Physicochemical Composition and Fatty Acid Profile of Goat Kids’ Meat Fed Ground-Corn-Grain Silage Rehydrated with Different Additives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments and Experimental Diets
2.2. Silage Making and Analyses
2.3. Determination of Chemical Composition
2.4. Slaughter and Sample Collection of the Muscles Longissimus Lumborum
2.5. Physicochemical Properties of the Muscle Longissimus Lumborum
2.6. Fatty Acids Profile of Longissimus Lumborum
2.7. Statistical Analysis
3. Results
3.1. Growth and Physicochemical Composition of Goat Meat
3.2. Fatty Acids Profile of Goat Meat
4. Discussion
4.1. Growth and Physicochemical Composition of Goat Meat
4.2. Fatty Acid (FA) Profile of Goat Meat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazhangara, I.R.; Chivandi, E.; Mupangwa, J.F.; Muchenje, V. The Potential of Goat Meat in the Red Meat Industry. Sustainability 2019, 11, 3671. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.R.; Santra, A.; Karim, S.A. Carcass yield, composition and meat quality attributes of sheep and goat under semiarid conditions. Meat Sci. 2004, 66, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.M.; Santos, E.M.; Oliveira, J.S.; Santos, F.N.S.; Lopes, R.C.; Santos, M.A.C.; Correa, Y.R.; Justino, E.S.; Leite, G.M.; Gomes, P.G.B.; et al. Effect of Cactus Pear as a Moistening Additive in the Production of Rehydrated Corn Grain Silage. J. Agric. Sci. 2021, 159, 731–742. [Google Scholar] [CrossRef]
- Silva, C.M.; Do Amaral, P.N.C.; Baggio, R.A.; Tubin, J.S.B.; Conte, R.A.; Dal Pivo, J.C.; Krahl, G.; Zampar, A.; Paiano, D. Stability of high moisture corn silage and corn rehydrated. Rev. Bras. Saúde e Produção Anim. 2016, 17, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, B.F.; Ávila, C.L.S.; Bernardes, T.F.; Pereira, M.N.; Santos, C.; Schwan, R.F. Fermentation Profile and Identification of Lactic Acid Bacteria and Yeasts of Rehydrated Corn Kernel Silage. J. Appl. Microbiol. 2017, 122, 589–600. [Google Scholar] [CrossRef]
- Arcari, M.A.; Martins, C.M.M.R.; Tomazi, T.; Gonçalves, J.L.; Santos, M.V. Effect of Substituting Dry Corn with Rehydrated Ensiled Corn on Dairy Cow Milk Yield and Nutrient Digestibility. Anim. Feed Sci. Technol. 2016, 221, 167–173. [Google Scholar] [CrossRef]
- Rowe, J.B.; Choct, M.; Pethick, D.W. Processing Cereal Grains for Animal Feeding. Aust. J. Agric. Res. 1999, 50, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Iommelli, P.; Zicarelli, F.; Musco, N.; Sarubbi, F.; Grossi, M.; Lotito, D.; Lombardi, P.; Infascelli, F.; Tudisco, R. Effect of cereals and legumes processing on in situ rumen protein degradability: A review. Fermentation 2022, 8, 363. [Google Scholar] [CrossRef]
- Mombach, M.A.; Pereira, D.H.; Pina, D.S.; Bolson, D.C.; Pedreira, B.C. Silage of rehydrated corn grain. Arq. Bras. Med. Vet. Zootec. 2019, 71, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Turner, K.E.; Belesky, D.P.; Cassida, K.A.; Zerby, H.N. Carcass merit and meat quality in Suffolk lambs, Katahdin lambs, and meat-goat kids finished on a grass–legume pasture with and without supplementation. Meat Sci. 2014, 98, 211–219. [Google Scholar] [CrossRef]
