Effect of THI on Milk Production, Percentage of Milking Cows, and Time Lying in Holstein Cows in Northern-Arid Mexico
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dairy Farm, Population Cows, and Climatic Data
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Effect of HS Level
3.2.1. Milk Performance, at either the Farm Level or the Cow Level
3.2.2. Feed-to-Milk Efficiency
3.2.3. Percentage of Milking Cows (%MC)
3.2.4. Cow Comfort (Daily Average Lying Time per Cow)
3.2.5. Milk Composition (Milk Fat, Protein Fat, Fat/Protein Milk Ratio, Milk Urea)
3.3. Effect of THI and Season
3.3.1. Milk Production at the Farm Level and per Cow
3.3.2. Dry Matter Intake, Feed Conversion Efficiency, and Energy-Corrected Milk
3.3.3. Percentage of Milking Cows
3.3.4. Cow Comfort and Wellness Expressed as the Average Lying Time per Cow
3.3.5. Milk Composition (Milk Fat, Protein Fat, Fat/Protein Milk Ratio, Milk Urea)
3.4. Milk Performance, HS, and Economic Impact at Animal, Farm, and Regional Levels
4. Discussion
4.1. Milk Production either at the Farm Level or the Cow Level across THI and Seasons
4.2. Dry Matter Intake, Feed Conversion Efficiency, and Energy Corrected Milk across THI and Seasons
4.3. Percentage of Milking Cows
4.4. Dairy Cow Comfort
4.5. Milk Composition (Percentages of Fat and Protein in Milk and Quantity of Milk Urea)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The Effects of Heat Stress in Italian Holstein Dairy Cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries1. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Becker, C.A.; Stone, A.E. Graduate Student Literature Review: Heat Abatement Strategies Used to Reduce Negative Effects of Heat Stress in Dairy Cows. J. Dairy Sci. 2020, 103, 9667–9675. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.V. Heat Stress Interaction with Shade and Cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.L.; Frank, K.L.; Harrington, J.A.; Hahn, G.L.; Nienaber, J.A. Potential Climate Change Effects on Warm-Season Livestock Production in the Great Plains. Clim. Chang. 2009, 97, 529–541. [Google Scholar] [CrossRef]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat Stress in Lactating Dairy Cows: A Review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Amundson, J.L.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. Environmental Effects on Pregnancy Rate in Beef Cattle1. J. Anim. Sci. 2006, 84, 3415–3420. [Google Scholar] [CrossRef]
- Bouraouin, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. Heat Stress in Tunisia: Effects on Dairy Cows and Potential Means of Alleviating It. S. Afr. J. Anim. Sci. 2009, 39, 256–259. [Google Scholar]
- Hernández, A.; Domínguez, B.; Cervantes, P.; Muñoz-Melgarejo, S.; Salazar-Lizán, S.; Tejeda-Martínez, A. Temperature-Humidity Index (THI) 1917-2008 and Future Scenarios of Livestock Comfort in Veracruz, México. Atmosfera 2011, 24, 89–102. [Google Scholar]
- Gantner, V.; Mijić, P.; Jovanovac, S.; Raguž, N.; Bobić, T.; Kuterovac, K. Influence of Temperature-Humidity Index (THI) on Daily Production of Dairy Cows in Mediterranean Region in Croatia. In Animal Farming and Environmental Interactions in the Mediterranean Region; Casasús, I., Rogošiç, J., Rosati, A., Štokoviç, I., Gabiña, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 71–78. ISBN 978-90-8686-741-7. [Google Scholar]
- DeShazer, J.A.; Hahn, G.L.; Xin, H. Chapter 1: Basic Principles of the Thermal Environment and Livestock Energetics. In Agricultural and Biosystems; Agricultural and Biosystems Engineering Publications: St. Joseph, MI, USA, 2009; pp. 1–22. [Google Scholar]
- Mbuthia, J.M.; Mayer, M.; Reinsch, N. A Review of Methods for Improving Resolution of Milk Production Data and Weather Information for Measuring Heat Stress in Dairy Cattle. Livest. Sci. 2022, 255, 104794. [Google Scholar] [CrossRef]
- Dikmen, S.; Cole, J.B.; Null, D.J.; Hansen, P.J. Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal Temperature during Heat Stress in Holstein Cattle. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef]
