Effect of Dietary Inclusion of Riboflavin on Growth, Nutrient Digestibility and Ruminal Fermentation in Hu Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lambs, Expeirmental Design and Diets
2.2. Data and Sample Collection
2.3. Chemical Analyses
2.4. Extraction of Microbial DNA and Real Time-PCR
2.5. Data Statistics and Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Apparent Digestibility and Rumen Fermentation
3.3. Ruminal Microbial Enzyme Activity and Microbial Number
3.4. Urinary Purine Derivatives and MCP
4. Discussion
4.1. Growth Performance
4.2. Nutrient Apparent Digestibility and Rumen Fermentation
4.3. Ruminal Enzyme Activity and Microbial Number
4.4. Urinary Purine Derivatives and MCP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, J.T.; Rivlin, R.S. Riboflavin (Vitamin B2). In Handbook of Vitamins, 15th ed.; Zempleni, J., Suttie, J.W., Gregory, J.F., III, Stover, P.J., Eds.; CRC Press: Los Angeles, CA, USA, 2013; pp. 191–266. [Google Scholar]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2013, 77, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaan, A.N.; Ijlst, L.; Roermund, C.; Wijburg, F.A.; Wanders, R.; Waterham, H.R. Identification of the human mitochondrial fad transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency. Mol. Genet. Metab. 2005, 86, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Wei, J.Y.; Yang, J.J.; Gao, W.N.; Wu, J.Q.; Guo, C.J. Riboflavin supplementation improves energy metabolism in mice exposed to acute hypoxia. Physiol. Res. 2014, 63, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 2006, 163, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.P.; Robinson, I.M. Some nutritional requirements of the genus Ruminococcus. Appl. Microbiol. 1961, 9, 91–95. [Google Scholar] [CrossRef]
- Bonhomme, A. Rumen ciliates: Their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 1990, 30, 203–266. [Google Scholar] [CrossRef]
- Wu, H.M.; Zhang, J.; Wang, C.; Liu, Q.; Guo, G.; Huo, W.J.; Chen, L.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L. Effects of riboflavin supplementation on performance, nutrient digestion, rumen microbiota composition and activities of Holstein bulls. Br. J. Nutr. 2021, 126, 1288–1295. [Google Scholar] [CrossRef]
- Van Gylswyk, N.O.; Wejdemar, K.; Kulander, K. Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. Appl. Environ. Microbiol. 1992, 58, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Santschi, D.E.; Berthiaume, R.; Matte, J.J.; Mustafa, A.F.; Girard, C.L. Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows. J. Dairy Sci. 2005, 88, 2043–2054. [Google Scholar] [CrossRef]
- Salouhi, B.; Echchelh, A.; Çaðlayan, A.; Elkattani, Y.; Elyachioui, M.; Chaouch, A.; Jadal, M. Effect of niacin supplementation on milk production and composition and lamb performance of sheep ewes. Biotechnol 2010, 4, 78–82. [Google Scholar]
- Li, H.Q.; Wang, B.; Li, Z.; Luo, H.L.; Wang, Y.J.; Zhang, C.; Jian, L.Y.; Gao, Y.F.; Lu, W.; Liu, M.; et al. Effects of rumen-protected folic acid addition in maternal and post-weaning diets on growth performance, total tract digestibility, ruminal fermentation and blood metabolites in lambs. Anim. Feed Sci. Technol. 2020, 260, 114364. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Small Ruminants. Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids and New World Camelids, 1st ed.; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Lopez, M.C.; Fernandez, C. Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. J. Dairy Sci. 2013, 96, 4542–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Agarwal, I.; Kamra, D.N.; Chaudhary, L.C. Diurnal variations in the activities of hydrolytic enzymes in different fractions of rumen contents of Murrah buffalo. J. Appl. Anim. Res. 2000, 18, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives-An Overview of Technical Details; Rowett Research Institute: Aberdeen, UK, 1992. [Google Scholar]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Kongmun, P.; Wanapat, M.; Pakdee, P.; Navanukraw, C. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest. Sci. 2010, 127, 38–44. [Google Scholar] [CrossRef]
- Norusis, M.J. SPSS Advanced Statistics User’s Guide; SPSS: Chicago, IL, USA, 1990. [Google Scholar]
- Joosten, V.; Berkel, W.V. Flavoenzymes. Curr. Opin. Chem. Biol. 2007, 11, 195–202. [Google Scholar] [CrossRef]
- Gnainsky, Y.; Zfanya, N.; Elgart, M.; Omri, E.; Brandis, A.; Mehlman, T.; Itkin, M.; Malitsky, S.; Adamski, J.; Soen, Y. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 2021, 34, 108583. [Google Scholar] [CrossRef]
- Qin, Y.; Zhou, J.; Xiong, X.; Huang, J.; Li, J.; Wang, Q.; Yang, H.; Yin, Y. Effect of riboflavin on intestinal development and intestinal epithelial cell function of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2022. accepted. [Google Scholar] [CrossRef]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J. The rumen microbial ecosystem-some recent developments. Trends Microbiol. 1997, 5, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Andries, J.I.; Buysse, F.X.; De Brabander, D.L.; Cottyn, B.G. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances-A review. Anim. Feed Sci. Technol. 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Wang, Y.X.; Yang, W.Z.; Bai, Y.S.; Shi, Z.G.; Liu, X.N. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in simmental steers. J. Anim. Physiol. Anim. Nutr. 2015, 99, 123–131. [Google Scholar] [CrossRef]
- Firkins, J.L.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Orpin, C.G. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim. Feed Sci. Technol. 1984, 10, 121–143. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A. Rumen microbes, enzymes and feed digestion-a review. Asian-Australasian J. Anim. Sci. 2002, 15, 1659–1676. [Google Scholar] [CrossRef]
- Akin, D.E.; Borneman, W.S. Role of rumen fungi in fiber degradation. J. Dairy Sci. 1990, 73, 3023–3032. [Google Scholar] [CrossRef]
- Schweikert, M.; Fujishima, M.; Görtz, H.D. Symbiotic associations between ciliates and prokaryotes. In The Prokaryotes, Rosenberg, E., Delong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin, Germany, 2013; pp. 427–463. [Google Scholar]
- Wallace, R.J.; Brammall, M.L. The role of different species of bacteria in the hydrolysis of protein in the rumen. J. Gen. Microbiol. 1985, 131, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Yates, C.A.; Evans, G.S.; Powers, H.J. Riboflavin deficiency: Early effects on post-weaning development of the duodenum in rats. Br. J. Nutr. 2001, 86, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Oba, M.; Allen, M. Effects of diet fermentability on efficiency of microbial nitrogen production in lactating dairy cows. J. Dairy Sci. 2003, 86, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, E.; Hristov, A.N. Interactions between cattle and the environment: A general introduction. In Nitrogen and Phosphorus Nutrition of Cattle: Reducing the Environmental Impact of Cattle Operations; CABI: Wallingford, UK, 2005. [Google Scholar]
