Selection of Flagship Species and Their Use as Umbrellas in Bird Conservation: A Case Study in Lishui, Zhejiang Province, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Distribution Data
2.3. Environmental Data
2.4. Selection of Flagship Species
2.4.1. Ranking of Birds
2.4.2. Potential Distribution of Species
2.4.3. Identifying the Flagship Species
2.5. Protection Effectiveness of Flagship Species
3. Result
3.1. Bird Species Diversity
3.2. Selection of Flagship Species
3.3. Overlap Analysis of the Protection Areas
4. Discussion
4.1. Improvement in Flagship Species Selection Method
4.1.1. Combined Subjective and Objective Weighting Analysis
4.1.2. Species Suitability Distribution Area Range Prediction
4.1.3. The Shortcomings of the Method
4.2. Effectiveness of Flagship Species in Playing a Conservation Leadership Role
4.3. Challenges and Recommendations for Local Governments in Using Flagship Species
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, C.D.; Anderson, B.J.; Moilanen, A.; Eigenbrod, F.; Heinemeyer, A.; Quaife, T.; Roy, D.B.; Gillings, S.; Armsworth, P.R.; Gaston, K.J. Reconciling biodiversity and carbon conservation. Ecol. Lett. 2012, 16, 39–47. [Google Scholar] [CrossRef] [PubMed]
- McCallum, M.L. Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers. Conserv. 2015, 24, 2497–2519. [Google Scholar] [CrossRef]
- Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 2010, 143, 1919–1927. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. USA 2017, 114, E6089–E6096. [Google Scholar] [CrossRef] [PubMed]
- Senzaki, M.; Yamaura, Y.; Shoji, Y.; Kubo, T.; Nakamura, F. Citizens promote the conservation of flagship species more than ecosystem services in wetland restoration. Biol. Conserv. 2017, 214, 1–5. [Google Scholar] [CrossRef]
- CBD (Convention on Biological Diversity) Estimation of Resources Needed for Implementing the Post–2020 Global Biodiversity Framework. Available online: https://www.cbd.int/doc/c/b858/143f/c58220e9a61c4b5fc2dfeed3/sbi–03–05–add2–rev1–en.pdf (accessed on 16 December 2022).
- Lundberg, P.; Arponen, A. An overview of reviews of conservation flagships: Evaluating fundraising ability and surrogate power. Nat. Conserv. 2022, 49, 153–188. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Brooks, T.M. Shortcuts for Biodiversity Conservation Planning: The Effectiveness of Surrogates. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 713–737. [Google Scholar] [CrossRef]
- Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Mekonnen, A.; Fashing, P.J.; Chapman, C.A.; Venkataraman, V.V.; Stenseth, N.C. The value of flagship and umbrella species for restoration and sustainable development: Bale monkeys and bamboo forest in Ethiopia. J. Nat. Conserv. 2022, 65, 126117. [Google Scholar] [CrossRef]
- Holmes, B.; Strzelecki, A.; Springer, S.; Zieger, M. Google Trends data reveal a sharp trend: Teeth and claws attract more interest than feathers, hooves or fins. Environ. Conserv. 2022, 49, 65–73. [Google Scholar] [CrossRef]
- Veríssimo, D.; Macmillan, D.C.; Smith, R. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. 2010, 4, 1–8. [Google Scholar] [CrossRef]
- Home, R.; Keller, C.; Nagel, P.; Bauer, N.; Hunziker, M. Selection criteria for flagship species by conservation organizations. Environ. Conserv. 2009, 36, 139–148. [Google Scholar] [CrossRef]
- Macdonald, E.; Hinks, A.; Weiss, D.; Dickman, A.; Burnham, D.; Sandom, C.J.; Macdonald, D.W. Identifying ambassador species for conservation marketing. Glob. Ecol. Conserv. 2017, 12, 204–214. [Google Scholar] [CrossRef]