- Tolkamp, B.J.; Haskell, M.J.; Langford, F.M.; Roberts, D.J.; Morgan, C.A. Are Cows More Likely to Lie down the Longer They Stand? Appl. Anim. Behav. Sci. 2010, 124, 1–10. [Google Scholar] [CrossRef]
- Tucker, C.B.; Jensen, M.B.; de Passillé, A.M.; Hänninen, L.; Rushen, J. Invited Review: Lying Time and the Welfare of Dairy Cows. J. Dairy Sci. 2021, 104, 20–46. [Google Scholar] [CrossRef]
- Vasseur, E.; Rushen, J.; Haley, D.B.; de Passillé, A.M. Sampling Cows to Assess Lying Time for On-Farm Animal Welfare Assessment. J. Dairy Sci. 2012, 95, 4968–4977. [Google Scholar] [CrossRef]
- Hernández Cerón, J. Fisiología Clínica de La Reproducción de Bovinos Lecheros; FMVZ UNAM: México City, Mexico, 2016; ISBN 9786070286902. [Google Scholar]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G.L.; Mader, T.; Eigenberg, R.A. Perspective on Development of Thermal Indices for Animal Studies and Management. EAAP Tech. Ser. 2003, 7, 31–44. [Google Scholar]
- Da Silva, R.G.; Morais, D.A.E.F.; Guilhermino, M.M. Evaluation of Thermal Stress Indexes for Dairy Cows in Tropical Regions. Rev. Bras. De Zootec. 2007, 36, 1192–1198. [Google Scholar] [CrossRef]
- Dikmen, S.; Hansen, P.J. Is the Temperature-Humidity Index the Best Indicator of Heat Stress in Lactating Dairy Cows in a Subtropical Environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of Heat Stress on Body Temperature, Milk Production, and Reproduction in Dairy Cows: A Novel Idea for Monitoring and Evaluation of Heat Stress—A Review. Asian-Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef]
- Zimbelman, R.; Rhoads, R.; Rhoads, M.; Duff, G.; Baumgard, L.; Collier, R. A Re-Evaluation of the Impact of Temperature Humidity Index (THI) and Black Globe Humidity Index (BGHI) on Milk Production in High Producing Dairy Cows. In Proceedings of the 24th Annual Southwest Nutrition and Management Conference, Tempe, AZ, USA, 21–23 April 2009. [Google Scholar]
- Zhou, M.; Aarnink, A.J.A.; Huynh, T.T.T.; van Dixhoorn, I.D.E.; Groot Koerkamp, P.W.G. Effects of Increasing Air Temperature on Physiological and Productive Responses of Dairy Cows at Different Relative Humidity and Air Velocity Levels. J. Dairy Sci. 2022, 105, 1701–1716. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI Thresholds Based on the Physiological Parameters of Lactating Dairy Cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Venegas, R.; Meza-Herrera, C.A.; Robles-Trillo, P.A.; Angel-Garcia, O.; Rivas-Madero, J.S.; Rodriguez-Martinez, R. Heat Stress Characterization in a Dairy Cattle Intensive Production Cluster under Arid Land Conditions: An Annual, Seasonal, Daily, and Minute-To-Minute, Big Data Approach. Agriculture 2022, 12, 760. [Google Scholar] [CrossRef]
- Oltramari, C.E.; Pinheiro, M.d.G.; de Miranda, M.S.; Arcaro, J.R.P.; Castelani, L.; Toledo, L.M.; Ambrósio, L.A.; Leme, P.R.; Manella, M.Q.; Arcaro Júnior, I. Selenium Sources in the Diet of Dairy Cows and Their Effects on Milk Production and Quality, on Udder Health and on Physiological Indicators of Heat Stress. Ital. J. Anim. Sci. 2014, 13, 48–52. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. Cell Biology Symposium: Genetics of Feed Efficiency in Dairy and Beef Cattle. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the Energy Value of Cow’s Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Lenth, R.V.; Buerkner, P.; Herve, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. Package ‘Emmeans’. In Estimated Marginal Means, Aka Least-Squares Means; Rutgers Cooperative Extension: New Brunswick, NJ, USA, 2022. [Google Scholar]
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am. Stat. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental Parameters to Assessing of Heat Stress in Dairy Cattle—A Review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef]
- Gebremedhin, K.G. Heat Stress and Evaporative Cooling. In Environmental Physiology of Livestock; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 35–48. ISBN 9781119949091. [Google Scholar]