- Silva, N.C.; Nascimento, C.F.; Nascimento, F.A.; de Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Fermentation and Aerobic Stability of Rehydrated Corn Grain Silage Treated with Different Doses of Lactobacillus Buchneri or a Combination of Lactobacillus Plantarum and Pediococcus Acidilactici. J. Dairy Sci. 2018, 101, 4158–4167. [Google Scholar] [CrossRef] [PubMed]
- Rezende, A.V.; Rabelo, C.H.S.; Veiga, R.M.; Andrade, L.P.; Härter, C.J.; Rabelo, F.H.S.; Basso, F.C.; Nogueira, D.A.; Reis, R.A. Rehydration of Corn Grain with Acid Whey Improves the Silage Quality. Anim. Feed Sci. Technol. 2014, 197, 213–221. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; China Legal Publishing House: Beijing, China, 2007. [Google Scholar]
- Weiss, W.P. Predicting Energy Values of Feeds1. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- De Moura Zanine, A.; Santos, E.M.; Dórea, J.R.R.; de Santana Dantas, P.A.; da Silva, T.C.; Pereira, O.G. Evaluation of Elephant Grass Silage with the Addition of Cassava Scrapings. Rev. Bras. Zootec. 2010, 39, 2611–2616. [Google Scholar] [CrossRef] [Green Version]
- Bolsen, K.K.; Lin, C.; Brent, B.E.; Feyerherm, A.M.; Urban, J.E.; Aimutis, W.R. Effect of Silage Additives on the Microbial Succession and Fermentation Process of Alfalfa and Corn Silages. J. Dairy Sci. 1992, 75, 3066–3083. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry (AOAC). Official Methods of Analysis, 19th ed.; Association Official Analytical Chemistry: Washington, DC, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandes, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen. Gainesv. Univ. Florida 2000, 339, A25–A32. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Collins, D.; Hopkins, D.L. The Effect of Electrical Stimulation and Tenderstretching on Colour and Oxidation Traits of Alpaca (Vicunga Pacos) Meat. Meat Sci. 2019, 156, 125–130. [Google Scholar] [CrossRef]
- Miltenburg, G.A.J.; Wensing, T.; Smulders, F.J.M.; Breukink, H.J. Relationship between Blood Hemoglobin, Plasma and Tissue Iron, Muscle Heme Pigment, and Carcass Color of Veal1. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef]
- Boccard, R.; Buchter, L.; Casteels, E.; Cosentino, E.; Dransfield, E.; Hood, D.E.; Joseph, R.L.; MacDougall, D.B.; Rhodes, D.N.; Schön, I.; et al. Procedures for Measuring Meat Quality Characteristics in Beef Production Experiments. Report of a Working Group in the Commission of the European Communities’ (CEC) Beef Production Research Programme. Livest. Prod. Sci. 1981, 8, 385–397. [Google Scholar] [CrossRef]
- Hamm, R. Functional Properties of the Myofibrillar System and Their Measurements. In Muscle as food; Bechtel, P.J., Ed.; Academic Press: Orlando, FL, USA, 1986; pp. 135–199. [Google Scholar]
- American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; American Meat Science Association Educational Foundation: Kearney, MO, USA, 2016. [Google Scholar]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Evaluation of Slice Shear Force as an Objective Method of Assessing Beef Longissimus Tenderness. J. Anim. Sci. 1999, 77, 2693–2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Rhee, K.S. Fatty Acids in Meats and Meat Products. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 65–93. [Google Scholar]
