [CrossRef]
- Seidi, A.; Muellner-Wong, L.S.; Rajendran, E.; Tjhin, E.T.; Dagley, L.F.; Aw, V.Y.; Faou, P.; Webb, A.I.; Tonkin, C.J.; van Dooren, G.G. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. Elife 2018, 7, e38131. [Google Scholar] [CrossRef]
- Bradley, P.J.; Ward, C.; Cheng, S.J.; Alexander, D.L.; Coller, S.; Coombs, G.H.; Dunn, J.D.; Ferguson, D.J.; Sanderson, S.J.; Wastling, J.M. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J. Biol. Chem. 2005, 280, 34245–34258. [Google Scholar] [CrossRef] [Green Version]
- de León, C.T.G.; Martín, R.D.D.; Hernández, G.M.; Pozos, S.G.; Ambrosio, J.R.; Flores, R.M. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites. J. Proteom. 2014, 111, 86–99. [Google Scholar] [CrossRef]
- Varberg, J.M.; Padgett, L.R.; Arrizabalaga, G.; Sullivan, W.J. TgATAT-mediated α-tubulin acetylation is required for division of the protozoan parasite Toxoplasma gondii. Msphere 2016, 1, e00088-15. [Google Scholar] [CrossRef] [Green Version]
- Harding, C.R.; Egarter, S.; Gow, M.; Jiménez-Ruiz, E.; Ferguson, D.J.; Meissner, M. Gliding associated proteins play essential roles during the formation of the inner membrane complex of Toxoplasma gondii. PLoS Pathog. 2016, 12, e1005403. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.L.; Mital, J.; Ward, G.E.; Bradley, P.; Boothroyd, J.C. Identification of the moving junction complex of Toxoplasma gondii: A collaboration between distinct secretory organelles. PLoS Pathog. 2005, 1, e17. [Google Scholar] [CrossRef]
- Gonzalez, V.; Combe, A.; David, V.; Malmquist, N.A.; Delorme, V.; Leroy, C.; Blazquez, S.; Ménard, R.; Tardieux, I. Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe 2009, 5, 259–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besteiro, S.; Dubremetz, J.F.; Lebrun, M. The moving junction of apicomplexan parasites: A key structure for invasion. Cell. Microbiol. 2011, 13, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Jirapattharasate, C.; Udonsom, R.; Prachasuphap, A.; Jongpitisub, K.; Dhepakson, P. Development and evaluation of recombinant GRA8 protein for the serodiagnosis of Toxoplasma gondii infection in goats. BMC Vet. Res. 2021, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Z.; Wang, Y.; Gadahi, J.A.; Xu, L.; Yan, R.; Song, X.; Li, X. Toxoplasma gondii elongation factor 1-alpha (TgEF-1α) is a novel vaccine candidate antigen against toxoplasmosis. Front. Microbiol. 2017, 8, 168. [Google Scholar] [CrossRef]
- Cruz-Mirón, R.; Ramírez-Flores, C.J.; Lagunas-Cortés, N.; Mondragón-Castelán, M.; Ríos-Castro, E.; González-Pozos, S.; Aguirre-García, M.M.; Mondragón-Flores, R. Proteomic characterization of the pellicle of Toxoplasma gondii. J. Proteom. 2021, 237, 104146. [Google Scholar] [CrossRef]
- Döşkaya, M.; Liang, L.; Jain, A.; Can, H.; İz, S.G.; Felgner, P.L.; Döşkaya, A.D.; Davies, D.H.; Gürüz, A.Y. Discovery of new Toxoplasma gondii antigenic proteins using a high throughput protein microarray approach screening sera of murine model infected orally with oocysts and tissue cysts. Parasit. Vectors 2018, 11, 393. [Google Scholar] [CrossRef]
- Marashiyan, S.M.; Moradian, F.; Saadatnia, G.; Golkar, M. Evaluation of recombinant SRS3 antigen for diagnosis of Toxoplasmosis by enzyme-linked immunosorbent assay. Arch. Clin. Infect. Dis. 2017, 12, e35612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Lin, G.; Han, Y.; Li, J. Serological diagnosis of toxoplasmosis and standardization. Clin. Chim. Acta 2016, 461, 83–89. [Google Scholar] [CrossRef]
- Sasai, M.; Pradipta, A.; Yamamoto, M. Host immune responses to Toxoplasma gondii. Int. Immunol. 2018, 30, 113–119. [Google Scholar] [CrossRef]