- Cincović, M.; Majkić, M.; Belić, B.; Plavša, N.; Lakić, I.; Radinović, M. Thermal Comfort of Cows and Temperature Humidity Index in Period of 2005–2016 in Vojvodina Region (Serbia). Acta Agric. Serbica 2017, 22, 133–145. [Google Scholar] [CrossRef]
- Theusme, C.; Avendaño-Reyes, L.; Macías-Cruz, U.; Correa-Calderón, A.; García-Cueto, R.O.; Mellado, M.; Vargas-Villamil, L.; Vicente-Pérez, A. Climate Change Vulnerability of Confined Livestock Systems Predicted Using Bioclimatic Indexes in an Arid Region of México. Sci. Total Environ. 2021, 751, 141779. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Kuterovac, K.; Solić, D.; Gantner, R. Temperature-Humidity Index Values and Their Significance on the Daily Production of Dairy Cattle. Mljekarstvo 2011, 61, 56–63. [Google Scholar]
- Collier, R.J.; Renquist, B.J.; Xiao, Y. A 100-Year Review: Stress Physiology Including Heat Stress. J. Dairy Sci. 2017, 100, 10367–10380. [Google Scholar] [CrossRef] [PubMed]
- Spiers, D.E.; Spain, J.N.; Ellersieck, M.R.; Lucy, M.C. Strategic Application of Convective Cooling to Maximize the Thermal Gradient and Reduce Heat Stress Response in Dairy Cows. J. Dairy Sci. 2018, 101, 8269–8283. [Google Scholar] [CrossRef] [PubMed]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Cooling Cows with Sprinklers: Effects of Soaker Flow Rate and Timing on Behavioral and Physiological Responses to Heat Load and Production. J. Dairy Sci. 2019, 102, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Cooling Cows with Sprinklers: Timing Strategy Affects Physiological Responses to Heat Load. J. Dairy Sci. 2018, 101, 11237–11246. [Google Scholar] [CrossRef]
- Shiao, T.F.; Chen, J.C.; Yang, D.W.; Lee, S.N.; Lee, C.F.; Cheng, W.T.K. Feasibility Assessment of a Tunnel-Ventilated, Water-Padded Barn on Alleviation of Heat Stress for Lactating Holstein Cows in a Humid Area1. J. Dairy Sci. 2011, 94, 5393–5404. [Google Scholar] [CrossRef]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals 2017, 7, 37. [Google Scholar] [CrossRef]
- Turner, L.W.; Chastain, J.P.; Hemken, R.W.; Gates, R.S.; Crist, W.L. Reducing Heat Stress in Dairy Cows Through Sprinkler and Fan Cooling. Appl. Eng. Agric. 1992, 8, 251–256. [Google Scholar] [CrossRef]
- Roth, Z. Reproductive Physiology and Endocrinology Responses of Cows Exposed to Environmental Heat Stress—Experiences from the Past and Lessons for the Present. Theriogenology 2020, 155, 150–156. [Google Scholar] [CrossRef]
- Kanjanapruthipong, J.; Homwong, N.; Buatong, N. Effects of Prepartum Roughage Neutral Detergent Fiber Levels on Periparturient Dry Matter Intake, Metabolism, and Lactation in Heat-Stressed Dairy Cows. J. Dairy Sci. 2010, 93, 2589–2597. [Google Scholar] [CrossRef]
- Bruno, R.G.S.; Rutigliano, H.M.; Cerri, R.L.; Robinson, P.H.; Santos, J.E.P. Effect of Feeding Saccharomyces Cerevisiae on Performance of Dairy Cows during Summer Heat Stress. Anim. Feed. Sci. Technol. 2009, 150, 175–186. [Google Scholar] [CrossRef]
- Perdomo, M.C.; Marsola, R.S.; Favoreto, M.G.; Adesogan, A.; Staples, C.R.; Santos, J.E.P. Effects of Feeding Live Yeast at 2 Dosages on Performance and Feeding Behavior of Dairy Cows under Heat Stress. J. Dairy Sci. 2020, 103, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Huber, J.T.; Chen, K.H.; Simas, J.M.; Wu, Z. Effects of Ruminally Inert Fat and Evaporative Cooling on Dairy Cows in Hot Environmental Temperatures. J. Dairy Sci. 1997, 80, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.D.; Pohler, K.G.; Mulliniks, J.T.; Ríus, A.G. Lowering Rumen-Degradable and Rumen-Undegradable Protein Improved Amino Acid Metabolism and Energy Utilization in Lactating Dairy Cows Exposed to Heat Stress. J. Dairy Sci. 2018, 101, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Mallonée, P.G.; Beede, D.K.; Collier, R.J.; Wilcox, C.J. Production and Physiological Responses of Dairy Cows to Varying Dietary Potassium During Heat Stress. J. Dairy Sci. 1985, 68, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Collier, J.L.; Rhoads, R.P.; Baumgard, L.H. Invited Review: Genes Involved in the Bovine Heat Stress Response. J. Dairy Sci. 2008, 91, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.N.; Løvendahl, P.; Berg, P.; Loeschcke, V. Hsp72 Is Present in Plasma from Holstein-Friesian Dairy Cattle, and the Concentration Level Is Repeatable across Days and Age Classes. Cell Stress Chaperones 2004, 9, 143–149. [Google Scholar] [CrossRef]
