Genetic Diversity and Structure Revealed by Genomic Microsatellite Markers of Mytilus unguiculatus in the Coast of China Sea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Microsatellite Analysis
2.3. Genetic Data Analysis
3. Results
3.1. Genetic Diversity
3.2. Genetic Structure
3.3. Historical Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, Z.; Wang, X.C.; Liu, H.H.; Fan, M.H.; Sun, J.J.; Shen, W. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish Shellfish Immun. 2013, 34, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Q.; He, Y.T.; Yang, Y.K.; Tao, Y.L.; Wu, J.N.; Jiang, Z.N.; Yan, X.J.; Liao, Z.; Liu, X.Z.; He, J.Y. Microbial Diversity and the Potential Capability for Carbon Fixation in Sediments of Mytilus Coruscus Farming Areas. Oceanol. Limnol. Sin. 2023, 54, 502–513. [Google Scholar]
- He, Z.J.; Jia, M.X.; Wang, J.Y.; Yan, X.J.; Liao, Z.; He, J.Y. Differential distribution of indigenous microbiome in tissues of Mytilus coruscus. J. Fish. China 2022, 46, 2421–2431. [Google Scholar]
- Sun, J.W.; Dai, H.M.; Sun, J.D. Technique for artificial propagation of Mytilus coruscus. Hebei Fish. 2018, 46, 27–29+60. [Google Scholar]
- Li, S.Y.; He, Z.J.; Lyu, H.Y.; Tang, Q.H.; Liao, Z.; Wang, J.X.; Yan, X.J.; Zhang, X.L. Comparative Study on Microbial Community in Mussel Mytilus Coruscus Body and Seawater of Its Natural and Cultural Sea Area in Zhoushan, Zhejiang. Oceanol. Limnol. Sin. 2021, 52, 196–205. [Google Scholar]
- Yuan, W.B.; Li, C.B.; Jiao, H.F.; Lin, Z.H.; Bao, Y.B. Genetic resources assessment of mussel Mytilus coruscus based on COI gene inYushan Island. Mar. Sci. 2017, 41, 107–112. [Google Scholar]
- Wang, Z.X. Scale breeding technology of Mytilus coruscus seedling. Xiandai Nongye Keji 2021, 799, 208–210. [Google Scholar]
- Gulcher, J. Microsatellite markers for linkage and association studies. Cold Spring Harb. Protoc. 2012, 2012, 425–432. [Google Scholar] [CrossRef]
- Richard, G.F.; Kerrest, A.; Dujon, B. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiol. Mol. Biol. Rev. 2008, 72, 686–727. [Google Scholar] [CrossRef]
- Brinkmann, B.; Klintschar, M.; Neuhuber, F.; Hühne, J.; Rolf, B. Mutation Rate in Human Microsatellites: Influence of the Structure and Length of the Tandem Repeat. Am. J. Hum. Genet. 1998, 62, 1408–1415. [Google Scholar] [CrossRef]
- O’Connell, M.; Wright, J.M. Microsatellite DNA in fishes. Rev. Fish Biol. Fisher. 1997, 7, 331–363. [Google Scholar] [CrossRef]
- Manel, S.; Schwartz, M.K.; Luikart, G.; Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 2003, 18, 189–197. [Google Scholar] [CrossRef]
- Fu, J.Q.; You, W.W.; Luo, X.; Ke, J.W.; Ke, C.H. Advances in biology and genetic breeding of Babylonia. J. Xiamen Univ. 2023; in press. [Google Scholar]
- Coelho, N.C.; Zardi, G.I.; Pearson, G.A.; Serrão, E.A.; Nicastro, K.R. Characterization of ten highly polymorphic microsatellite loci for the intertidal mussel Perna Perna, and cross species amplification within the genus. BMC Res. Notes 2012, 5, 558. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Zhao, B.; Chen, Y.; Zhao, B.H.; Yang, N.S.; Hu, S.S.; Shen, J.Y.; Wu, X.S. A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers. Animals 2020, 10, 1258. [Google Scholar] [CrossRef]