- Wosnick, N.; Leite, R.D.; Giareta, E.P.; Nunes, A.R.O.; Nunes, J.L.; Charvet, P.; Monteiro–Filho, E.L. Evaluating conservation status and governmental efforts towards regional flagship species in Brazil. J. Environ. Manag. 2021, 292, 112732. [Google Scholar] [CrossRef]
- Ernoul, L.; Wardell–Johnson, A.; Mathevet, R.; Sandoz, A.; Boutron, O.; Willm, L.; Arnassant, S.; Béchet, A. Context in Landscape Planning: Improving Conservation Outcomes by Identi–fying Social Values for a Flagship Species. Sustainability. 2021, 13, 6827. [Google Scholar] [CrossRef]
- Gao, H.; Guan, T.; Zhu, D.; Li, W.; Zhou, F.; Zhao, D.; Li, C.; Zhang, L. Assessment of effective conservation of the Sichuan takin by giant panda reserves through functional zoning. Integr. Zool. 2020, 15, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhuang, H.; Yang, W.; Chen, Y.; Chen, S.; Qu, Y.; Zhang, Y.; Yang, Y.; Wang, Y. Selecting flagship species to solve a biodiversity conservation conundrum. Plant Divers. 2020, 42, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Fleishman, E.; Murphy, D.D.; Brussard, P.F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 2000, 10, 569–579. [Google Scholar] [CrossRef]
- Branton, M.; Richardson, J.S. Assessing the Value of the Umbrella–Species Concept for Conservation Planning with Meta–Analysis. Conserv. Biol. 2011, 25, 9–20. [Google Scholar] [CrossRef]
- Maslo, B.; Leu, K.; Faillace, C.; Weston, M.; Pover, T.; Schlacher, T. Selecting umbrella species for conservation: A test of habitat models and niche overlap for beach–nesting birds. Biol. Conserv. 2016, 203, 233–242. [Google Scholar] [CrossRef]
- Li, B.V.; Pimm, S.L. China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conserv. Biol. 2016, 30, 329–339. [Google Scholar] [CrossRef]
- Shen, X.; Li, S.; McShea, W.J.; Wang, D.; Yu, J.; Shi, X.; Dong, W.; Mi, X.; Ma, K. Effectiveness of management zoning designed for flagship species in protecting sympatric species. Conserv. Biol. 2019, 34, 158–167. [Google Scholar] [CrossRef]
- Garnett, S.T.; Ainsworth, G.B.; Zander, K.K. Are we choosing the right flagships? The bird species and traits Australians find most attractive. PLoS ONE 2018, 13, e0199253. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Kumar, A.; Krishna, M. Hornbills: A flagship species in Pakke Tiger Reserve, Arunachal Pradesh, India. Int. J. Ecol. Environ. Sci. 2022, 48, 663–669. [Google Scholar] [CrossRef]
- Kitowski, I.; Jakubas, D.; Wiącek, D.; Sujak, A. Concentrations of lead and other elements in the liver of the white–tailed eagle (Haliaeetus albicilla), a European flagship species, wintering in Eastern Poland. AMBIO 2017, 46, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Ocampo–Peñuela, N.; Winton, R. Economic and Conservation Potential of Bird–Watching Tourism in Postconflict Colombia. Trop. Conserv. Sci. 2017, 10, 1940082917733862. [Google Scholar] [CrossRef]
- Maldonado, J.H.; Moreno–Sánchez, R.D.P.; Espinoza, S.; Bruner, A.; Garzón, N.; Myers, J. Peace is much more than doves: The economic benefits of bird–based tourism as a result of the peace treaty in Colombia. World Dev. 2018, 106, 78–86. [Google Scholar] [CrossRef]
- Schwoerer, T.; Dawson, N.G. Small sight—Big might: Economic impact of bird tourism shows opportunities for rural communities and biodiversity conservation. PLoS ONE 2022, 17, e0268594. [Google Scholar] [CrossRef]