- Ageeb, A.G.; Hayes, J.F. Genetic and Environmental Effects on the Productivity of Holstein-Friesian Cattle under the Climatic Conditions of Central Sudan. Trop. Anim. Health Prod. 2000, 32, 33–49. [Google Scholar] [CrossRef]
- Imrich, I.; Toman, R.; Pšenková, M.; Mlyneková, E.; Kanka, T.; Mlynek, J.; Pontešová, B. Effect of Temperature and Relative Humidity on the Milk Production of Dairy Cows. Sci. Technol. Innov. 2021, 13, 22–27. [Google Scholar] [CrossRef]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited Review: Physiological and Behavioral Effects of Heat Stress in Dairy Cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef]
- Du Preez, J.H.; Hattingh, P.; Giesecke, W.; Eisenberg, B.E. Monthly Temperature-Humidity Index Mean Values and Their Significance in the Performance of Dairy Cattle. Onderstepoort J. Vet Res. 1990, 57, 243–248. [Google Scholar] [PubMed]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of Hot, Humid Weather on Milk Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Terré, M.; Vidal, M. Symposium Review: Decomposing Efficiency of Milk Production and Maximizing Profit. J. Dairy Sci. 2020, 103, 5709–5725. [Google Scholar] [CrossRef] [PubMed]
- Nogoy, K.M.C.; Park, J.; Chon, S.I.; Sivamani, S.; Park, M.J.; Cho, J.P.; Hong, H.K.; Lee, D.H.; Choi, S.H. Precision Detection of Real-Time Conditions of Dairy Cows Using an Advanced Artificial Intelligence Hub. Appl. Sci. 2021, 11, 12043. [Google Scholar] [CrossRef]
- Heinicke, J.; Hoffmann, G.; Ammon, C.; Amon, B.; Amon, T. Effects of the Daily Heat Load Duration Exceeding Determined Heat Load Thresholds on Activity Traits of Lactating Dairy Cows. J. Therm. Biol. 2018, 77, 67–74. [Google Scholar] [CrossRef]
- Hut, P.R.; Scheurwater, J.; Nielen, M.; van den Broek, J.; Hostens, M.M. Sensor-Based Behavioral Patterns of Dairy Cows. J. Dairy Sci. 2021, 105, 6909–6922. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The Effect of Heat Stress and Lameness on Time Budgets of Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef]
- EFSA. Effects of Farming Systems on Dairy Cow Welfare and Disease; EFSA: Parma, Italy, 2009; Volume 1143. [Google Scholar]
- Munksgaard, L.; Jensen, M.B.; Pedersen, L.J.; Hansen, S.W.; Matthews, L. Quantifying Behavioural Priorities—Effects of Time Constraints on Behaviour of Dairy Cows, Bos Taurus. Appl. Anim. Behav. Sci. 2005, 92, 3–14. [Google Scholar] [CrossRef]
- M’Hamdi, N.; Darej, C.; Attia, K.; El Akram Znaidi, I.; Khattab, R.; Djelailia, H.; Bouraoui, R.; Taboubi, R.; Marzouki, L.; Ayadi, M. Modelling THI Effects on Milk Production and Lactation Curve Parameters of Holstein Dairy Cows. J. Therm. Biol. 2021, 99, 102917. [Google Scholar] [CrossRef]
- Nasr, M.A.F.; El-Tarabany, M.S. Impact of Three THI Levels on Somatic Cell Count, Milk Yield and Composition of Multiparous Holstein Cows in a Subtropical Region. J. Therm. Biol. 2017, 64, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and Residual Effects of Heat Stress and Restricted Intake on Milk Protein and Casein Composition and Energy Metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Muroya, S.; Terada, F.; Shioya, S. Influence of Heat Stress on Distribution of Nitrogen in Milk. Nihon Chikusan Gakkaiho 1997, 68, 297–300. [Google Scholar] [CrossRef]
- Gernand, E.; König, S.; Kipp, C. Influence of On-Farm Measurements for Heat Stress Indicators on Dairy Cow Productivity, Female Fertility, and Health. J. Dairy Sci. 2019, 102, 6660–6671. [Google Scholar] [CrossRef]
- Koch, F.; Lamp, O.; Eslamizad, M.; Weitzel, J.; Kuhla, B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS ONE 2016, 11, e0160912. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Agricultura y Desarrollo Rural Livestock Production in the Region Lagunera; SADER: Torreón, México, 2022.