- Ott, J.; Wang, J.; Leal, S.M. Genetic linkage analysis in the age of whole-genome sequencing. Nat. Rev. Genet. 2015, 16, 275–284. [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, X.Q.; Yao, J.T.; Li, Q.Y.; Lu, C.; Duan, D.L. Genetic linkage map construction and QTL mapping of blade length and width in Saccharina japonica using SSR and SNP markers. Front. Mar. Sci. 2023; in press. [Google Scholar] [CrossRef]
- Brondani, C.; Rangel, P.; Brondani, R.; Ferreira, E. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 2002, 104, 1192–1203. [Google Scholar] [CrossRef]
- Shukla, R.P.; Tiwari, G.J.; Joshi, B.; Song Beng, K.; Tamta, S.; Boopathi, N.M.; Jena, S.N. GBS-SNP and SSR based genetic mapping and QTL analysis for drought tolerance in upland cotton. Physiol. Mol. Biol. Pla. 2021, 27, 1–15. [Google Scholar] [CrossRef]
- Liu, S.B.; Tang, Z.R.; Shen, W.; Ye, Y.Y.; Chen, X.L.; Qi, P.Z.; Guo, B.Y. Study on the Genetic Diversity of Mytilus Coruscus in the East China Sea. Oceanol. Limnol. Sin. 2019, 50, 355–364. [Google Scholar]
- Feng, J.T.; Yao, Y.R.; Fu, Z.Q.; Guo, Y.H.; Ye, Y.Y. Mitochondrial DNA D-loop Analysis for Population Structure Mytilus coruscus along the Coast of China Population Structure. J. Zhejiang Ocean Univ. Nat. Sci. 2020, 39, 229–236. [Google Scholar]
- Wei, X.L.; Fu, Z.Q.; Li, J.J.; Guo, B.Y.; Ye, Y.Y. Genetic Structure and Phylogeography of Commercial Mytilus unguiculatus in China Based on Mitochondrial COI and Cytb Sequences. Fishes 2023, 8, 89. [Google Scholar] [CrossRef]
- Aljanabi, S.M.; Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1999, 25, 4692–4693. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.Q.; Tian, Y.F.; Ye, Y.Y.; Qi, P.Z.; Wu, C.W. Development and Characterization of TwentyThree Novel Polymorphic Microsatellite Markers for Mussel, Mytilus coruscus. Pak. J. Zool 2018, 50, 1541–1543. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 1993, 47, 264–279. [Google Scholar] [CrossRef]
- Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Notes 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.; Tillett, B.J.; Ovenden, J.R. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic dat. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Piry, S.; Luikart, G.; Cornuet, J.M. BOTTLENECK: A Computer Program for Detecting Recent Reductions in the Effective Population Size Using Allele Frequency Data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Ferruccio, M. Genetic monitoring of brackish-water populations: The Mediterranean toothcarp Aphanius fasciatus (Cyprinodontidae) as a model. Mar. Ecol. Prog. Ser. 2002, 235, 257–262. [Google Scholar]
- Kimura, M.; Crow, J.F. The number of alleles that can be maintained in a finite population. Genetics 1964, 49, 725–738. [Google Scholar] [CrossRef]
- Ohta, T.; Kimura, M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 1973, 22, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Di, R.A.; Peterson, A.C.; Garza, J.C.; Valdes, A.M.; Slatkin, M.; Freimer, N.B. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 1994, 91, 3166–3170. [Google Scholar]
- Luikart, G.; Allendorf, F.W.; Cornuet, J.M.; Sherwin, W.B. Distortion of Allele Frequency Distributions Provides a Test for Recent Population Bottlenecks. J. Hered. 1998, 89, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Luikart, G.; Cornuet, J.M. Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data. Conserv. Biol. 1998, 12, 228–237. [Google Scholar] [CrossRef]
- Van, O.C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar]