- Li, X.X.; Tao, C.; Wang, Q.C.; Cui, G. Characteristics of geographic distribution of four critically endangered species of Abiesin sub–tropical China and its relationship with climate. Chin. J. Plant Ecol. 2012, 36, 1154–1164. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Liu, W.; Wang, B.; Wu, J. Description of a new horned toad of Megophrys Kuhl & Van Hasselt, 1822 (Amphibia, Megophryidae) from Zhejiang Province, China. ZooKeys 2020, 1005, 73. [Google Scholar]
- Lei, J.S. The Magnificent World: Where the Green Grows; Beijing United Publishing Co., Ltd.: Beijing, China, 2022. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting; McGraw–Hill: New York, NY, USA, 1980. [Google Scholar] [CrossRef]
- Cheng, Q.Y. Structure entropy weight method to confirm the weight of evaluating index. Syst. Eng.–Theory Pract. 2010, 30, 1225–1228. [Google Scholar]
- Wu, K.Y.; Jin, J.L. Attribute recognition method of regional ecological security evaluation based on combined weight on principle of relative entropy. Sci. Geogr. Sin. 2008, 28, 754–758. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Yao, J.J. Studies on the Urban Plant Biodiversity in Lishui City Zhejiang Province; Huazhong Agricultural University: Wuhan, China, 2009. [Google Scholar]
- Lei, J.S. Working together to build a beautiful home in harmony with everything—practice and reflection on biodiversity conservation in Lishui City. China Ecol. Civiliz. 2021, 6, 48–50. [Google Scholar]
- MacKinnon, J.R.; MacKinnon, J.; Phillipps, K. A Field Guide to the Birds of China; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Zheng, G.M. Lit of Birds Classification and Distribution in China, 3rd ed.; Science Press: Beijing, China, 2017. [Google Scholar]
- Deng, H.L.; Dai, D.; Li, S.W. Comprehensive operation risk evaluation of overhead transmission line based on hierarchical analysis–entropy weight method. Power Syst. Prot. Control 2017, 45, 28–34. [Google Scholar]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total. Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Hao, X.N.; Wu, Y.L. Prediction of suitable habitat for overwintering hooded cranes (Grus monacha) based on MaxEnt modeling. J. Anhui Agric. Univ. 2017, 44, 591–597. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1998, 240, 1285–1293. [Google Scholar] [CrossRef]
- Perzanowski, K.; Bleyhl, B.; Olech, W.; Kuemmerle, T. Connectivity or isolation? Identifying reintroduction sites for multiple conservation objectives for wisents in Poland. Anim. Conserv. 2019, 23, 212–221. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, Y.; Liu, S.; Zhou, K.; Jiang, X.; Hu, H. China’s Red List of Biodiversity: Vertebrates, Volume I, Mammals; Science Press: Beijing, China, 2021. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 20 December 2020).
- Roll, U.; Mittermeier, J.C.; Diaz, G.I.; Novosolov, M.; Feldman, A.; Itescu, Y.; Meiri, S.; Grenyer, R. Using Wikipedia page views to explore the cultural importance of global reptiles. Biol. Conserv. 2016, 204, 42–50. [Google Scholar] [CrossRef]
- Rüdisser, J.; Schirpke, U.; Tappeiner, U. Symbolic entites in the European Alps:Perception and use of a cultural ecosystem service. Ecosyst. Serv. 2019, 39, 100980. [Google Scholar] [CrossRef]
- Coates, P. Creatures Enshrined: Wild Animals as Bearers of Heritage. Past Present. 2015, 226, 272–298. [Google Scholar] [CrossRef]