- UN. Universal Declaration of Human Rights; UN: New York, NY, USA, 1948. [Google Scholar]
- FAO. The State of Food and Agriculture; FAO: Roma, Italy, 2004; ISBN 92-5-105070-1. [Google Scholar]
- SIAP. Anuario Estadístico de La Producción Ganadera. Available online: https://www.gob.mx/cms/uploads/attachment/file/744950/Inventario_2021_bovino_para_leche.pdf (accessed on 2 August 2022).
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Ramirez-Flores, J.J.; Herrera-Machuca, M.A.; Lopez-Villalobos, N.; Lopez-Santiago, M.A.; Veliz-Deras, F.G. Economic Evaluation of the Environmental Impact of a Dairy Cattle Intensive Production Cluster under Arid Lands Conditions. Animal 2019, 13, 2379–2387. [Google Scholar] [CrossRef]
Variable | Mean | SD | Min | Max |
---|---|---|---|---|
Milk performance at farm level (L) | 74,128.55 | 8652.31 | 54,752.00 | 90,787.00 |
Milk performance at cow level (L) | 34.24 | 2.63 | 27.19 | 39.58 |
Dry Matter Intake (kg) | 22.86 | 1.59 | 17.61 | 27.93 |
Feed-to-Milk Efficiency (units) | 1.55 | 0.08 | 0.00 | 1.82 |
Energy-Corrected Milk (kg) | 34.14 | 2.66 | 26.71 | 51.52 |
Milking Cows (%) | 86.85 | 4.92 | 75.90 | 95.18 |
Lying Time (h) | 9.72 | 0.99 | 6.30 | 11.87 |
Milk fat (%) | 3.42 | 0.12 | 3.08 | 3.77 |
Milk protein (%) | 3.14 | 0.07 | 2.97 | 3.33 |
Milk urea (mg) | 10.78 | 1.79 | 6.41 | 17.37 |
THI (units) | 72.76 | 5.42 | 35.46 | 83.23 |
Variables | Stress Level | ||||
---|---|---|---|---|---|
<68 THI | 68–71 THI | 72–76 THI | ≥77 THI | p-Value | |
Milk performance | |||||
totMP (L) | 76,114 ± 1038 ab | 78,886 ± 502 a | 75,095 ± 299 b | 66,584 ± 443 c | <0.05 |
cowMP (L) | 35.96 ± 0.30 a | 35.88 ± 0.15 a | 34.37 ± 0.09 b | 31.79 ± 0.13 c | <0.05 |
Feed-to-milk efficiency | |||||
DMI (kg) | 23.58 ± 0.19 a | 23.77 ± 0.90 a | 22.76 ± 0.05 b | 21.59 ± 0.80 c | <0.05 |
FCE (units) | 1.575 ± 0.01 a | 1.562 ±.01 a | 1.558 ± 0.003 a | 1.514 ± 0.005 b | <0.05 |
ECM (kg) | 35.54 ± 0.30 a | 35.77± 0.15 a | 34.23 ± 0.09 b | 31.63 ± 0.13 c | <0.05 |
Percentage of milking cows | |||||
MC (%) | 86.75 ± 0.64 b | 89.08 ± 0.31 a | 87.11 ± 0.18 b | 84.00 ± 0.27 c | <0.05 |
Cow comfort | |||||
LT (h) | 10.71 ± 0.15 a | 10.53 ± 0.07 a | 9.46 ± 0.04 b | 8.52 ± 0.06 c | <0.05 |
Milk composition | |||||
Milk fat (%) | 3.33 ± 0.02 a | 3.42 ±.01 b | 3.42 ± 0.004 b | 3.44 ± 0.01 b | <0.05 |
Milk protein (%) | 3.19 ± 0.01 a | 3.15 ± 0.003 b | 3.13 ± 0.002 c | 3.09 ± 0.003 d | <0.05 |
Milk urea (mg) | 10.9 ± 0.38 ab | 10.4 ± 0.15 b | 10.8 ± 0.09 ab | 11.0 ± 0.13 a | <0.05 |
Variables | Season | ||||