- Smet, S.; Raes, K.; Demeyer, D. Meat Fatty Acid Composition as Affected by Fatness and Genetic Factors: A Review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Statistical Analysis System Institute (SAS). SAS User’s Guide: Statistics; Version 9.4; SAS Institute, Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Siqueira, M.; Ferreira, M.; Monnerat, J.; de Lima Silva, J.; Costa, C.; Conceição, M.G.; Andrade, R.D.; Barros, L.J.A.; Melo, T. Optimizing the Use of Spineless Cactus in the Diets of Cattle: Total and Partial Digestibility, Fiber Dynamics and Ruminal Parameters. Anim. Feed Sci. Technol. 2017, 226, 56–64. [Google Scholar] [CrossRef]
- Pereira, G.A.; Santos, E.M.; de Oliveira, J.S.; de Araújo, G.G.L.; de Sá Paulino, R.; Perazzo, A.F.; Ramos, J.P.d.F.; César Neto, J.M.; Cruz, G.F.d.L.; Leite, G.M. Intake, Nutrient Digestibility, Nitrogen Balance, and Microbial Protein Synthesis in Sheep Fed Spineless-Cactus Silage and Fresh Spineless Cactus. Small Rumin. Res. 2021, 194, 106293. [Google Scholar] [CrossRef]
- Santos, A.P.M.; Santos, E.M.; de Oliveira, J.S.; Ribeiro, O.L.; Perazzo, A.F.; Pinho, R.M.A.; da Silva Macêdo, A.J.; Pereira, G.A. Effects of Urea Addition on the Fermentation of Sorghum (Sorghum Bicolor) Silage. African J. Range Forage Sci. 2018, 35, 55–62. [Google Scholar] [CrossRef]
- Puolanne, E. Developments in Our Understanding of Water-Holding Capacity in Meat. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2017; pp. 167–190. [Google Scholar]
- England, E.M.; Scheffler, T.L.; Kasten, S.C.; Matarneh, S.K.; Gerrard, D.E. Exploring the Unknowns Involved in the Transformation of Muscle to Meat. Meat Sci. 2013, 95, 837–843. [Google Scholar] [CrossRef]
- Ferguson, D.M.; Gerrard, D.E. Regulation of Post-Mortem Glycolysis in Ruminant Muscle. Anim. Prod. Sci. 2014, 54, 464–481. [Google Scholar] [CrossRef]
- El Otmani, S.; Chebli, Y.; Hornick, J.L.; Cabaraux, J.F.; Chentouf, M. Growth Performance, Carcass Characteristics and Meat Quality of Male Goat Kids Supplemented by Alternative Feed Resources: Olive Cake and Cactus Cladodes. Anim. Feed Sci. Technol. 2021, 272, 114746. [Google Scholar] [CrossRef]
- Granit, R.; Angel, S.; Akiri, B.; Holzer, Z.; Aharoni, Y.; Orlov, A.; Kanner, J. Effects of Vitamin E Supplementation on Lipid Peroxidation and Color Retention of Salted Calf Muscle from a Diet Rich in Polyunsaturated Fatty Acids. J. Agric. Food Chem. 2001, 49, 5951–5956. [Google Scholar] [CrossRef]
- El-Waziry, A.M.; Al-Owaimer, A.N.; Suliman, G.M.; Hussein, E.S.; Abouheif, M.A. Performance, Carcass Characteristics and Meat Quality of Intact and Castrated Ardhi Goat Kids Fed High Energy Diet. J. Anim. Vet. Adv. 2011, 10, 2157–2162. [Google Scholar] [CrossRef]
- Nikbin, S.; Panandam, J.M.; Sazili, A.Q. Influence of Pre-Slaughter Transportation and Stocking Density on Carcass and Meat Quality Characteristics of Boer Goats. Ital. J. Anim. Sci. 2016, 15, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.-H.; Bakhsh, A.; Lee, J.-G.; Joo, S.-T. Differences in Muscle Fiber Characteristics and Meat Quality by Muscle Type and Age of Korean Native Black Goat. Food Sci. Anim. Resour. 2019, 39, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.S.; Mazon, M.R.; Carvalho, R.F.; Pesce, D.M.C.; Da Luz E Silva, S.; Gallo, S.B.; Leme, P.R. Effects of Processing Corn on the Carcass Traits and Meat Quality of Feedlot Lambs. Trop. Anim. Health Prod. 2015, 47, 883–887. [Google Scholar] [CrossRef]
- Kannan, G.; Lee, J.H.; Kouakou, B. Chevon Quality Enhancement: Trends in Pre- and Post-Slaughter Techniques. Small Rumin. Res. 2014, 121, 80–88. [Google Scholar] [CrossRef]
