Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Care and Use
2.2. Experiment Schedule, and Diet
2.3. Growth Performance
2.4. Phagocytic Activity in Blood
2.5. Immunoglobulin A in Small Intestinal Wall
2.6. Microbial Analyses and Eimeria spp. Oocysts Detection
2.7. Statistical Analysis
3. Results
3.1. Growth Performance of Rabbits
3.2. Immunoglobulin A in Small Intestinal Wall and Phagocytic Activity in Blood
3.3. Microbial Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franz, C.H.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Ben Said, L.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, 039. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Chao, D.F.; León-Buitimea, A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Front. Microbiol. 2021, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cesa-Luna, C.; Alatorre-Cruz, J.-M.; Carreño-López, R.; Quintero-Hernández, V.; Baez, A. Emerging applications of bacteriocins as antimicrobials, anticancer drugs, and modulators of the gastrointestinal microbiota. Pol. J. Microbiol 2021, 70, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Bemena, L.D.; Mohamed, L.A.; Fernandes, A.M.; Lee, B.H. Applications of bacteriocins in food, livestock health and medicine. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 924–949. [Google Scholar]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. WHO Jt. News Release. 2017. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 17 January 2020).
- Werckenthin, C.; Cardoso, M.; Martel, J.-L.; Schwarz, S. Antimicrobial resistance in staphylococci from animals with particular reference to bovine Staphylococcus aureus, porcine Staphylococcus hyicus and canine Staphylococcus intermedius. Vet. Res. 2001, 32, 341–362. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, K.; Zhang, Y. Multidrug-resistant coagulase-negative Staphylococci in food animals. J. Appl. Microbiol. 2012, 113, 1027–1036. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A.; Akporehe, L.U.; Ogofure, A.G. Detection of methicillin-resistant staphylococci isolated from food producing animals: A public health implication. Vet. Sci. 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, J.S.; Ceotto, H.; Nascimento, S.B.; Giambiagi-deMarval, M.; Santos, K.R.N.; Bastos, M.C.F. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Lett. Appl. Microbiol. 2006, 42, 215–221. [Google Scholar] [CrossRef]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-antimicrobial synergy: A medical and food perspective. Front. Microbiol. 2017, 8, 1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Liu, M. The effect of bacteriocins derived from lactic acid bacteria on growth and biofilm formation of clinical pathogenic strains. Int. J. Clin. Exp. Med. 2016, 9, 7343–7348. [Google Scholar]
- Lauková, A.; Strompfová, V.; Pogány Simonová, M.; Szabóová, R. Methicilin-resistant Staphylococcus xylosus isolated from horses and their sensitivity to enterocins and herbal substances. Slovak J. Anim. Sci. 2011, 44, 167–171. [Google Scholar]
- Al Atya, A.K.; Belguesmia, Y.; Chataigne, G.; Ravallec, R.; Vachée, A.; Szunerits, S.; Boukherroub, R.; Drider, D. Anti-MRSA activities of enterocins DD28 and DD93 and evidence on their role in the inhibition of biofilm formation. Front. Microbiol. 2016, 7, 817. [Google Scholar] [CrossRef] [Green Version]
- Pogány Simonová, M.; Maďar, M.; Lauková, A. Effect of enterocins against methicillin-resistant animal-derived staphylococci. Vet. Res. Comm. 2021, 45, 467–473. [Google Scholar] [CrossRef]
- Lauková, A.; Strompfová, V.; Skřivanová, V.; Volek, Z.; Jindřichová, E.; Marounek, M. Bacteriocin producing strain of Enterococcus faecium EK13 with probiotic character and its application in the digestive tract of rabbits. Biol. Bratisl. 2006, 61, 779–782. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 3rd ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Van Soest, J.P.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3594. [Google Scholar] [CrossRef]
- Mareková, M.; Lauková, A.; Skaugen, M.; Nes, F.I. Isolation and characterization of a new bacteriocins produced by enviromental isolate Enterococcus faecium AL41. J. Ind. Microbiol. Biotechnol. 2007, 34, 533–537. [Google Scholar] [CrossRef]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of the antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 9, 9–20. [Google Scholar] [CrossRef]
- Strompfová, V.; Marciňáková, M.; Simonová, M.; Gancarčíková, S.; Jonecová, Z.; Sciránková, Ľ.; Koščová, J.; Buleca, V.; Čobanová, K.; Lauková, A. Enterococcus faecium EK13—An enterocin A-producing strain with probiotic character and its effect in piglets. Anaerobe 2006, 12, 242–248. [Google Scholar] [CrossRef]
- Šteruská, M. Tests for the investigation of leukocyte function. In Haematology and transfusiology; Hrubisko, M., Šteruská, M., Eds.; Osveta: Martin, Czechoslovakia, 1981. [Google Scholar]
- Nikawa, T.; Odahara, K.; Koizumi, H.; Kido, Y.; Teshima, S.; Rokutan, K.; Kishi, K. Vitamin A prevents decline in immunoglobulin A and Th2 cytokine levels in small intestinal mucosa of protein-malnourished mice. J. Nutr. 1999, 129, 934–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MAFF—Ministry of Agriculture, Fisheries and Food. Manual of Veterinary Parasitological Laboratory Techniques, 3rd ed.; HMSO: London, UK, 1986; pp. 150–152.