- Goldstein, D.B.; Pollock, D.D. Launching microsatellites: A review of mutation processes and methods of phylogenetic interference. J. Hered. 1997, 88, 335–342. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Zhang, J.J.; Yuan, X.T.; Zhang, A.G.; Liu, G.Z.; Shao, K.S.; Wang, L.J. Genetic diversity and differentiation of seven geographical populations of hard clam (Meretrix meretrix) assessed by CO1 and microsatellite markers. Acta Ecol. Sin. 2016, 36, 499–507. [Google Scholar]
- Hu, Y.T.; Jiang, H.; Duan, G.Q.; Zhou, H.X.; Ling, J.; Wang, H. Genetic diversity analysis of Pelteobagrus fulvidraco from two major drainage systems in Anhui Province based on microsatellite markers. Nanfang Shuichan Kexue 2020, 16, 33–41. [Google Scholar]
- Takezaki, N.; Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 1996, 144, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.T.; King, J.; Jiang, H.; Wang, H.; Pan, T.S.; Zhou, H.X. Genetic diversity and structure analysis of four Eriocheir sinensis cultured population. Jiangsu Agric. Sci. 2022, 50, 54–59. [Google Scholar]
- Guo, X.; Zeng, Z.N.; Zheng, Y.Y.; Wu, Q.S.; Ning, Y.; Qi, J.F.; Jia, Y.Y. Genetic diversity in selected lines of Crassostrea angulata. J. Fish. Sci. China 2018, 25, 1131–1136. [Google Scholar] [CrossRef]
- Wu, X.P.; Ma, H.T.; Feng, Y.W.; Liu, X.Q.; Pan, Y. Isolation of Microsatellite Loci from Razor Clam Sinonovacula constricta and Transferability to Related Species. Oceanol. Limnol. Sin. 2014, 45, 1330–1337. [Google Scholar]
- Liu, H.Q.; Guo, Y.S.; Wang, Z.D.; Liu, L.; Liu, C.W. Genetic diversity analysis amongst GIFT strains of Oreochromis niloticus using microsatellites. J. South. Agric. 2012, 43, 94–98. [Google Scholar]
- Weir, B.S.; Cockerham, C.C. Estimation F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Peng, M.; Chen, H.F.; Li, Q.Y.; Yang, C.L.; Zeng, D.G.; Liu, Q.Y.; Zhao, Y.Z.; Chen, X.H.; Lin, Y.; Chen, X.L. Genetic diversity of three consecutive generations of Litopenaeus vannamei. J. South. Agric. 2020, 51, 1442–1450. [Google Scholar]
- Antoro, S.; Na-Nakorn, U.; Koedprang, W. Study of genetic diversity of orange-spotted grouper, Epinephelus coioides, from Thailand and Indonesia using microsatellite markers. Mar. Biotechnol. 2006, 8, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Reng, H.W.; Zhu, Y.J.; Zhao, H.; Yang, D.Z.; Zhou, Y.B. Genetic Diversity of Different Geographic Populations in Perinereis aibuhitensis by ISSR and COI Markers. J. Agric. Sci. Technol. 2014, 16, 139–147. [Google Scholar]
- Wright, S.; Maxson, L. Evolution and the Genetics of Populations. Physiol. Biochem. Zool 1968, 8, 1191–1192. [Google Scholar]
- Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1985, 16, 393–430. [Google Scholar] [CrossRef]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Kocher, T.D.; Thomas, W.K.; Meyer, A.; Edwards, S.V.; Pääbo, S.; Villablanca, F.X.; Wilson, A.C. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 1989, 86, 6196–6200. [Google Scholar] [CrossRef]
- Ni, G.; Li, Q.; Ni, L.H.; Kong, L.F.; Yu, H. Population subdivision of the surf clam Mactra chinensis in the East China Sea: Changjiang River outflow is not the sole driver. PeerJ 2015, 3, e1240. [Google Scholar] [CrossRef]
- Ichikawa, H.; Beardsley, R.C. The current system in the Yellow and East China Seas. J. Oceanogr. 2002, 58, 77–92. [Google Scholar] [CrossRef]