---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | p-Value | |
Milk performance | |||||
totMP (L) | 78,438 ± 307 b | 64,462 ± 305 d | 72,732 ± 305 c | 81,091 ± 309 a | <0.05 |
cowMP (L) | 35.20 ± 0.09 b | 31.37 ± 0.09 d | 33.80 ± 0.09 c | 36.65 ± 0.09 a | <0.05 |
Food-to-milk efficiency | |||||
DMI (kg) | 23.29 ± 0.06 b | 21.18 ± 0.06 d | 22.79 ± 0.06 c | 24.23 ± 0.06 a | <0.05 |
FCE (units) | 1.56 ± 0.004 a | 1.53 ± 0.004 b | 1.53 ± 0.004 b | 1.56 ± 0.004 a | <0.05 |
ECM (kg) | 34.9 ± 0.10 b | 31.2 ± 0.10 d | 34.0 ± 0.10 c | 36.4 ± 0.10 a | <0.05 |
Percentage of milking cows | |||||
MC (%) | 90.96 ± 0.12 a | 80.82 ± 0.12 c | 84.63 ± 0.12 b | 91.12 ± 0.12 a | <0.05 |
Cow comfort | |||||
LT (h) | 9.34 ± 0.05 c | 8.76 ± 0.06 d | 10.20 ± 0.05 b | 10.53 ± 0.06 a | <0.05 |
Milk composition | |||||
Milk fat (%) | 3.41 ± 0.006 b | 3.42 ± 0.006 b | 3.49 ± 0.006 a | 3.38 ± 0.006 c | <0.05 |
Milk protein (%) | 3.105 ± 0.003 b | 3.116 ± 0.003 b | 3.167 ± 0.003 a | 3.158 ± 0.003 a | <0.05 |
Milk urea (mg) | 10.9 ± 0.12 b | 11.4 ± 0.11 a | 10.6 ± 0.11 b | 10.1 ± 0.13 bc | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Venegas, R.; Meza-Herrera, C.A.; Robles-Trillo, P.A.; Angel-Garcia, O.; Legarreta-Gonzalez, M.A.; Sánchez-Vocanegra, H.F.; Rodriguez-Martinez, R. Effect of THI on Milk Production, Percentage of Milking Cows, and Time Lying in Holstein Cows in Northern-Arid Mexico. Animals 2023, 13, 1715. https://doi.org/10.3390/ani13101715
Rodriguez-Venegas R, Meza-Herrera CA, Robles-Trillo PA, Angel-Garcia O, Legarreta-Gonzalez MA, Sánchez-Vocanegra HF, Rodriguez-Martinez R. Effect of THI on Milk Production, Percentage of Milking Cows, and Time Lying in Holstein Cows in Northern-Arid Mexico. Animals. 2023; 13(10):1715. https://doi.org/10.3390/ani13101715
Chicago/Turabian StyleRodriguez-Venegas, Rafael, Cesar Alberto Meza-Herrera, Pedro Antonio Robles-Trillo, Oscar Angel-Garcia, Martín Alfredo Legarreta-Gonzalez, Humberto Filemón Sánchez-Vocanegra, and Rafael Rodriguez-Martinez. 2023. "Effect of THI on Milk Production, Percentage of Milking Cows, and Time Lying in Holstein Cows in Northern-Arid Mexico" Animals 13, no. 10: 1715. https://doi.org/10.3390/ani13101715
APA StyleRodriguez-Venegas, R., Meza-Herrera, C. A., Robles-Trillo, P. A., Angel-Garcia, O., Legarreta-Gonzalez, M. A., Sánchez-Vocanegra, H. F., & Rodriguez-Martinez, R. (2023). Effect of THI on Milk Production, Percentage of Milking Cows, and Time Lying in Holstein Cows in Northern-Arid Mexico. Animals, 13(10), 1715. https://doi.org/10.3390/ani13101715