- Kalma, R.P.; Patel, V.K.; Joshi, A.; Umatiya, R.V.; Parmar, K.N.; Damor, S.V.; Chauhan, H.D.; Srivastava, A.K.; Sharma, H.A. Probiotic supplementation in rabbit: A review. Int. J. Agric. Sci. 2016, 8, 2811–2815. [Google Scholar]
- Bhatt, R.S.; Agrawal, A.R.; Sahoo, A. Effect of probiotic supplementation on growth performance, nutrient utilization and carcass characteristics of growing Chinchilla rabbits. J. Appl. Anim. Res. 2017, 45, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Wlazło, L.; Kowalska, D.; Bielański, P.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Łukaszewicz, M.; Czech, A.; Nowakowicz-Debek, B. Effect of fermented rapeseed meal on the gastrointestinal microbiota and immune status of rabbit (Oryctolagus cuniculus). Animals 2021, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Autochtonous strain Enterococcus faecium EF2019 (CCM7420), its bacteriocin and their beneficial effects in broiler rabbits: A review. Animals 2020, 10, 1188. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL 41: Its enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicrob. Proteins 2012, 4, 243–249. [Google Scholar] [CrossRef]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Gancarčíková, S.; Kandričáková, A.; Plachá, I.; Chrenková, M.; Formelová, Z.; Ondruška, Ľ.; Ščerbová, J.; et al. Assessment of Lantibiotic type bacteriocin—Gallidermin application in model experiment with broiler rabbits. Int. J. Anim. Sci. 2018, 2, 1028. [Google Scholar]
- Szabóová, R.; Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Vasilková, Z.; Chrenková, M. Enterocin 4231 produced by Enterococcus faecium CCM 4231 and its use in rabbits. Acta Vet. Beograd 2011, 61, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, G.C.; Lemme-Dumit, J.M.; Thieblemont, N.; Carmuega, E.; Weill, R.; Perdigón, G. Stimulation of innate immune cells induced by probiotics: Participation of toll-like receptors. J. Clin. Cell. Immunol. 2015, 6, 1000283. [Google Scholar]
- Fortune-Lamothe, L.; Boullier, S. A review on the interactions between gutmicroflora and digestive mucosal imunity. Possible ways to improve the health of rabbits. Livest. Sci. 2007, 107, 1–18. [Google Scholar] [CrossRef]
- Deptuła, W.; Nied´zwiedzka-Rystwej, P.; ´Sliwa, J.; Kaczmarczyk, M.; Tokarz-Deptuła, B.; Hukowska-Szematowicz, B.; Pawlikowska, M. Values of selected immune indices in healthy rabbits. Centr. Eur. J. Immunol. 2008, 33, 190–192. [Google Scholar]
- Fathi, M.; Abdelsalam, M.; Al-Homidan, I.; Ebeid, T.; El-Zarei, M.; Abou-Emera, O. Effect of probiotic supplementation and genotype on growth performance, carcass traits, hematological parameters and imunity of growing rabbits under hot environmental conditions. Anim. Sci. J. 2017, 88, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Lauková, A.; Plachá, I.; Čobanová, K.; Strompfová, V.; Szabóová, R.; Chrastinová, L’. Can enterocins affect phagocytosis and glutathione peroxidase in rabbits? Cent. Eur. J. Biol. 2013, 8, 730–734. [Google Scholar]