- Sonaimuthu, P.; Fong, M.Y.; Kalyanasundaram, R.; Mahmud, R.; Lau, Y.L. Sero-diagnostic evaluation of Toxoplasma gondii recombinant Rhoptry antigen 8 expressed in E. coli. Parasit. Vectors 2014, 7, 297. [Google Scholar] [CrossRef] [Green Version]
- Mévélec, M.-N.; Lakhrif, Z.; Dimier-Poisson, I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front. Cell. Infect. Microbiol. 2020, 10, 607198. [Google Scholar] [CrossRef] [PubMed]
- Augusto, L.; Wek, R.C.; Sullivan, W.J., Jr. Host sensing and signal transduction during Toxoplasma stage conversion. Mol. Microbiol. 2021, 115, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Fatoohi, A.; Cozon, G.; Gonzalo, P.; Mayencon, M.; Greenland, T.; Picot, S.; Peyron, F. Heterogeneity in cellular and humoral immune responses against Toxoplasma gondii antigen in humans. Clin. Exp. Immunol. 2004, 136, 535–541. [Google Scholar] [CrossRef]
- Innes, E.A.; Hamilton, C.; Garcia, J.L.; Chryssafidis, A.; Smith, D. A one health approach to vaccines against Toxoplasma gondii. Food Waterborne Parasitol. 2019, 15, e00053. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 2001, 19, 2688–2691. [Google Scholar] [CrossRef]
- Kaur, C.; Patankar, S. The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021, 148, 1277–1278. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Fernandes, R.; Romão, L. Translational regulation by upstream open reading frames and human diseases. Adv. Exp. Med. Biol. 2019, 1175, 99–116. [Google Scholar]
- Radío, S.; Garat, B.; Sotelo-Silveira, J.; Smircich, P. Upstream ORFs influence translation efficiency in the parasite Trypanosoma cruzi. Front. Genet. 2020, 11, 166. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Frasch, A.; Mandava, C.S.; Ch’Ng, J.-H.; del Pilar Quintana, M.; Vesterlund, M.; Ghorbal, M.; Joannin, N.; Franzen, O.; Lopez-Rubio, J.-J. Regulation of PfEMP1-VAR2CSA translation by a Plasmodium translation-enhancing factor. Nat. Microbiol. 2017, 2, 17068. [Google Scholar] [CrossRef]
- Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 2018, 154, 394–406. [Google Scholar] [CrossRef]
- Chronister, W.D.; Crinklaw, A.; Mahajan, S.; Vita, R.; Koşaloğlu-Yalçın, Z.; Yan, Z.; Greenbaum, J.A.; Jessen, L.E.; Nielsen, M.; Christley, S. TCRMatch: Predicting T-Cell receptor specificity based on sequence similarity to previously characterized receptors. Front. Immunol. 2021, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Calis, J.J.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Keşmir, C.; Peters, B. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almagro Armenteros, J.J.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 2017, 33, 3387–3395. [Google Scholar] [CrossRef]
- Nielsen, H.; Tsirigos, K.D.; Brunak, S.; von Heijne, G. A brief history of protein sorting prediction. Protein J. 2019, 38, 200–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Wang, W.; Zhang, J.; Zhou, B.; Zhao, W.; Su, Z.; Gu, X.; Wu, J.; Zhou, Z.; Chen, S. DeepHLApan: A deep learning approach for neoantigen prediction considering both HLA-peptide binding and immunogenicity. Front. Immunol. 2019, 10, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, T.J.; Rubinsteyn, A.; Laserson, U. MHCflurry 2.0: Improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 2020, 11, 42–48.e47. [Google Scholar] [CrossRef]
- Mamaghani, A.J.; Fathollahi, A.; Spotin, A.; mehdi Ranjbar, M.; Barati, M.; Aghamolaie, S.; Karimi, M.; Taghipour, N.; Ashrafi, M.; Tabaei, S.J.S. Candidate antigenic epitopes for vaccination and diagnosis strategies of Toxoplasma gondii infection: A review. Microb. Pathog. 2019, 137, 103788. [Google Scholar] [CrossRef] [PubMed]