- Xu, W.; Xu, F.; Ma, W.; Wang, M.; Wang, J.; Yang, W. Proposing a quantitative selection method for determining flagship species based on an analytic hierarchy process. Biodivers. Sci. 2022, 30, 21536. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Y.M.; Gu, Z.H.; Yang, W.D. Competitive situation analysis of regional logistics development based on AHP andentropy weight. J. Southeast Univ. (Nat. Sci. Ed.) 2004, 3, 398–401. [Google Scholar]
- Tian, X. Study of Evaluation System for Teaching Laboratories Based on Analytic HierarchyProcess & Entropy Weight Method. Res. Explor. Lab. Explor. Lab. 2020, 39, 264–269. [Google Scholar]
- Zhang, J.L.; Jin, X.; Zhao, M.L.; Luo, Q.S.; Lu, J. Health Diagnosis of River System in the Yellow River Basin Under ChangingEnvironment. J. Basic Sci. Eng. 2023, 31, 363–373. [Google Scholar]
- Srivathsa, A.; Majgaonkar, I.; Sharma, S.; Singh, P.; Punjabi, G.A.; Chawla, M.M.; Banerjee, A. Opportunities for prioritizing and expanding conservation enterprise in India using a guild of carnivores as flagships. Environ. Res. Lett. 2020, 15, 064009. [Google Scholar] [CrossRef]
- Walpole, M.J.; Leader–Williams, N. Tourism and flagship species in conservation. Biodivers. Conserv. 2002, 11, 543–547. [Google Scholar] [CrossRef]
- Lundberg, P.; Vainio, A.; Macmillan, D.C.; Smith, R.; Veríssimo, D.; Arponen, A. The effect of knowledge, species aesthetic appeal, familiarity and conservation need on willingness to donate. Anim. Conserv. 2019, 22, 432–443. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Yu, W.; Du, Y.; Liang, J.; Hu, H.; Qiu, S.; Liu, L. Analysis on the hotspot and conservation gaps of bird biodiversity in Guangdong Province based on MaxEnt model. Biodivers. Sci. 2021, 29, 1097–1107. [Google Scholar] [CrossRef]
- Xia, S.S.; Hu, D.M.; Deng, Y.; Zhong, X.; Bai, W.K.; Zhang, J.D.; Wang, B.; Zhou, C.Q. Habitat partitioning between sympatric Golden Pheasant and Temminck’s Tragopan at different spatial scales. Acta Ecol. Sin. 2019, 39, 1627–1638. [Google Scholar]
- Wang, G.; Wang, C.; Guo, Z.; Dai, L.; Wu, Y.; Liu, H.; Li, Y.; Chen, H.; Zhang, Y.; Zhao, Y.; et al. Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red–crowned crane. Ecol. Indic. 2020, 116, 106472. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Titeux, N.; Henle, K.; Mihoub, J.B.; Regos, A.; Geijzendorffer, I.R.; Cramer, W.; Verburg, P.H.; Brotons, L. Global scenarios for bio–diversity need to better integrate climate and land use change. Divers. Distrib. 2017, 23, 1231–1234. [Google Scholar] [CrossRef]
- Ramachandran, R.M.; Roy, P.S.; Chakravarthi, V.; Sanjay, J.; Joshi, P.K. Long–term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecol. Indic. 2018, 85, 21–36. [Google Scholar] [CrossRef]
- Padoa–Schioppa, E.; Baietto, M.; Massa, R.; Bottoni, L. Bird communities as bioindicators: The focal species concept in agricultural land–scapes. Ecol. Indic. 2006, 6, 83–93. [Google Scholar] [CrossRef]
- Clucas, B.; McHugh, K.; Caro, T. Flagship species on covers of US conservation and nature magazines. Biodivers. Conserv. 2008, 17, 1517–1528. [Google Scholar] [CrossRef]
- Evans, K.L.; Newson, S.E.; Gaston, K.J. Habitat influences on urban avian assemblages. Ibis 2009, 151, 19–39. [Google Scholar] [CrossRef]
- Yang, H.; Viña, A.; Tang, Y.; Zhang, J.; Wang, F.; Zhao, Z.; Liu, J. Range–wide evaluation of wildlife habitat change: A demonstration using Giant Pandas. Biol. Conserv. 2017, 213, 203–209. [Google Scholar] [CrossRef]