- Wang, C.; Zhu, Y.; Li, F.; Huang, L. The effect of Lactobacillus isolates on growth performance, immune response, intestinal bacterial community composition of growing Rex Rabbits. J. Anim. Physiol. Anim. Nutr. 2017, 101, e1–e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantis, N.J.; Rol, N.; Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, D.; Yang, M.; Wen, B.; Lai, J.; Zhou, Y.; Sun, H.; Xiong, L.; Wang, J.; Lin, Y.; et al. Probiotic Clostridium butyricum improves the growth performance, immune function, and gut microbiota of weaning Rex rabbits. Probiotics Antimicrob. Proteins 2019, 11, 1278–1292. [Google Scholar] [CrossRef]
- Plachá, I.; Bačová, K.; Zitterl-Eglseer, K.; LAuková, A.; Chrastinová, Ľ.; Maďarová, M.; Žitňan, R.; Štrkolcová, G. Thymol in fattening rabbit diet, its bioavailability and effects on intestinal morphology, microbiota from caecal content and immunity. J. Anim. Physiol. Anim. Nutr. 2021, 106, 368–377. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yu, C.; Chen, S.W.; Chen, B.J.; Wang, H.T. Effect of yeast with bacteriocin from rumen bacteria on growth performance, caecal flora, caecal fermentation and immunity function of broiler chicks. J. Agric. Sci. 2013, 151, 287–297. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, L’.; Plachá, I.; Kandričáková, A.; Szabóová, R.; Strompfová, V.; Chrenková, M.; Čobanová, K.; Žitňan, R. Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob. Proteins 2014, 6, 41–46. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, L’.; Kandričáková, A.; Gancarčíková, S.; Bino, E.; Plachá, I.; Ščerbová, J.; Strompfová, V.; Žitňan, R.; Lauková, A. Can have enterocin M in combination with sage beneficial effect on microbiota, blood biochemistry, phagocytic activity and jejunal morphometry in broiler rabbits? Animals 2020, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakandl, M. Coccidia of rabbit: A review. Folia Parasitol. 2009, 56, 153–166. [Google Scholar] [CrossRef] [PubMed]
Nutrient Content | g·kg−1 in Original Feed | g·kg−1 in Dry Matter |
---|---|---|
Dry matter | 886.65 | 1000.00 |
Crude protein | 155.35 | 174.94 |
Crude fiber | 132.37 | 149.29 |
Crude fat | 20.30 | 22.89 |
Ash | 90.08 | 101.60 |
Starch | 238.71 | 269.22 |
Acid detergent fiber | 151.69 | 171.08 |
Neutral detergent fiber | 295.10 | 332.83 |
Calcium | 15.90 | 17.94 |
Phosphorus | 4.89 | 5.51 |
Magnesium | 2.57 | 2.90 |
Sodium potassium | 1.21 | 1.36 |
Iron | 564.70 * | 636.88 * |
