Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Declaration
2.2. Parasites
2.3. Larval Development Assay
2.4. RNA Extraction and Reverse Transcription
2.5. Quantitative Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. Resistance Status of the Four H. contortus Isolates
3.2. Expression of P-gp for Each Isolate before Drug Stimulation Compared with Hc-S
3.3. P-gp Expressions of the Same Isolate before and after Drug Stimulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette |
ATP | adenosine tri-phosphate |
cDNA | complementary deoxyribonucleic acid |
DMSO | dimethylsulfoxide |
EC50 | half maximal effective concentration |
Hc-S | Haemonchus contortus strain |
mRNA | messenger RNA |
Mrps | multidrug resistance-associated proteins |
PCR | polymerase chain reaction |
P-gp | P-glycoprotein |
RNA | ribonucleic acid |
RR | resistance ratio |
References
- Williams, E.G.; Brophy, P.M.; Williams, H.W.; Davies, N.; Jones, R.A. Gastrointestinal nematode control practices in ewes: Identification of factors associated with application of control methods known to influence anthelmintic resistance development. Vet. Parasitol. Reg. Stud. Rep. 2021, 24, 100562. [Google Scholar] [CrossRef]
- Luo, X.P.; Li, J.Y.; Yang, X.S.; Zhang, J.Y.; Zhao, X.C.; Khan, S.; Yang, X.Y.; SA, R.-n.; SA, R.-l.; Feng, X.G. Progress on prevention and control technology of Haemonchosis Contortus based on animal welfare. Prog. Vet. Med. 2019, 40, 69–72. [Google Scholar]
- Leathwick, D.M.; Besier, R.B. The management of anthelmintic resistance in grazing ruminants in Australasia-strategies and experiences. Vet. Parasitol. 2014, 204, 44–54. [Google Scholar] [CrossRef]
- Dey, A.R.; Begum, N.; Alim, M.A.; Alam, M.Z. Multiple anthelmintic resistance in gastrointestinal nematodes of small ruminants in Bangladesh. Parasitol. Int. 2020, 77, 102–105. [Google Scholar] [CrossRef]
- Lambertz, C.; Poulopoulou, I.; Wuthijaree, K.; Gauly, M. Anthelmintic efficacy against gastrointestinal nematodes in goats raised under mountain farming conditions in northern Italy. BMC Vet. Res. 2019, 15, 216. [Google Scholar] [CrossRef]
- Ploeger, H.W.; Everts, R.R. Alarming levels of anthelmintic resistance against gastrointestinal nematodes in sheep in the Netherlands. Vet. Parasitol. 2018, 262, 11–15. [Google Scholar] [CrossRef]
- Playford, M.C.; Smith, A.N.; Love, S.; Besier, R.B.; Kluver, P.; Bailey, J.N. Prevalence and severity of anthelmintic resistance in ovine gastrointestinal nematodes in Australia (2009–2012). Aust. Vet. J. 2014, 92, 464–471. [Google Scholar] [CrossRef]
- Lyndal-Murphy, M.; Ehrlich, W.; Mayer, D. Anthelmintic resistance in ovine gastrointestinal nematodes in inland southern Queensland. Aust. Vet. J. 2014, 92, 415–420. [Google Scholar] [CrossRef]
- Han, T.; Wang, M.; Zhang, G.; Han, D.; Li, X.; Liu, G.; Li, X.; Wang, Z. Gastrointestinal nematodes infections and anthelmintic resistance in grazing sheep in the Eastern Inner Mongolia in China. Acta Parasitol. 2017, 62, 815–822. [Google Scholar] [CrossRef]
- Yuan, W.; Lu, K.; Li, H.; Liu, J.; He, C.; Feng, J.; Zhang, X.; Mao, Y.; Hong, Y.; Zhou, Y.; et al. Seasonal Dynamics of Gastrointestinal Nematode Infections of Goats and Emergence of Ivermectin Resistance in Haemonchus contortus in Hubei Province, China. Acta Parasitol. 2019, 64, 638–644. [Google Scholar] [CrossRef]
- Cezar, A.S.; Toscan, G.; Camillo, G.; Sangioni, L.A.; Ribas, H.O.; Vogel, F.S.F. Multiple resistance of gastrointestinal nematodes to nine diferent drugs in a sheep fock in southern Brazil. Vet. Parasitol. 2010, 173, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Garretson, P.D.; Hammond, E.E.; Craig, T.M.; Holman, P.J. Anthelminthic resistant Haemonchus contortus in a giraffe (Girafa camelopardalis) in Florida. J. Zoo Wildl. Med. 2009, 40, 131–139. [Google Scholar] [CrossRef]