- Renwick, K.M.; Rocca, M.E. Temporal context affects the observed rate of climate–driven range shifts in tree species. Glob. Ecol. Biogeogr. 2014, 24, 44–51. [Google Scholar] [CrossRef]
- Veríssimo, D.; Fraser, I.; Girão, W.; Campos, A.A.; Smith, R.J.; MacMillan, D.C. Evaluating Conservation Flagships and Flagship Fleets. Conserv. Lett. 2013, 7, 263–270. [Google Scholar] [CrossRef]
- McGowan, J.; Beaumont, L.J.; Smith, R.J.; Chauvenet, A.L.M.; Harcourt, R.; Atkinson, S.C.; Mittermeier, J.C.; Esperon–Rodriguez, M.; Baumgartner, J.B.; Beattie, A.; et al. Conservation prioritization can resolve the flagship species conundrum. Nat. Commun. 2020, 11, 994. [Google Scholar] [CrossRef]
- Bennett, J.R.; Maloney, R.; Possingham, H.P. Biodiversity gains from efficient use of private sponsorship for flagship species conservation. Proc. R. Soc. B–Biol. Sci. 2015, 282, 20142693. [Google Scholar] [CrossRef]
- Zacharias, M.A.; Roff, J.C. Use of focal species in marine conservation and management: A review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 59–76. [Google Scholar] [CrossRef]
- Seddon, P.J.; Soorae, P.S.; Launay, F. Taxonomic bias in reintroduction projects. Anim. Conserv. 2005, 8, 51–58. [Google Scholar] [CrossRef]
- Lišková, S.; Frynta, D. What determines bird beauty in human eyes? Anthrozoös 2013, 26, 27–41. [Google Scholar] [CrossRef]
- Correia, R.A.; Jepson, P.R.; Malhado, A.C.M.; Ladle, R.J. Familiarity breeds content: Assessing bird species popularity with culturomics. PeerJ 2016, 4, e1728. [Google Scholar] [CrossRef] [PubMed]
- Sattler, T.; Pezzatti, G.B.; Nobis, M.P.; Obrist, M.K.; Roth, T.; Moretti, M. Selection of Multiple Umbrella Species for Functional and Taxonomic Diversity to Represent Urban Biodiversity. Conserv. Biol. 2013, 28, 414–426. [Google Scholar] [CrossRef]
- Caro, T.; Engilis, J.A.; Fitzherbert, E.; Gardner, T. Preliminary assessment of the flagship species concept at a small scale. In Animal Conservation Forum; Cambridge University Press: Cambridge, UK, 2004; Volume 7, pp. 63–70. [Google Scholar]
- Smith, A.M.; Sutton, S.G. The Role of a Flagship Species in the Formation of Conservation Intentions. Hum. Dimens. Wildl. 2008, 13, 127–140. [Google Scholar] [CrossRef]
- Chen, H.; Yao, H.; Ruan, X.; Wallner, B.; Ostner, J.; Xiang, Z. Tourism may trigger physiologically stress response of a long–term habituated population of golden snub–nosed monkeys. Curr. Zoöl. 2020, 67, 465–467. [Google Scholar] [CrossRef]
- Smith, R.J.; Veríssimo, D.; Isaac, N.J.; Jones, K.E. Identifying Cinderella species: Uncovering mammals with conservation flagship appeal. Conserv. Lett. 2012, 5, 205–212. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of People’s Republic of China, China. National Biodiversity Conservation Strategy and Action Plan (2011–2030); China Environmental Science Press: Beijing, China, 2010. [Google Scholar]
- Barua, M. Mobilizing metaphors: The popular use of keystone, flagship and umbrella species concepts. Biodivers. Conserv. 2011, 20, 1427–1440. [Google Scholar] [CrossRef]
- Simberloff, D. Flagships, umbrellas, and keystones: Is single–species management passé in the landscape era? Biol. Conserv. 1998, 83, 247–257. [Google Scholar] [CrossRef]
- Laycock, H.F.; Moran, D.; Smart, J.C.; Raffaelli, D.G.; White, P.C. Evaluating the effectiveness and efficiency of biodiversity conservation spending. Ecol. Econ. 2011, 70, 1789–1796. [Google Scholar] [CrossRef]
- Shreedhar, G. Evaluating the impact of storytelling in Facebook advertisements on wildlife conservation engagement: Lessons and challenges. Conserv. Sci. Pract. 2021, 3, e534. [Google Scholar] [CrossRef]