Zinc | 97.77 * | 110.27 * |
Copper | 20.50 * | 23.12 * |
Metabolizable energy (MJ.kg−1) | 11.16 | 11.02 |
Tested Parameters | Day | E | S | E + S | C | p-Value | ||
---|---|---|---|---|---|---|---|---|
Time | Treatment | Time × Treatment | ||||||
Body weight (g) | 0 | 1153.0 ± 178.2 a | 1140.2 ± 149.3 ab | 1060.9 ± 150.8 ab | 1012.9 ± 118.8 b | |||
14 | 1735.0 ± 260.0 a | 1734.5 ± 152.3 ab | 1691.5 ± 213.1 ab | 1487.8 ± 203.9 b | <0.0001 | <0.0001 | 0.2982 | |
21 | 2052.7 ± 266.1 a | 2014.8 ± 186.1 ab | 1999.0 ± 212.2 ab | 1759.7 ± 218.6 b | ||||
Average daily weight gain (ADWG; g/day/rabbit) | 0–14 | 41.58 ± 5.85 a | 42.45 ± 8.67 ab | 45.04 ± 9.54 ab | 33.92 ± 8.53 b | 0.2940 | <0.0001 | 0.0997 |
14–21 | 45.39 ± 8.13 a | 40.04 ± 8.82 ab | 43.93 ± 7.80 ab | 38.85 ± 10.61 b | ||||
Mortality (rabbit/group) | 0–21 | 0 | 1 | 2 | 1 | |||
Feed conversion (g/g) | 0–21 | 2.37 ± 0.44 | 2.78 ± 0.92 | 2.60 ± 0.67 | 2.64 ± 0.20 | 0.1493 | ||
Phagocytic activity (PA; %) | 0 | 63.75 ± 3.33 | 63.75 ± 3.33 | 63.75 ± 3.33 | 63.75 ± 3.33 | |||
14 | 69.63 ± 2.13 Aa | 61.63 ± 2.77 Bb | 71.00 ± 2.14 Aa | 59.63 ± 3.66 Bb | 0.0097 | <0.0001 | <0.0001 | |
21 | 70.25 ± 1.39 Aa | 81.13 ± 1.60 Bb | 53.88 ± 3.60 Cc | 58.25 ± 2.82 Dd | ||||
Secretory IgA (μg/g) | 21 | 9.817 ± 0.765 a | 9.929 ± 0.635 a | 17.240 ± 3.694 b | 9.705 ± 0.761 a | 0.0220 |
Bacteria | Day | E | S | E + S | C | p-Value | ||
---|---|---|---|---|---|---|---|---|
Time | Treatment | Time × Treatment | ||||||
Enterococcus spp. | 0 | 3.49 ± 0.30 | 3.49 ± 0.30 | 3.49 ± 0.30 | 3.49 ± 0.30 | |||
14 | 2.77 ± 0.86 | 2.51 ± 0.78 | 2.97 ± 0.38 | 2.43 ± 1.02 | <0.0001 | <0.0001 | <0.0001 | |
21 | 3.09 ± 0.41 Aa | 2.52 ± 0.49 Ab | 1.46 ± 0.69 Bc | 2.76 ± 0.53 Aa | ||||
Coliforms | 0 | 3.59 ± 1.73 | 3.59 ± 1.73 | 3.59 ± 1.73 | 3.59 ± 1.73 | |||
14 | 1.17 ± 0.37 Aa | 3.61 ± 0.77 Bb | 1.60 ± 0.90 Aa | 1.67 ± 0.75 Aa | <0.0001 | <0.0001 | <0.0001 | |
21 | 2.26 ± 1.16 Aa | 2.68 ± 0.75 Aa | 1.00 ± 0.00 Bb | 2.14 ± 0.58 ABa | ||||
Amylolytic streptococci | 0 | 3.94 ± 0.60 | 3.94 ± 0.60 | 3.94 ± 0.60 | 3.94 ± 0.60 | |||
14 | 3.59 ± 0.12 | 3.87 ± 0.53 | 3.22 ± 0.45 | 3.49 ± 0.30 | 0.4952 | 0.9087 | 0.9973 | |
21 | 3.76 ± 1.06 | 3.48 ± 0.62 | 3.16 ± 0.57 | 3.01 ± 0.74 | ||||
Staphylococcus spp. | 0 | 3.87 ± 0.17 | 3.87 ± 0.17 | 3.87 ± 0.17 | 3.87 ± 0.17 | |||
14 | 3.65 ± 0.27 | 3.70 ± 0.26 | 3.55 ± 0.29 | 3.49 ± 0.30 | <0.0001 | <0.0256 | <0.0001 | |
21 | 3.30 ± 0.47 Aa | 3.02 ± 0.36 Bb | 3.67 ± 0.65 Cc | 3.60 ± 0.44 ACc | ||||
0 | 2.38 ± 0.22 | 2.38 ± 0.22 | 2.38 ± 0.22 | 2.38 ± 0.22 | ||||
Methicillin-resistant staphylococci | 14 | 3.65 ± 0.27 | 3.70 ± 0.26 | 3.55 ± 0.27 | 3.48 ± 0.38 | <0.0001 | <0.0001 | <0.0001 |
21 | 4.01± 0.09 Aa | 3.55 ± 0.34 Bb | 3.06 ± 0.47 Cc | 3.79 ± 0.18 ABd | ||||