- Aberle, E.D.; Reeves, E.S.; Judge, M.D.; Hunsley, R.E.; Perry, T.W. Palatability and Muscle Characteristics of Cattle with Controlled Weight Gain: Time on a High Energy Diet. J. Anim. Sci. 1981, 52, 757–763. [Google Scholar] [CrossRef]
- Trout, G.R. Techniques for Measuring Water-Binding Capacity in Muscle Foods—A Review of Methodology. Meat Sci. 1988, 23, 235–252. [Google Scholar] [CrossRef]
- Bonagurio, S.; Pérez, J.R.O.; Garcia, I.F.F.; Bressan, M.C.; Da Silva Corrêa Lemos, A.L. Qualidade Da Carne de Cordeiros Santa Inês Puros e Mestiços Com Texel Abatidos Com Diferentes Pesos. Rev. Bras. Zootec. 2003, 32, 1981–1991. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat Meat Quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Brassard, M.-E.; Chouinard, P.Y.; Gervais, R.; Pouliot, É.; Gariépy, C.; Cinq-Mars, D. Effects of Level of Barley and Corn in Concentrate-Fed Boer Kids on Growth Performance, Meat Quality, and Muscle Fatty Acid Composition. Can. J. Anim. Sci. 2018, 98, 156–165. [Google Scholar] [CrossRef]
- Silva, W.P.; Santos, S.A.; Cirne, L.G.A.; Pina, D.D.S.; Alba, H.D.R.; Rodrigues, T.C.G.C.; Araújo, M.L.G.M.L.; Lima, V.G.O.; Galvão, J.M.; Nascimento, C.O.; et al. Carcass Characteristics and Meat Quality of Feedlot Goat Kids Fed High-Concentrate Diets with Licury Cake. Livest. Sci. 2021, 244, 104391. [Google Scholar] [CrossRef]
- Webb, E.C.; O’Neill, H.A. The Animal Fat Paradox and Meat Quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Andrés, S.; Jaramillo, E.; Mateo, J.; Caro, I.; Carballo, D.E.; López, S.; Giráldez, F.J. Grain Grinding Size of Cereals in Complete Pelleted Diets for Growing Lambs: Effects on Animal Performance, Carcass and Meat Quality Traits. Meat Sci. 2019, 157, 107874. [Google Scholar] [CrossRef]
- Brand, T.S.; Van Der Merwe, D.A.; Hoffman, L.C.; Geldenhuys, G. The Effect of Dietary Energy Content on Quality Characteristics of Boer Goat Meat. Meat Sci. 2018, 139, 74–81. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Barbosa, A.M.; Carvalho, G.G.P.; Simionato, J.I.; Freitas, J.E.; Araújo, M.L.G.M.L.; Pereira, L.; Silva, R.R.; Lacerda, E.C.Q.; Carvalho, B.M.A. Meat Quality of Lambs Fed Diets with Peanut Cake. Meat Sci. 2016, 121, 88–95. [Google Scholar] [CrossRef]
- Kotsampasi, Β.; Bampidis, V.A.; Tsiaousi, A.; Christodoulou, C.; Petrotos, K.; Amvrosiadis, I.; Fragioudakis, N.; Christodoulou, V. Effects of Dietary Partly Destoned Exhausted Olive Cake Supplementation on Performance, Carcass Characteristics and Meat Quality of Growing Lambs. Small Rumin. Res. 2017, 156, 33–41. [Google Scholar] [CrossRef]
- Bañón, S.; Vila, R.; Price, A.; Ferrandini, E.; Garrido, M.D. Effects of Goat Milk or Milk Replacer Diet on Meat Quality and Fat Composition of Suckling Goat Kids. Meat Sci. 2006, 72, 216–221. [Google Scholar] [CrossRef]
- Mensink, R.P. Effects of Stearic Acid on Plasma Lipid and Lipoproteins in Humans. Lipids 2005, 40, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Parodi, P.W. Dietary Guidelines for Saturated Fatty Acids Are Not Supported by the Evidence. Int. Dairy J. 2016, 52, 115–123. [Google Scholar] [CrossRef]