- DeWan, A.; Green, K.; Li, X.; Hayden, D. Using social marketing tools to increase fuel–efficient stove adoption for conservation of the golden snub–nosed monkey, Gansu Province, China. Conserv. Evid. 2013, 10, 32–36. [Google Scholar]
- Wei, F.; Costanza, R.; Dai, Q.; Stoeckl, N.; Gu, X.; Farber, S.; Nie, Y.; Kubiszewski, I.; Hu, Y.; Swaisgood, R.; et al. The value of ecosystem services from giant panda reserves. Curr. Biol. 2018, 28, 2174–2180.e7. [Google Scholar] [CrossRef]
Environment Variable | Data Sources |
---|---|
Climate | Climate data were downloaded from the Global Climate Data Center (http://www.wordclim.org/, (accessed on 21 January 2022)). |
Land use/cover | Land use/cover data were obtained from GlobeLand30: Global Geographic Information Public Product (http://www.globallandcover.com/, (accessed on 21 January 2022)). |
Topography and elevation | Topographic and elevation data were obtained from digital elevation model (DEM) data with a resolution of 30 m and downloaded from the Geospatial Data Cloud, and slope and aspect data were extracted from DEM data using ArcGIS 10.7 software. Normalized difference vegetation index (NDVI) data were downloaded from the National Ecological Science Data Center’s 30 m annual maximum NDVI dataset for China from 2000 to 2020. |
Man-made interference | Population density data were downloaded from China’s 1 km population density data for 2020 (http://www.worldpop.org/, (accessed on 21 January 2022)). The road data were obtained from the (http://openstreetmap.org/, (accessed on 21 January 2022)), and the distances from roads and settlements were obtained by calculating the Euclidean distances for roads as well as settlements using ArcGIS 10.7 software. |
No. | Element Name | Criteria |
---|---|---|
1 | Conservation grading | Whether the target species was listed as a Class I or II state key protected wild animal. They were classified into three levels. Class I state key protected animal: 1. Class II state key protected animal: 0.6. Non-protected animal: 0.1. |
2 | Endangered status | According to the evaluation criteria of the International Union for Conservation of Nature, endangered species were divided into seven levels. Extinct and extinct in the wild were removed from the list without matching objects. They were classified into seven levels. Critically endangered: 1. Endangered: 0.8. Vulnerable: 0.6. Near threatened: 0.2. Least concern: 0.1. |
3 | Stability of population size and distribution | Whether the target species had a stable distribution in Lishui every year. They were classified into three levels. The population size and distribution were relatively stable and common: 1. The population size and distribution were relatively stable and rare: 0.6. The population size and distribution were unstable and rare: 0. |
4 | Research of population size and distribution | Whether the distribution areas and size of bird populations in Lishui were already well known. They were classified into three levels. Fully understood: 1. Not well understood: 0.6. Not understood: 0.1. |
5 | Socio-economic values | Whether the target species had the main value or potential value to promote bird watching and other ecotourism. They were classified into three levels. High: 1. Middle: 0.6. Low: 0.1. |
6 | Cultural values | The relationship between the target species and local culture, including folklore, art, food, or handicrafts. They were classified into three levels. High: 1. Middle: 0.6. Low: 0.1. |