- Ni, G.; Kern, E.; Dong, Y.W.; Li, Q.; Park, J.K. More than meets the eye: The Barrier Effect of The Yangtze River Outflow. Mol. Ecol. 2017, 26, 4591–4602. [Google Scholar] [CrossRef]
- Dong, Y.W.; Wang, H.S.; Han, G.D.; Ke, C.H.; Zhan, X.; Nakano, T.; Williams, G.A. The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast. PLoS ONE 2018, 7, e36178. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Selkoe, K.A.; Watson, J.; Siegel, D.A.; Zacherl, D.C.; Toonen, R.J. Ocean currents help explain population genetic structure. Proc. Roy. Soc. B-Biol. Sci. 2010, 277, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Provan, J.; Beatty, G.E.; Keating, S.L.; Maggs, C.A.; Savidge, G. High dispersal potential has maintained long-term population stability in the North Atlantic copepod Calanus finmarchicus. Proc. Roy. Soc. B-Biol. Sci. 2009, 276, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, M.E. Gene Flow and Isolation among Populations of Marine Animals. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 291–310. [Google Scholar] [CrossRef]
- Claremont, M.; Williams, S.T.; Barraclough, T.G.; Reid, D.G. The geographic scale of speciation in a marine snail with high dispersal potential. J. Biogeogr. 2011, 38, 1016–1032. [Google Scholar] [CrossRef]
- Gu, Z.Q.; Ni, M.L.; Fan, W.M. Observation on Embryonic Development of Mytilus Coruscus. J. Anhui Agric. Sci. 2010, 38, 18213–18215. [Google Scholar]
Sampling Site | Abbreviation | Coordinate | Sampling Date | Sample Size |
---|---|---|---|---|
Qingdao | QD | 35°55′ N, 120°30′ E | September 2016 | 50 |
Zhoushan | ZS | 30°12′ N, 122°42′ E | January 2017 | 50 |
Xiangshan | XS | 29°14′ N, 121°58′ E | December 2016 | 50 |
Yuhuan | YH | 28°14′ N, 121°24′ E | March 2017 | 50 |
Taishan | TS | 26°57′ N, 120°47′ E | November 2016 | 50 |
Pingtan | PT | 25°34′ N, 119°47′ E | February 2017 | 50 |
Xiamen | XM | 24°35′ N, 118°23′ E | November 2016 | 50 |
Total | 350 |
Populations | Loci | MC08 | MC18 | MC44 | MC47 | MC54 | MC57 | MC66 | MC74 | MC76 | MC99 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
QD | Na | 8 | 6 | 5 | 5 | 6 | 10 | 5 | 9 | 5 | 6 | 6.50 |
He | 0.86 | 0.86 | 0.48 | 0.78 | 0.54 | 0.68 | 0.32 | 0.94 | 0.92 | 0.80 | 0.72 | |
Ho | 0.67 | 0.78 | 0.38 | 0.65 | 0.58 | 0.67 | 0.33 | 0.73 | 0.72 | 0.62 | 0.61 | |
FIS | 0.23 * | 0.09 * | 0.21 * | 0.17 * | −0.07 | 0.01 * | −0.03 * | 0.22 ** | 0.22 * | 0.23 * | 0.15 * | |
ZS | Na | 7 | 5 | 3 | 6 | 5 | 10 | 7 | 10 | 5 | 5 | 6.30 |
He | 0.86 | 0.86 | 0.44 | 0.80 | 0.66 | 0.76 | 0.78 | 0.90 | 0.94 | 0.78 | 0.78 | |
Ho | 0.63 | 0.67 | 0.37 | 0.66 | 0.59 | 0.73 | 0.58 | 0.72 | 0.74 | 0.58 | 0.63 | |
FIS | 0.27 * | 0.22 * | 0.16 * | 0.17 * | 0.11 * | 0.04 * | 0.26 * | 0.20 * | 0.21 * | 0.26 ** | 0.19 * | |
XS | Na | 10 | 4 | 3 | 6 | 6 | 6 | 12 | 9 | 6 | 7 | 6.90 |
He | 0.98 | 0.80 | 0.50 | 0.86 | 0.62 | 0.70 | 0.84 | 0.94 | 0.90 | 0.74 | 0.79 | |
Ho | 0.68 | 0.65 | 0.38 | 0.66 | 0.60 | 0.62 | 0.75 | 0.79 | 0.70 | 0.55 | 0.64 | |
FIS | 0.31 ** | 0.19 * | 0.24 * | 0.23 * | 0.03 * | 0.11 * | 0.11 * | 0.16 * | 0.22 * | 0.26 * | 0.19 * | |
YH | Na | 6 | 5 | 6 | 6 | 9 | 9 | 8 | 7 | 7 | 8 | 7.10 |
He | 0.82 | 0.86 | 0.54 | 0.92 | 0.74 | 0.72 | 0.92 | 0.88 | 0.92 | 0.94 | 0.83 | |
Ho | 0.72 | 0.71 | 0.45 | 0.75 | 0.70 | 0.75 | 0.79 | 0.74 | 0.76 | 0.74 | 0.71 | |
FIS | 0.12 * | 0.17 * | 0.17 * | 0.18 * | 0.05 * | −0.04 | 0.14 * | 0.16 * | 0.17 * | 0.21 * | 0.14 * | |
TS | Na | 6 | 5 | 5 | 5 | 4 | 6 | 3 | 8 | 6 | 7 | 5.50 |