- Banskalieva, V.; Sahlu, T.; Goetsch, A.L. Fatty Acid Composition of Goat Muscles and Fat Depots: A Review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and Health Effects of Ruminant Meat Lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Praagman, J.; Beulens, J.W.J.; Alssema, M.; Zock, P.L.; Wanders, A.J.; Sluijs, I.; van der Schouw, Y.T. The Association between Dietary Saturated Fatty Acids and Ischemic Heart Disease Depends on the Type and Source of Fatty Acid in the European Prospective Investigation into Cancer and Nutrition–Netherlands Cohort1,2. Am. J. Clin. Nutr. 2016, 103, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melton, S.L.; Amiri, M.; Davis, G.W.; Backus, W.R. Flavor and Chemical Characteristics of Ground Beef from Grass-, Forage-Grain- and Grain-Finished Steers. J. Anim. Sci. 1982, 55, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Rule, D.C.; MacNeil, M.D.; Short, R.E. Influence of Sire Growth Potential, Time on Feed, and Growing-Finishing Strategy on Cholesterol and Fatty Acids of the Ground Carcass and Longissimus Muscle of Beef Steers. J. Anim. Sci. 1997, 75, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Noci, F.; French, P.; Monahan, F.J.; Moloney, A.P. The Fatty Acid Composition of Muscle Fat and Subcutaneous Adipose Tissue of Grazing Heifers Supplemented with Plant Oil-Enriched Concentrates1. J. Anim. Sci. 2007, 85, 1062–1073. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Mahadevan, S.; Hunt, J.R.; Sauer, F.D.; Corner, A.H.; Charlton, K.M. Growth Rate, Lipid Composition, Metabolism and Myocardial Lesions of Rats Fed Rapeseed Oils (Brassica Campestris Var. Arlo, Echo and Span, and B. Napus Var. Oro). J. Nutr. 1973, 103, 1696–1708. [Google Scholar] [CrossRef]
- Díaz, M.T.; Velasco, S.; Cañeque, V.; Lauzurica, S.; Ruiz de Huidobro, F.; Pérez, C.; González, J.; Manzanares, C. Use of Concentrate or Pasture for Fattening Lambs and Its Effect on Carcass and Meat Quality. Small Rumin. Res. 2002, 43, 257–268. [Google Scholar] [CrossRef]
- Nuernberg, K.; Dannenberger, D.; Nuernberg, G.; Ender, K.; Voigt, J.; Scollan, N.D.; Wood, J.D.; Nute, G.R.; Richardson, R.I. Effect of a Grass-Based and a Concentrate Feeding System on Meat Quality Characteristics and Fatty Acid Composition of Longissimus Muscle in Different Cattle Breeds. Livest. Prod. Sci. 2005, 94, 137–147. [Google Scholar] [CrossRef]
- Lourenço, M.; Ramos-Morales, E.; Wallace, R.J. The Role of Microbes in Rumen Lipolysis and Biohydrogenation and Their Manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushi, D.E.; Thomassen, M.S.; Kifaro, G.C.; Eik, L.O. Fatty Acid Composition of Minced Meat, Longissimus Muscle and Omental Fat from Small East African Goats Finished on Different Levels of Concentrate Supplementation. Meat Sci. 2010, 86, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.S.; Martins, S.R.; Chizzotti, M.L.; Busato, K.C.; Oliveira, I.M.; Machado Neto, O.R.; Paulino, P.V.R.; Lanna, D.P.D.; Ladeira, M.M. Meat Quality and Fatty Acid Profile of Brazilian Goats Subjected to Different Nutritional Treatments. Meat Sci. 2014, 97, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of Long Chain Polyunsaturated Fatty Acids in Human Health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Avallone, R.; Vitale, G.; Bertolotti, M. Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int. J. Mol. Sci. 2019, 20, 4256. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, Á.; Legua, P.; Hernández, F. Fatty Acid Profile of Fruits (Pulp and Peel) and Cladodes (Young and Old) of Prickly Pear [Opuntia Ficus-Indica (L.) Mill.] from Six Spanish Cultivars. J. Food Compos. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- FAO-Food and Agriculture Organization. WHO and FAO Joint Consultation: Fats and Oils in Human Nutrition. Nutr. Rev. 1995, 53, 202–207. [Google Scholar]