7 | Endemic species of China | Whether the target species was endemic to China. They were classified into two levels. Yes: 1. No: 0.6. |
8 | Unique in Lishui, Zhejiang | In Zhejiang Province, whether the target species were only distributed or mainly distributed in Lishui. They were classified into two levels. Yes: 1. No: 0.6. |
9 | Recognition | The degree of recognition of target species by different social groups. They were classified into three levels. Known to the public: 1. Known to the biodiversity managers of a government agency: 0.6. Only known to professional bird researchers: 0.1. |
English Name | Scientific Name | AHP | EWM | AHP-EWM |
---|---|---|---|---|
Cabot’s Tragopan | Tragopan caboti | 0.962 | 0.969 | 0.958 |
Yellow-breasted Bunting | Emberiza aureola | 0.958 | 0.710 | 0.866 |
Elliot’s Pheasant | Syrmaticus ellioti | 0.905 | 0.815 | 0.860 |
Scaly-sided Merganser | Mergus squamatus | 0.874 | 0.795 | 0.843 |
White-necklaced Partridge | Arborophila gingica | 0.784 | 0.759 | 0.766 |
Black Eagle | Ictinaetus malaiensis | 0.724 | 0.671 | 0.707 |
Chinese Hwamei | Garrulax canorus | 0.699 | 0.672 | 0.664 |
Red-headed Trogon | Harpactes erythrocephalus | 0.657 | 0.675 | 0.655 |
Silver Pheasant | Lophura nycthemera | 0.679 | 0.657 | 0.643 |
Mandarin Duck | Aix galericulata | 0.636 | 0.656 | 0.625 |
Crested Serpent Eagle | Spilornis cheela | 0.647 | 0.610 | 0.624 |
Blue-throated Bee-eater | Merops viridis | 0.616 | 0.641 | 0.604 |
Fujian Niltava | Niltava davidi | 0.628 | 0.586 | 0.603 |
Koklass Pheasant | Pucrasia macrolopha | 0.628 | 0.586 | 0.603 |
Buffy Laughingthrush | Pterorhinus berthemyi | 0.656 | 0.585 | 0.598 |
Mountain Hawk-Eagle | Nisaetus nipalensis | 0.637 | 0.537 | 0.592 |
Amur Falcon | Falco amurensis | 0.637 | 0.537 | 0.592 |
Crested Goshawk | Accipiter trivirgatus | 0.637 | 0.537 | 0.592 |
Common Kestrel | Falco tinnunculus | 0.662 | 0.525 | 0.585 |
Eurasian Sparrowhawk | Accipiter nisus | 0.618 | 0.522 | 0.571 |
Black Kite | Milvus migrans | 0.618 | 0.522 | 0.571 |
Black Baza | Aviceda leuphotes | 0.618 | 0.522 | 0.571 |
Chinese Sparrowhawk | Accipiter soloensis | 0.618 | 0.522 | 0.571 |
White-throated Kingfisher | Halcyon smyrnensis | 0.618 | 0.522 | 0.571 |
Red-billed Leiothrix | Leiothrix lutea | 0.588 | 0.572 | 0.566 |
Asian Barred Owlet | Glaucidium cuculoides | 0.587 | 0.581 | 0.557 |
Peregrine Falcon | Falco peregrinus | 0.575 | 0.521 | 0.553 |
Grey-faced Buzzard | Butastur indicus | 0.575 | 0.521 | 0.553 |
Merlin | Falco columbarius | 0.575 | 0.521 | 0.553 |
Black-winged Kite | Elanus caeruleus | 0.575 | 0.521 | 0.553 |
Crested Honey Buzzard | Pernis ptilorhynchus | 0.575 | 0.521 | 0.553 |
Western Osprey | Pandion haliaetus | 0.575 | 0.521 | 0.553 |
Northern Goshawk | Accipiter gentilis | 0.575 | 0.521 | 0.553 |
Eastern marsh Harrier | Circus spilonotus | 0.575 | 0.521 | 0.553 |
Eastern Grass Owl | Tyto longimembris | 0.599 | 0.538 | 0.552 |
Brown Wood Owl | Strix leptogrammica | 0.600 | 0.529 | 0.552 |
Eurasian Hobby | Falco subbuteo | 0.555 | 0.505 | 0.532 |
Besra | Accipiter virgatus | 0.555 | 0.505 | 0.532 |
Japanese Sparrowhawk | Accipiter gularis | 0.555 | 0.505 | 0.532 |
Eastern Buzzard | Buteo japonicus | 0.555 | 0.505 | 0.532 |
Siberian Rubythroat | Calliope calliope | 0.555 | 0.505 | 0.532 |
Common Kingfisher | Alcedo atthis | 0.526 | 0.597 | 0.526 |