He | 0.80 | 0.96 | 0.82 | 0.70 | 0.64 | 0.76 | 0.58 | 0.92 | 0.92 | 0.84 | 0.79 | |
Ho | 0.58 | 0.77 | 0.62 | 0.64 | 0.51 | 0.71 | 0.54 | 0.71 | 0.76 | 0.67 | 0.65 | |
FIS | 0.31 ** | 0.19 * | 0.24 * | 0.23 * | 0.03 * | 0.11 * | 0.11 ** | 0.16 * | 0.22 * | 0.26 * | 0.19 * | |
PT | Na | 6 | 6 | 6 | 7 | 6 | 8 | 10 | 9 | 5 | 6 | 6.90 |
He | 0.82 | 0.88 | 0.62 | 0.76 | 0.68 | 0.60 | 0.90 | 0.92 | 0.90 | 0.88 | 0.80 | |
Ho | 0.62 | 0.74 | 0.47 | 0.67 | 0.59 | 0.68 | 0.69 | 0.76 | 0.70 | 0.65 | 0.66 | |
FIS | 0.24 * | 0.16 * | 0.24 * | 0.12 * | 0.13 * | −0.13 | 0.23 * | 0.17 ** | 0.22 * | 0.26 * | 0.18 * | |
XM | Na | 5 | 5 | 6 | 6 | 6 | 7 | 10 | 10 | 6 | 7 | 6.80 |
He | 0.84 | 0.90 | 0.58 | 0.72 | 0.72 | 0.58 | 0.96 | 0.88 | 0.90 | 0.82 | 0.79 | |
Ho | 0.68 | 0.74 | 0.47 | 0.68 | 0.66 | 0.66 | 0.70 | 0.76 | 0.71 | 0.63 | 0.67 | |
FIS | 0.19 * | 0.18 * | 0.19 * | 0.06 * | 0.08 * | −0.14 | 0.27 ** | 0.14 * | 0.21 * | 0.23 * | 0.15 * |
Grouping | Sources of Variation | Degree of Freedom | Sum of Square | F—Statistic | % of Variation | p-Value |
---|---|---|---|---|---|---|
1: QD; 2: ZS, XS, YH, TS, PT, XM | Among groups | 1 | 31.99 | FCT = 0.041 | 4.1 | 0.04 |
Among populations within groups | 5 | 38.73 | FSC = 0.013 | 1.3 | 0.001 | |
Within populations | 693 | 2284.45 | FST = 0.053 | 94.6 | 0.001 |
Population | QD | ZS | XS | YH | PT | TS | XM |
---|---|---|---|---|---|---|---|
QD | - | 3.80 | 4.12 | 3.58 | 5.07 | 4.87 | 4.83 |
ZS | 0.062 * | - | 10.15 | 11.42 | 9.29 | 18.78 | 14.79 |
XS | 0.057 * | 0.024 | - | 16.87 | 11.37 | 208.08 | 110.37 |
YH | 0.065 * | 0.021 * | 0.015 * | - | 11.74 | 29.80 | 78.86 |
PT | 0.047 * | 0.026 | 0.022 * | 0.021 * | - | 28.96 | 17.58 |
TS | 0.049 * | 0.013 | 0.001 | 0.008 | 0.009 | - | 833.08 |
XM | 0.049 * | 0.017 | 0.002 | 0.003 | 0.014 * | 0.003 | - |
Population | Ne Estimation | CI = 95% | Bottleneck Test | Mode-Shift | |||
---|---|---|---|---|---|---|---|
Lower | Upper | I.A.M. | S.M.M. | T.P.M. | |||
QD | infinity | 372.6 | infinity | 0.586 | 0.732 | 0.707 | L-shaped |
ZS | 1365.6 | 532.7 | infinity | 0.565 | 0.709 | 0.683 | L-shaped |
XS | infinity | 136.8 | infinity | 0.588 | 0.725 | 0.703 | L-shaped |
YH | infinity | 309.6 | infinity | 0.620 | 0.763 | 0.738 | L-shaped |
PT | infinity | infinity | infinity | 0.611 | 0.753 | 0.728 | L-shaped |
TS | 694.5 | 207.6 | infinity | 0.529 | 0.680 | 0.651 | L-shaped |
XM | infinity | 175.1 | infinity | 0.605 | 0.749 | 0.721 | L-shaped |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Fu, Z.; Li, J.; Ye, Y. Genetic Diversity and Structure Revealed by Genomic Microsatellite Markers of Mytilus unguiculatus in the Coast of China Sea. Animals 2023, 13, 1609. https://doi.org/10.3390/ani13101609
Wei X, Fu Z, Li J, Ye Y. Genetic Diversity and Structure Revealed by Genomic Microsatellite Markers of Mytilus unguiculatus in the Coast of China Sea. Animals. 2023; 13(10):1609. https://doi.org/10.3390/ani13101609
Chicago/Turabian StyleWei, Xuelian, Zeqin Fu, Jiji Li, and Yingying Ye. 2023. "Genetic Diversity and Structure Revealed by Genomic Microsatellite Markers of Mytilus unguiculatus in the Coast of China Sea" Animals 13, no. 10: 1609. https://doi.org/10.3390/ani13101609
APA StyleWei, X., Fu, Z., Li, J., & Ye, Y. (2023). Genetic Diversity and Structure Revealed by Genomic Microsatellite Markers of Mytilus unguiculatus in the Coast of China Sea. Animals, 13(10), 1609. https://doi.org/10.3390/ani13101609