Ingredients | Contents (g/kg DM) |
---|---|
Corn straw | 250 |
Peanut shell powder | 80 |
Sunflower leather powder | 70 |
Corn grain, ground | 220 |
Soybean meal | 70 |
Cottonseed meal | 60 |
Corn germ meal | 100 |
Sprayed corn husk | 50 |
Rice bran | 50 |
Calcium carbonate | 13 |
Salt | 5 |
Calcium phosphate | 4 |
Mineral and vitamin premix * | 28 |
Chemical composition | |
Organic matter | 907.0 |
Crude protein | 133.9 |
Ether extract | 28.0 |
Neutral detergent fibre | 478.3 |
Acid detergent fibre | 221.9 |
Non-fibre carbohydrate 1 | 266.9 |
Calcium | 6.2 |
Phosphorus | 4.2 |
Target Species | Primer Sequence (5′) | Gene Bank Accession No. | Size (bp) |
---|---|---|---|
Total bacteria | F: CGGCAACGAGCGCAACCC R: CCATTGTAGCACGTGTGTAGCC | CP058023.1 | 147 |
Total anaerobic fungi | F: GAGGAAGTAAAAGTCGTAACAAGGTTTC R: CAAATTCACAAAGGGTAGGATGATT | GQ355327.1 | 120 |
Total protozoa | F: GCTTTCGWTGGTAGTGTATT R: CTTGCCCTCYAATCGTWCT | HM212038.1 | 234 |
Total methanogens | F: TTCGGTGGATCDCARAGRGC R: GBARGTCGWAWCCGTAGAATCC | GQ339873.1 | 160 |
R.albus | F: CCCTAAAAGCAGTCTTAGTTCG R: CCTCCTTGCGGTTAGAACA | CP002403.1 | 176 |
R. flavefaciens | F: ATTGTCCCAGTTCAGATTGC R: GGCGTCCTCATTGCTGTTAG | AB849343.1 | 173 |
B. fibrisolvens | F: ACCGCATAAGCGCACGGA R: CGGGTCCATCTTGTACCGATAAAT | HQ404372.1 | 65 |
F. succinogenes | F: GTTCGGAATTACTGGGCGTAAA R: CGCCTGCCCCTGAACTATC | AB275512.1 | 121 |
Rb. amylophilus | F: CTGGGGAGCTGCCTGAATG R: GCATCTGAATGCGACTGGTTG | MH708240.1 | 102 |
P. ruminicola | F: GAAAGTCGGATTAATGCTCTATGTTG R: CATCCTATAGCGGTAAACCTTTGG | LT975683.1 | 74 |
Item | Treatments * | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | LRF | MRF | HRF | Treatment | Linear | Quadratic | ||
DMI (kg d−1) | 1.78 | 1.78 | 1.72 | 1.66 | 0.094 | 0.518 | 0.148 | 0.321 |
Body weight (kg) | ||||||||
Initial body weight | 18.9 | 18.8 | 18.8 | 18.7 | 0.829 | 0.995 | 0.793 | 0.966 |
Final body weight | 36.6 | 37.8 | 38.8 | 36.7 | 1.20 | 0.255 | 0.726 | 0.170 |
ADG (kg d−1) | 0.31 b | 0.33 ab | 0.34 a | 0.31 b | 0.014 | 0.037 | 0.447 | 0.023 |
FCR (kg kg−1) | 5.84 a | 5.48 ab | 4.99 b | 5.35 ab | 0.255 | 0.019 | 0.026 | 0.061 |
Item | Treatments * | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | LRF | MRF | HRF | Treatment | Linear | Quadratic | ||
Digestibility (%) | ||||||||
Dry matter | 64.4 b | 66.0 ab | 67.8 a | 64.8 b | 1.04 | 0.015 | 0.449 | 0.016 |
Organic matter | 66.8 b | 68.3 ab | 70.2 a | 67.5 b | 1.03 | 0.022 | 0.327 | 0.022 |
Crude protein | 71.8 b | 73.6 ab | 75.4 a | 72.5 b | 1.10 | 0.019 | 0.345 | 0.014 |
Neutral detergent fibre | 46.4 b | 48.1 ab | 51.3 a | 47.4 b | 1.67 | 0.045 | 0.301 | 0.049 |
Acid detergent fibre | 42.7 b | 43.4 b | 48.2 a | 44.1 b | 1.74 | 0.021 | 0.165 | 0.042 |
Ruminal fermentation | ||||||||
pH | 6.51 a | 6.36 ab | 6.24 b | 6.37 ab | 0.080 | 0.014 | 0.042 | 0.068 |
Total VFA (mM) | 106 c | 126 ab | 134 a | 120 b | 4.71 | 0.001 | 0.005 | 0.061 |
Mol/100 mol | ||||||||
Acetate (A) | 64.7 b | 67.0 a | 68.1 a | 66.9 a | 0.89 | 0.002 | 0.032 | 0.411 |
Propionate (P) | 22.0 a | 19.5 b | 19.2 b | 20.8 b | 0.50 | 0.030 | 0.039 | 0.112 |
Butyrate | 10.00 | 10.30 | 9.23 | 9.36 | 1.18 | 0.770 | 0.421 | 0.722 |
Valerate | 2.43 | 2.10 | 2.28 | 1.84 | 0.26 | 0.140 | 0.058 | 0.160 |
Isobutyrate | 0.20 c | 0.30 b | 0.34 a | 0.29 b | 0.02 | 0.001 | 0.022 | 0.073 |