Short-tailed Parrotbill | Neosuthora davidiana | 0.589 | 0.464 | 0.520 |
Eurasian Eagle-Owl | Bubo bubo | 0.589 | 0.464 | 0.520 |
Barred Cuckoo-Dove | Macropygia unchall | 0.537 | 0.513 | 0.513 |
Eurasian Hoopoe | Upupa epops | 0.482 | 0.594 | 0.512 |
Sultan Tit | Melanochlora sultanea | 0.495 | 0.542 | 0.507 |
Collared Owlet | Taenioptynx brodiei | 0.570 | 0.449 | 0.499 |
Collared Scops Owl | Otus lettia | 0.570 | 0.449 | 0.499 |
Oriental Scops Owl | Otus sunia | 0.570 | 0.449 | 0.499 |
English Name | Scientific Name | Number of Species Covered | Percentage (%) | AUC |
---|---|---|---|---|
Yellow-breasted Bunting | Emberiza aureola | 110 | 30.47 | 0.996 |
Scaly-sided Merganser | Mergus squamatus | 274 | 75.90 | 0.989 |
Cabot’s Tragopan | Tragopan caboti | 147 | 40.72 | 0.940 |
Mandarin Duck | Aix galericulata | 284 | 78.67 | 0.916 |
White-necklaced Partridge | Arborophila gingica | 186 | 51.52 | 0.915 |
Elliot’s Pheasant | Syrmaticus ellioti | 189 | 52.35 | 0.904 |
Silver Pheasant | Lophura nycthemera | 208 | 57.62 | 0.896 |
Red-headed Trogon | Harpactes erythrocephalus | 177 | 49.03 | 0.893 |
Black Eagle | Ictinaetus malaiensis | 203 | 56.23 | 0.821 |
Chinese Hwamei | Garrulax canorus | 253 | 70.08 | 0.794 |
Total | 361 | 100.00 |
English Name | Scientific Name | National Protection Level | IUCN Endangerment Categories | Endemic to China | Duration of Presence in the Area | Ecological Type |
---|---|---|---|---|---|---|
Cabot’s Tragopan | Tragopan caboti | I | EN | √ | residents | land bird |
Yellow-breasted Bunting | Emberiza aureola | I | CR | passage migrants | songbird | |
Elliot’s Pheasant | Syrmaticus ellioti | I | VU | √ | residents | land bird |
Scaly-sided Merganser | Mergus squamatus | I | EN | winter birds | swimming birds | |
White-necklaced Partridge | Arborophila gingica | II | VU | √ | residents | land bird |
Black Eagle | Ictinaetus malaiensis | II | VU | residents | raptor | |
Chinese Hwamei | Garrulax canorus | II | NT | residents | songbird | |
Red-headed Trogon | Harpactes erythrocephalus | II | NT | residents | climbing birds | |
Silver Pheasant | Lophura nycthemera | II | LC | residents | land bird | |
Mandarin Duck | Aix galericulata | II | NT | winter birds | swimming birds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shi, J.; Wu, Y.; Zhang, W.; Yang, X.; Lv, H.; Xia, S.; Zhao, S.; Tian, J.; Cui, P.; et al. Selection of Flagship Species and Their Use as Umbrellas in Bird Conservation: A Case Study in Lishui, Zhejiang Province, China. Animals 2023, 13, 1825. https://doi.org/10.3390/ani13111825
Wang Y, Shi J, Wu Y, Zhang W, Yang X, Lv H, Xia S, Zhao S, Tian J, Cui P, et al. Selection of Flagship Species and Their Use as Umbrellas in Bird Conservation: A Case Study in Lishui, Zhejiang Province, China. Animals. 2023; 13(11):1825. https://doi.org/10.3390/ani13111825
Chicago/Turabian StyleWang, Yifei, Jie Shi, Yi Wu, Wenwen Zhang, Xiao Yang, Huanxin Lv, Shaoxia Xia, Shengjun Zhao, Jing Tian, Peng Cui, and et al. 2023. "Selection of Flagship Species and Their Use as Umbrellas in Bird Conservation: A Case Study in Lishui, Zhejiang Province, China" Animals 13, no. 11: 1825. https://doi.org/10.3390/ani13111825
APA StyleWang, Y., Shi, J., Wu, Y., Zhang, W., Yang, X., Lv, H., Xia, S., Zhao, S., Tian, J., Cui, P., & Xu, J. (2023). Selection of Flagship Species and Their Use as Umbrellas in Bird Conservation: A Case Study in Lishui, Zhejiang Province, China. Animals, 13(11), 1825. https://doi.org/10.3390/ani13111825