- Enser, M.; Scollan, N.D.; Choi, N.J.; Kurt, E.; Hallett, K.; Wood, J.D. Effect of Dietary Lipid on the Content of Conjugated Linoleic Acid (CLA) in Beef Muscle. Anim. Sci. 1999, 69, 143–146. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of Fatty Acids on Meat Quality: A Review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Scollan, N.D.; Choi, N.-J.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the Fatty Acid Composition of Muscle and Adipose Tissue in Beef Cattle. Br. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruda, P.C.L.; Pereira, E.S.; Pimentel, P.G.; Bomfim, M.A.D.; Mizubuti, I.Y.; Ribeiro, E.L.D.A.; Fontenele, R.M.; Filho, J.G.L.R. Perfil de Ácidos Graxos No Longissimus Dorsi de Cordeiros Santa Inês Alimentados Com Diferentes Níveis Energéticos. Semin. Agrar. 2012, 33, 1229–1240. [Google Scholar] [CrossRef]
- Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Melo Filho, A.B. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.S.; Ladeira, M.M.; Neto, O.R.M.; Ramos, E.M.; Paulino, P.V.R.; Chizzotti, M.L.; Guerreiro, M.C. Chemical Composition and of Fatty Acids of the Muscle Longissimus Dorsi and Backfat of Red Norte and Young Nellore Bulls. Rev. Bras. Zootec. 2012, 41, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of Dietary Supplementation with Polyphenols on Meat Quality in Saanen Goat Kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.B.; Smith, D.R. Substrate Utilization in Ruminant Adipose Tissues. In The Biology of Fat in Meat Animals; Savoy: Champaign, IL, USA, 1995; pp. 166–188. [Google Scholar]
Variables | Experimental Treatments # | |||
---|---|---|---|---|
Ground Corn | RCSwater | RCSmucilage | RCSwhey | |
Ingredients (g/kg DM) | ||||
Tifton-85 hay | 400 | 400 | 400 | 400 |
Soybean meal | 180 | 170 | 170 | 170 |
Ground corn | 400 | 0.00 | 0.00 | 0.00 |
Rehydrated corn-grain silage | 0.00 | 415 | 415 | 415 |
Urea ‡ | 5.00 | 0.00 | 0.00 | 0.00 |
Mixture † | 15.0 | 15.0 | 15.0 | 15.0 |
Chemical composition (g/kg DM) | ||||
Dry matter | 920 | 819 | 828 | 814 |
Crude ash | 73.8 | 64.5 | 66.3 | 64.8 |
Crude protein | 158 | 150 | 151 | 151 |
Ether extract | 28.6 | 26.9 | 31.7 | 26.3 |
Neutral detergent fiberap § | 430 | 379 | 398 | 375 |
Acid detergent lignin | 44.7 | 33.0 | 33.2 | 33.0 |
Non-fiber carbohydrates | 35.0 | 40.5 | 37.9 | 40.9 |
Metabolizable energy # (Mcal/kg) | 2.60 | 2.36 | 2.38 | 2.38 |
Silage characteristics | ||||
Dry matter | 909 | 641 | 668 | 656 |
Crude protein | 87.5 | 105 | 107 | 107 |
Crude ash | 23.3 | 14.2 | 18.4 | 14.8 |
Neutral detergent fiberap § | 202 | 82.1 | 126 | 71.2 |
Acid detergent lignin | 53.5 | 3.52 | 4.03 | 3.41 |
Dry matter recovery (g/100 g) | - | 98.6 | 98.4 | 98.1 |
Gas losses (GL, g/100 g) | - | 3.93 | 4.53 | 2.47 |
Effluent losses (EL, kg/ton) | - | 3.52 | 3.31 | 4.16 |
pH | - | 4.16 | 4.19 | 4.26 |
Ammonia nitrogen (N-NH3) | - | 0.61 | 0.46 | 0.70 |
Fatty Acids (g/100 g FAMEs) | Experimental Treatments # | |||
---|---|---|---|---|
Ground Corn | RCSwater | RCSmucilage | RCSwhey | |
Saturated (SFA) | ||||