Isovalerate | 0.81 | 0.79 | 0.83 | 0.79 | 0.10 | 0.974 | 0.973 | 0.980 |
A: P2 | 2.96 c | 3.45 a | 3.55 a | 3.22 b | 0.08 | 0.001 | 0.043 | 0.082 |
Ammonia N (mg 100 mL−1) | 10.25 | 9.61 | 9.00 | 9.74 | 0.86 | 0.551 | 0.431 | 0.389 |
Item | Treatments * | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | LRF | MRF | HRF | Treatment | Linear | Quadratic | ||
Microbial enzyme activity 1 | ||||||||
Carboxymethyl-cellulase | 0.32 b | 0.36 ab | 0.41 a | 0.38 ab | 0.031 | 0.041 | 0.032 | 0.121 |
Cellobiase | 0.55 | 0.60 | 0.63 | 0.59 | 0.041 | 0.276 | 0.252 | 0.152 |
Xylanase | 0.89 b | 0.96 ab | 1.00 a | 1.00 a | 0.042 | 0.038 | 0.008 | 0.214 |
Pectinase | 1.41 b | 1.64 ab | 1.86 a | 1.61 ab | 0.143 | 0.037 | 0.011 | 0.122 |
α-amylase | 2.54 | 2.70 | 2.99 | 2.71 | 0.260 | 0.384 | 0.316 | 0.271 |
Protease | 1.19 b | 1.37 ab | 1.52 a | 1.39 ab | 0.098 | 0.024 | 0.046 | 0.071 |
Microbiota (copies mL−1) | ||||||||
Total bacteria, × 10 12 | 2.68 b | 3.29 ab | 3.96 a | 3.21 ab | 0.365 | 0.016 | 0.047 | 0.081 |
Total anaerobic fungi, × 10 10 | 4.24 c | 6.79 b | 8.85 a | 7.02 b | 0.786 | 0.001 | 0.002 | 0.051 |
Total protozoa, ×109 | 1.71 b | 3.48 b | 5.14 a | 3.17 ab | 0.841 | 0.004 | 0.028 | 0.103 |
Methanogens, ×1010 | 0.67 | 0.72 | 0.90 | 0.78 | 0.108 | 0.192 | 0.135 | 0.197 |
R. albus, ×108 | 1.06 b | 1.78 ab | 2.17 a | 1.71 ab | 0.350 | 0.029 | 0.048 | 0.111 |
R. flavefaciens, ×109 | 1.47 b | 1.81 ab | 2.08 a | 1.74 ab | 0.200 | 0.041 | 0.028 | 0.122 |
F. succinogenes, ×109 | 1.65 b | 1.95 ab | 2.38 a | 1.95 ab | 0.239 | 0.040 | 0.012 | 0.334 |
B. fibrisolvens, ×109 | 2.10 b | 2.64 b | 3.19 a | 2.64 ab | 0.362 | 0.046 | 0.028 | 0.087 |
P. ruminicola, ×1010 | 1.24 b | 1.44 ab | 1.84 a | 1.59 ab | 0.181 | 0.019 | 0.022 | 0.119 |
Rb. amylophilus, ×108 | 1.41 b | 1.65 ab | 2.06 a | 1.70 ab | 0.220 | 0.049 | 0.030 | 0.054 |
Item | Treatments * | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | LRF | MRF | HRF | Treatment | Linear | Quadratic | ||
Allantoin (mmol d−1) | 8.61 b | 9.86 b | 12.03 a | 8.90 b | 0.916 | 0.012 | 0.470 | 0.026 |
Uric acid (mmol d−1) | 1.46 | 1.69 | 2.09 | 1.75 | 0.466 | 0.616 | 0.397 | 0.483 |
Xanthine + hypoxanthine (mmol d−1) | 0.82 b | 0.96 ab | 1.14 a | 0.87 b | 0.087 | 0.014 | 0.362 | 0.019 |
TPD1 (mmol d−1) | 10.9 b | 12.8 ab | 15.3 a | 11.6 b | 1.16 | 0.014 | 0.370 | 0.019 |
MCP2 (g d−1) | 58.3 b | 68.7 ab | 82.4 a | 62.4 b | 6.44 | 0.014 | 0.374 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, N.; Zhang, X.; Hao, X.; Dong, Y.; Wang, X.; Zhang, J. Effect of Dietary Inclusion of Riboflavin on Growth, Nutrient Digestibility and Ruminal Fermentation in Hu Lambs. Animals 2023, 13, 26. https://doi.org/10.3390/ani13010026
Ren N, Zhang X, Hao X, Dong Y, Wang X, Zhang J. Effect of Dietary Inclusion of Riboflavin on Growth, Nutrient Digestibility and Ruminal Fermentation in Hu Lambs. Animals. 2023; 13(1):26. https://doi.org/10.3390/ani13010026
Chicago/Turabian StyleRen, Na, Xuanzi Zhang, Xiaoyan Hao, Yingrui Dong, Xinggang Wang, and Jianxin Zhang. 2023. "Effect of Dietary Inclusion of Riboflavin on Growth, Nutrient Digestibility and Ruminal Fermentation in Hu Lambs" Animals 13, no. 1: 26. https://doi.org/10.3390/ani13010026
APA StyleRen, N., Zhang, X., Hao, X., Dong, Y., Wang, X., & Zhang, J. (2023). Effect of Dietary Inclusion of Riboflavin on Growth, Nutrient Digestibility and Ruminal Fermentation in Hu Lambs. Animals, 13(1), 26. https://doi.org/10.3390/ani13010026