- Tsotetsi, A.M.; Njiro, S.; Katsande, T.C.; Moyo, G.; Baloyi, F.; Mpofu, J. Prevalence of gastrointestinal helminths and anthelmintic resistance on small-scale farms in Gauteng Province, South Africa. Trop. Anim. Health Prod. 2013, 45, 751–761. [Google Scholar] [CrossRef]
- Hong, C.; Hunt, K.R.; Coles, G.C. Occurrence of anthelmintic resistant nematodes on sheep farms in England and goat farms in England and Wales. Vet. Rec. 1996, 139, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Tuersong, W.; Liu, X.; Wang, Y.; Wu, S.; Qin, P.; Zhu, S.; Liu, F.; Wang, C.; Hu, M. Comparative Metabolome Analyses of Ivermectin-Resistant and -Susceptible Strains of Haemonchus contortus. Animals 2023, 13, 456. [Google Scholar] [CrossRef]
- Laing, R.; Gillan, V.; Devaney, E. Ivermectin—Old Drug, New Tricks. Trends Parasitol. 2017, 33, 463–472. [Google Scholar] [CrossRef]
- Whittaker, J.H.; Carlson, S.A.; Jones, D.E.; Brewer, M.T. Molecular mechanisms for anthelmintic resistance in strongyle nematode parasites of veterinary importance. J. Vet. Pharmacol. Ther. 2017, 40, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Ardelli, B.F.; Prichard, R.K. Effects of ivermectin and moxidectin on the transcription of genes coding for multidrug resistance associated proteins and behaviour in Caenorhabditis elegans. J. Nematol. 2008, 40, 290–298. [Google Scholar]
- Mate, L.; Ballent, M.; Cantón, C.; Lanusse, C.; Ceballos, L.; Alvarez, L.L.; Liron, J.P. ABC-transporter gene expression in ivermectin-susceptible and resistant Haemonchus contortus isolates. Vet. Parasitol. 2022, 302, 109647. [Google Scholar] [CrossRef]
- Peachey, L.E.; Pinchbeck, G.L.; Matthews, J.B.; Burden, F.A.; Lespine, A.; von Samson-Himmelstjerna, G.; Krucken, J.; Hodgkinson, J.E. P-glycoproteins play a role in ivermectin resistance in cyathostomins. Int. J. Parasitol. 2017, 7, 388–398. [Google Scholar] [CrossRef]
- Bygarski, E.E.; Prichard, R.K.; Ardelli, B.F. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, A.H.; Smit, J.J.M.; van Tellingen, M.; Beijnen, J.H.; Wagenaar, E.; Van Deemter, L.; Mol, C.A.A.M.; Van der Valk, M.A.; Robanus-Maandag, E.C.; Te Riele, H.P.J.; et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994, 77, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sheps, J.A.; Ling, V.; Fang, L.L.; Baillie, D.L. Expression analysis of ABC transporters reveals differential functions of tandemly duplicated genes in Caenorhabditis elegans. J. Mol. Biol. 2004, 344, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.M.; Storey, B.; Howell, S.; Harper, K.M.; Kaplan, R.M.; Wolstenholme, A.J. Candidate anthelmintic resistance- associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Mol. Biochem. Parasit. 2011, 180, 99–105. [Google Scholar] [CrossRef]
- Luo, X.P.; Wang, P.L.; Li, J.Y.; Yang, X.Y.; Gen, W.H.; Gao, W.; Bai, B.X.; Zhao, S.H. Identification of Ivermectin—Resistant strain and sensitive strain of Haemonchus contortus in China. Anim. Husb. Feed. Sci. 2020, 41, 94–99. [Google Scholar]
- Gilleard, J.S. Understanding anthelmintic resistance: The need for genomics and genetics. Int. J. Parasitol. 2006, 36, 1227–1239. [Google Scholar] [CrossRef]
- Laing, R.; Kikuchi, T.; Martinelli, A.; Tsai, I.J.; Beech, R.N.; Redman, E.; Holroyd, N.; Bartley, D.J.; Beasley, H.; Britton, C.; et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013, 14, R88. [Google Scholar] [CrossRef]
- Gilleard, J.S. Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. Parasitology 2013, 140, 1506–1522. [Google Scholar] [CrossRef]
- Hunt, P.W.; Knox, M.R.; Jambre, L.F.; McNally, J.; Anderson, L.J. Genetic and phenotypic differences between isolates of Haemonchus contortus in Australia. Int. J. Parasitol. 2008, 38, 885–900. [Google Scholar] [CrossRef]
- Redman, E.; Packard, E.; Grillo, V.; Smith, J.; Jackson, F.; Gilleard, J.S. Microsatellite analysis reveals marked genetic differentiation between Haemonchus contortus laboratory isolates and provides a rapid system of genetic fingerprinting. Int. J. Parasitol. 2008, 38, 111–122. [Google Scholar] [CrossRef]