12:0 | 2.06 | 2.02 | 1.98 | 1.94 |
14:0 | 1.25 | 0.76 | 0.79 | 0.89 |
15:0 | 2.41 | 1.97 | 1.63 | 1.59 |
16:0 | 15.7 | 12.4 | 12.8 | 12.5 |
17:0 | 1.78 | 1.54 | 1.68 | 1.76 |
18:0 | 2.88 | 3.53 | 3.38 | 3.59 |
Monounsaturated (MUFA) | ||||
14:1 | 10.0 | 10.1 | 9.77 | 9.76 |
15:1 | 4.85 | 4.66 | 3.85 | 3.89 |
16:1 | 2.71 | 2.33 | 2.34 | 2.38 |
17:1 | 2.49 | 2.40 | 2.38 | 2.44 |
18:1n9c | 9.15 | 12.6 | 12.9 | 12.6 |
Polyunsaturated (PUFA) | ||||
18:2n6t | 0.46 | 0.46 | 0.46 | 0.46 |
18:2n6c | 20.5 | 29.0 | 28.8 | 28.8 |
18:3n3 | 4.68 | 2.38 | 2.37 | 2.38 |
18:3n6 | 4.36 | 4.17 | 4.53 | 4.18 |
Other 1 | 14.7 | 9.69 | 10.4 | 10.9 |
SFA | 36.7 | 29.6 | 30.2 | 30.6 |
MUFA | 29.2 | 32.1 | 31.2 | 31.1 |
PUFA | 34.1 | 38.3 | 38.6 | 38.3 |
Item | Experimental Treatments # | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
Ground Corn | RCSwater | RCSmucilage | RCSwhey | |||
Initial body weight (kg) | 16.4 | 16.4 | 16.4 | 16.4 | - | - |
Final body weight (kg) | 26.4 a,b | 24.7 b | 27.6 a | 25.3 b | 1.54 | 0.033 |
Nutrient intake (g/d) | ||||||
Dry matter | 882 a,b | 842 b | 934 a | 828 b | 39.0 | 0.035 |
Crude protein | 146 | 139 | 150 | 138 | 2.91 | 0.22 |
Neutral detergent fiber | 350 a | 288 b | 340 a | 290 b | 8.61 | 0.0009 |
Metabolizable energy 3 (Mcal/kg) | 2.29 | 1.99 | 2.14 | 1.94 | 0.065 | 0.086 |
Item | Experimental Treatments # | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
Ground Corn | RCSwater | RCSmucilage | RCSwhey | |||
Final pH (24 h) | 5.61 | 5.95 | 5.54 | 5.48 | 0.060 | 0.072 |
Color indexes | ||||||
Lightness (L*) | 39.3 | 39.3 | 39.1 | 40.4 | 0.34 | 0.49 |
Red (a*) | 16.2 | 15.9 | 16.4 | 16.0 | 0.13 | 0.59 |
Yellow (b*) | 5.93 | 6.06 | 5.52 | 6.02 | 0.14 | 0.52 |
Croma (C*) | 17.3 | 17.1 | 17.4 | 16.9 | 0.12 | 0.55 |
WRC 3 (g/100 g) | 79.4 | 77.7 | 76.2 | 77.2 | 0.57 | 0.35 |
CWL 4 (g/100 g) | 28.0 a | 20.8 b | 30.6 a | 22.2 b | 1.03 | 0.0001 |
SF 5 (N) | 6.72 | 6.35 | 6.83 | 5.16 | 0.36 | 0.39 |
Chemical composition (g/100 g) | ||||||
Moisture | 74.6 | 73.9 | 74.5 | 74.6 | 0.21 | 0.63 |
Protein | 20.8 | 21.8 | 22.1 | 21.7 | 0.19 | 0.25 |
Lipids | 2.58 | 2.63 | 2.51 | 2.69 | 0.16 | 0.98 |
Ash | 0.99 b | 1.05 a | 1.05 a | 0.99 b | 0.011 | 0.027 |
Fatty Acids (% Total FAMEs) | Experimental Treatments # | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
Ground Corn | RCSwater | RCSmucilage | RCSwhey | |||
Saturated fatty acids (SFAs) | ||||||
C4:0 | 1.95 a | 1.85 a | 1.46 b | 1.06 c | 0.064 | 0.018 |
C6:0 | 1.71 a | 1.09 b | 1.98 a | 1.04 b | 0.73 | 0.045 |
C8:0 | 1.61 a | 1.44 a | 1.01 b | 1.52 a | 0.43 | 0.041 |
C10:0 | 1.26 | 1.66 | 1.58 | 1.66 | 0.44 | 0.32 |
C14:0 | 1.86 a | 2.18 a | 1.73 a | 1.31 b | 0.26 | 0.014 |
C15:0 | 2.03 a | 1.17 c | 1.55 b | 1.57 b | 0.86 | 0.029 |
C16:0 | 14.2 | 14.1 | 15.1 | 15.4 | 1.94 | 0.96 |
C17:0 | 1.82 | 1.96 | 1.36 | 1.42 | 0.33 | 0.46 |
C18:0 | 16.5 | 16.9 | 16.7 | 16.4 | 1.75 | 0.65 |
Other SFAs | 1.53 | 1.46 | 1.53 | 1.49 | 0.32 | 0.28 |
Monounsaturated fatty acids (MUFAs) | ||||||
C16:1 | 1.54 | 1.49 | 1.64 | 1.59 | 0.23 | 0.43 |
C17:1 | 0.75 | 0.86 | 0.78 | 0.79 | 0.075 | 0.95 |
C18:1 ω9 | 39.3 b | 39.0 b | 41.1 a | 41.2 a | 3.72 | 0.046 |
C18:1 c-11 cis | 1.12 | 1.14 | 1.24 | 1.30 | 0.05 | 0.081 |
C22:1 ω9 | 2.01 b | 2.07 b | 1.85 c | 3.30 a | 0.31 | 0.0001 |
Other MUFAs | 0.65 | 0.69 | 0.59 | 0.61 | 0.042 | 0.53 |