- Junet, V.; Daura, X. CNN-PepPred: An open-source tool to create convolutional NN models for the discovery of patterns in peptide sets-application to peptide-MHC class II binding prediction. Bioinformatics 2021, 37, 4567–4568. [Google Scholar] [CrossRef]
- Xue, Y.; Theisen, T.C.; Rastogi, S.; Ferrel, A.; Quake, S.R.; Boothroyd, J.C. A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression. Elife 2020, 9, e54129. [Google Scholar] [CrossRef] [Green Version]
Proteins | Location | Biological Functions | References |
---|---|---|---|
ADF | A related actin-binding protein (cytoskeleton) | Remodeling the actin cytoskeleton (increasing the actin filaments turnover) and parasite host cells invasion | [54,55] |
NTPases | Dense granules | Processing of nucleotides for purine salvage by the parasite, parasite replication and virulence | [56,57] |
GRAs | Dense granules | The alteration of PV and the PV membrane in parasite (maintenance of intracellular parasitism in host cells) | [58] |
SAG1 | Parasite surface antigen | Recognition, adhesion and invasion of host cells | [59] |
TPI | Carbohydrate metabolism cycle | A virulence factor with important roles during pathogenesis via glucose levels modulation | [60] |
ROPs and RONs | Rhoptry | Participates in the moving junction formation during parasite invasion | [61] |
Toxofilin | A secretory protein from rhoptries | Binds to the parasite and mammalian actin and plays role in the host cell invasion | [62] |
Prx | A redox enzyme probably in parasite nucleus | Phagocytosis, transcriptional regulation, receptor signaling, and protein phosphorylation, maintenance of parasite oxidative balance | [63,64] |
AMA1 | Microneme | Host cell recognition and attachment | [65] |
SPATR | Microneme | Parasite virulence and host cell recognition | [66] |
PP2C | Rhoptry | Targeting the host nucleus and plays a role in parasite invasion | [67] |
MIC3 | Microneme | A predominant role in the early phase of the invasion process | [68] |
MYR1 | PV membrane | Exporting parasitic proteins, parasite pathogenesis | [69,70] |
ERP | Related to the resistance of parasite (oocyst) against environmental stresses | [51] | |
HSP20 | IMC (parasite plasma membrane) | Protect and/or modulate membrane properties of the IMC | [71] |
HSP70 | A potential immunoregulator (B cell mitogen and inducing DC maturation) | [38] | |
PDI | Surface of tachyzoites | Host cell interactions | [72] |
MAG1 | A protein in PV matrix, in tachyzoite vacuoles and the cyst wall and matrix in bradyzoite vacuoles | As an immunomodulatory molecule (suppressing inflammasome activation) | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashidi, S.; Sánchez-Montejo, J.; Mansouri, R.; Ali-Hassanzadeh, M.; Savardashtaki, A.; Bahreini, M.S.; Karimazar, M.; Manzano-Román, R.; Nguewa, P. Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals 2022, 12, 1098. https://doi.org/10.3390/ani12091098
Rashidi S, Sánchez-Montejo J, Mansouri R, Ali-Hassanzadeh M, Savardashtaki A, Bahreini MS, Karimazar M, Manzano-Román R, Nguewa P. Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals. 2022; 12(9):1098. https://doi.org/10.3390/ani12091098
Chicago/Turabian StyleRashidi, Sajad, Javier Sánchez-Montejo, Reza Mansouri, Mohammad Ali-Hassanzadeh, Amir Savardashtaki, Mohammad Saleh Bahreini, Mohammadreza Karimazar, Raúl Manzano-Román, and Paul Nguewa. 2022. "Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates" Animals 12, no. 9: 1098. https://doi.org/10.3390/ani12091098
APA StyleRashidi, S., Sánchez-Montejo, J., Mansouri, R., Ali-Hassanzadeh, M., Savardashtaki, A., Bahreini, M. S., Karimazar, M., Manzano-Román, R., & Nguewa, P. (2022). Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals, 12(9), 1098. https://doi.org/10.3390/ani12091098