- Redman, E.; Grillo, V.; Saunders, G.; Packard, E.; Jackson, F.; Berriman, M.; Gilleard, J.S. Genetics of mating and sex determination in the parasitic nematode Haemonchus contortus. Genetics 2008, 180, 1877–1887. [Google Scholar] [CrossRef]
- Luo, X.P.; Shi, X.N.; Yuan, C.X.; Ai, M.; Ge, C.; Hu, M.; Feng, X.G.; Yang, X.Y. Genome-wide SNP analysis using 2b-RAD sequencing identifies the candidate genes putatively associated with resistance to ivermectin in Haemonchus contortus. Parasites Vectors 2017, 10, 31. [Google Scholar] [CrossRef]
- Dolinská, M.; Königová, A.; Várady, M. Is the micro-agar larval development test reliable enough to detect ivermectin resistance. Parasitol. Res. 2012, 111, 2201–2204. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.H.; Redwin, J.M.; Wyk, J.A.; Lacey, E. Avermectin inhibition of larval development in Haemonchus contortus—Effects of ivermectin resistance. Int. J. Parasitol. 1995, 25, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Jambre, L.F.; Gill, J.H.; Lenane, I.J.; Baker, P. Inheritance of avermectin resistance in Haemonchus contortus. Int. J. Parasitol. 2000, 30, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Bourguinat, C.; Ardelli, B.F.; Pion, S.D.; Kamgno, J.; Gardon, J.; Duke, B.O.; Boussinesq, M.; Prichard, R.K. P-glycoprotein-like protein, a possible genetic marker for ivermectin resistance selection in Onchocerca volvulus. Mol. Biochem. Parasit. 2008, 158, 101–111. [Google Scholar] [CrossRef]
- Blackhall, W.J.; Liu, H.Y.; Xu, M.; Prichard, R.K.; Beech, R.N. Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Mol. Biochem. Parasit. 1998, 95, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.M.; Wolstenholme, A.J. P-glycoproteins of Haemonchus contortus: Development of real-time PCR assays for gene expression studies. J. Helminthol. 2012, 86, 202–208. [Google Scholar] [CrossRef]
- Raza, A.; Kopp, S.R.; Bagnall, N.H.; Jabbar, A.; Kotze, A.C. Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 103–115. [Google Scholar] [CrossRef]
- Fang, B.B. Isolation and Gene Expression Analysis of Ivermectin-Resistant Strain and Sensitive Strain of Haemonchus contortus; Inner Mongolia Agricultural University: Huhhot, China, 2019. [Google Scholar]
Isolate | Degree of Resistance | Source of Isolate |
---|---|---|
Hc-S | 0.2 mg/kg | Australian |
WSHc-001 | 1.2 mg/kg | Northern China, N 39°5′52″ E 109°14′27″ |
WSHc-003 | 1.2 mg/kg | Northern China, N 39°8′54″ E 109°18′8″ |
CYHHc-136 | 1.2 mg/kg | Northern China, N 41°27′47″ E 113°18′9″ |
YCHc-022 | 0.2 mg/kg | Northern China, N 37°76′29″ E 112°83′61″ |
Isolate | EC50 ng/mL | RR | R2 |
---|---|---|---|
Hc-S | 1.171 | - | 0.977 |
YCHc-022 | 1.178 | 1.006 | 0.946 |
WSHc-001 | 4.912 | 4.195 | 0.948 |
WSHc-003 | 20.56 | 17.558 | 0.948 |
CYHHc-136 | 9.41 | 8.036 | 0.952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Wang, S.; Feng, Y.; Wang, P.; Gong, G.; Guo, T.; Feng, X.; Yang, X.; Li, J. Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China. Animals 2023, 13, 1841. https://doi.org/10.3390/ani13111841
Luo X, Wang S, Feng Y, Wang P, Gong G, Guo T, Feng X, Yang X, Li J. Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China. Animals. 2023; 13(11):1841. https://doi.org/10.3390/ani13111841
Chicago/Turabian StyleLuo, Xiaoping, Shuyi Wang, Ying Feng, Penglong Wang, Gaowa Gong, Tianlong Guo, Xingang Feng, Xiaoye Yang, and Junyan Li. 2023. "Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China" Animals 13, no. 11: 1841. https://doi.org/10.3390/ani13111841
APA StyleLuo, X., Wang, S., Feng, Y., Wang, P., Gong, G., Guo, T., Feng, X., Yang, X., & Li, J. (2023). Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China. Animals, 13(11), 1841. https://doi.org/10.3390/ani13111841