Total bacteria | 0 | 4.96 ± 0.45 | 4.96 ± 0.45 | 4.96 ± 0.45 | 4.96 ± 0.45 | |||
14 | 3.09 ± 0.23 a | 3.59 ± 0.71 b | 3.45 ± 0.23 bc | 3.13 ± 0.44 ac | <0.0001 | <0.0001 | <0.0001 | |
21 | 3.92 ± 0.57 Aa | 4.37 ± 1.04 Bb | 3.38 ± 0.09 Cc | 3.65 ± 0.13 ACac | ||||
SE P3/Tr2a strain | data | NT | 1.66 ± 1.20 | 1.20 ± 0.68 | NT | 0.3615 |
Bacteria | Source | E | S | E + S | C | p-Value |
---|---|---|---|---|---|---|
Enterococcus spp. | cecum | 1.63 ± 0.77 a | 0.90 ± 0.00 b | 0.90 ± 0.00 b | 1.56 ± 0.84 a | <0.0001 |
appendix | 0.90 ± 0.00 | 0.90 ± 0.00 | 0.90 ± 0.00 | 1.43 ± 0.41 | 0.0391 | |
Coliforms | cecum | 0.90 ± 0.00 a | 1.00 ± 0.17 a | 0.90 ± 0.00 a | 2.30 ± 0.67 b | <0.0001 |
appendix | 1.43 ± 0.91 | 1.39 ± 0.63 | 1.36 ± 0.49 | 1.05 ± 0.25 | 0.6810 | |
Amylolytic streptococci | cecum | 2.71 ± 0.44 | 3.35 ± 0.92 | 3.50 ± 0.67 | 2.93 ± 0.20 | 0.1091 |
appendix | 2.96 ± 1.20 | 3.13 ± 0.94 | 3.18 ± 0.66 | 3.83 ± 0.70 | 0.2484 | |
Staphylococcus spp. | cecum | 3.02 ± 0.29 | 3.64 ± 0.36 | 3.29 ± 0.88 | 3.52 ± 0.45 | 0.1972 |
appendix | 3.32 ± 0.20 | 3.65 ± 0.23 | 3.45 ± 0.16 | 3.17 ± 0.37 | 0.0952 | |
Methicillin-resistant staphylococci | cecum | 4.03 ± 0.50 ab | 4.17 ± 0.19 ab | 4.86 ± 1.77 a | 3.40 ± 0.27 b | 0.0489 |
appendix | 3.40 ± 0.17 | 3.39 ± 0.23 | 3.52 ± 0.16 | 3.75 ± 0.29 | 0.2088 | |
Total bacteria | cecum | 3.22 ± 0.23 a | 3.73 ± 0.52 ab | 3.91 ± 0.35 b | 3.31 ± 0.20 a | 0.0188 |
appendix | 3.73 ± 0.77 | 3.33 ± 0.25 | 3.50 ± 0.13 | 3.88 ± 1.22 | 0.1915 | |
SE P3/Tr2a strain | cecum | NT | 0.90 ± 0.00 | 1.00 ± 0.17 | NT | 0.9885 |
appendix | NT | 1.00 ± 0.17 | 0.90 ± 0.00 | NT | 0.9885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogány Simonová, M.; Chrastinová, Ľ.; Ščerbová, J.; Focková, V.; Plachá, I.; Formelová, Z.; Chrenková, M.; Lauková, A. Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response. Animals 2022, 12, 1108. https://doi.org/10.3390/ani12091108
Pogány Simonová M, Chrastinová Ľ, Ščerbová J, Focková V, Plachá I, Formelová Z, Chrenková M, Lauková A. Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response. Animals. 2022; 12(9):1108. https://doi.org/10.3390/ani12091108
Chicago/Turabian StylePogány Simonová, Monika, Ľubica Chrastinová, Jana Ščerbová, Valentína Focková, Iveta Plachá, Zuzana Formelová, Mária Chrenková, and Andrea Lauková. 2022. "Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response" Animals 12, no. 9: 1108. https://doi.org/10.3390/ani12091108
APA StylePogány Simonová, M., Chrastinová, Ľ., Ščerbová, J., Focková, V., Plachá, I., Formelová, Z., Chrenková, M., & Lauková, A. (2022). Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response. Animals, 12(9), 1108. https://doi.org/10.3390/ani12091108