Polyunsaturated fatty acids (PUFAs) | ||||||
C18:2 ω6 | 3.63 | 3.49 | 3.37 | 3.72 | 0.36 | 0.95 |
C18:2 t-9,12 | 0.35 | 0.33 | 0.35 | 0.34 | 0.023 | 0.74 |
C18:3 ω3 | 0.44 b | 0.42 b | 0.62 a | 0.43 b | 0.03 | 0.019 |
C20:2 ω6 | 0.45 b | 0.43 b | 0.49 a,b | 0.62 a | 0.04 | 0.033 |
C20:3 ω3 | 0.41 b | 0.44 b | 0.29 c | 0.73 a | 0.07 | <0.0001 |
C20:4 ω6 | 1.34 | 1.31 | 1.33 | 1.32 | 0.934 | 0.46 |
C20:5ω3 (EPA) 4 | 0.44 b | 0.43 b | 0.58 a | 0.57 a | 0.033 | 0.010 |
C22:6ω3 (DHA) 4 | 0.39 | 0.38 | 0.36 | 0.41 | 0.029 | 0.47 |
Other PUFAs | 2.75 b | 3.71 a | 2.96 a,b | 2.25 c | 0.118 | <0.0001 |
Sum of groups | ||||||
∑SFA 4 | 44.5 a | 43.8 a,b | 44.0 a,b | 42.9 b | 2.83 | 0.012 |
∑MUFA 4 | 45.4 b | 45.3 b | 47.2 a,b | 48.8 a | 3.73 | <0.0001 |
∑PUFA 4 | 10.2 b | 10.9 a | 10.4 b | 10.3 b | 0.41 | 0.001 |
ω6 4 | 5.42 | 5.23 | 5.19 | 5.66 | 0.36 | 0.92 |
ω3 4 | 1.68 b | 1.67 b | 1.85 a,b | 2.14 a | 0.09 | <0.0001 |
Ratios | ||||||
MUFA:SFA | 1.02 b | 1.03 b | 1.07 a,b | 1.14 a | 0.113 | 0.017 |
PUFA:SFA | 0.23 b | 0.25 a | 0.24 a,b | 0.24 a,b | 0.012 | <0.0001 |
ω6:ω3 | 3.23 a | 3.13 a | 2.81 b | 2.64 b | 0.194 | 0.006 |
Nutraceutical Compounds | ||||||
Desirable fatty acids | 72.1 b | 73.1 b | 74.3 a | 75.6 a | 4.31 | 0.044 |
h:H 3 ratio index | 2.67 | 2.61 | 2.69 | 2.69 | 0.10 | 0.48 |
Atherogenicity index | 0.41 a | 0.44 a | 0.41 a | 0.36 b | 0.03 | 0.044 |
Thrombogenicity index | 0.62 a | 0.63 a | 0.62 a | 0.58 b | 0.06 | <0.0001 |
Enzymatic activity | ||||||
Δ9desaturase (D9C16) 5 | 9.78 a | 9.56 b | 9.80 a | 9.36 c | 1.97 | 0.027 |
Δ9desaturase (D9C18) 5 | 70.4 b | 69.8 b | 71.1 a | 71.5 a | 1.75 | 0.0497 |
Elongase 5 | 78.0 a | 78.2 a | 77.5 b | 77.2 b | 1.02 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diogénes, L.V.; Edvan, R.L.; Medeiros, E.d.S.; Pereira Filho, J.M.; de Oliveira, J.P.F.; Silva Filho, E.C.; Ramos, L.M.G.; de Lucena, K.H.d.O.S.; Araújo, M.J.; Oliveira, R.L.; et al. Physicochemical Composition and Fatty Acid Profile of Goat Kids’ Meat Fed Ground-Corn-Grain Silage Rehydrated with Different Additives. Animals 2023, 13, 31. https://doi.org/10.3390/ani13010031
Diogénes LV, Edvan RL, Medeiros EdS, Pereira Filho JM, de Oliveira JPF, Silva Filho EC, Ramos LMG, de Lucena KHdOS, Araújo MJ, Oliveira RL, et al. Physicochemical Composition and Fatty Acid Profile of Goat Kids’ Meat Fed Ground-Corn-Grain Silage Rehydrated with Different Additives. Animals. 2023; 13(1):31. https://doi.org/10.3390/ani13010031
Chicago/Turabian StyleDiogénes, Luciana V., Ricardo L. Edvan, Elisama dos S. Medeiros, José M. Pereira Filho, Juliana P. F. de Oliveira, Edson C. Silva Filho, Layse M. G. Ramos, Kevily H. de O. S. de Lucena, Marcos J. Araújo, Ronaldo L. Oliveira, and et al. 2023. "Physicochemical Composition and Fatty Acid Profile of Goat Kids’ Meat Fed Ground-Corn-Grain Silage Rehydrated with Different Additives" Animals 13, no. 1: 31. https://doi.org/10.3390/ani13010031
APA StyleDiogénes, L. V., Edvan, R. L., Medeiros, E. d. S., Pereira Filho, J. M., de Oliveira, J. P. F., Silva Filho, E. C., Ramos, L. M. G., de Lucena, K. H. d. O. S., Araújo, M. J., Oliveira, R. L., Pereira, E. S., & Bezerra, L. R. (2023). Physicochemical Composition and Fatty Acid Profile of Goat Kids’ Meat Fed Ground-Corn-Grain Silage Rehydrated with Different Additives. Animals, 13(1), 31. https://doi.org/10.3390/ani13010031