Hoof Expansion, Deformation, and Surface Strains Vary with Horseshoe Nail Positions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Limb Specimens
2.3. Limb Preparation
2.4. Limb Instrumentation
2.5. Mechanical Testing
2.6. Data Reduction
2.7. Statistical Analysis
3. Results
3.1. Fetlock Extension
3.2. Hoof Expansions
3.3. Hoof Wall Deformations
3.4. Hoof Strains
Principal Strains
3.5. Principal Strain Directions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floyd, A.M.; Richard, A.M. Equine Podiatry, 1st ed.; Elsevier: Philadelphia, PA, USA, 2007; pp. 42–56. [Google Scholar]
- Lanovaz, J.L.; Clayton, H.M.; Watson, L.G. In vitro attenuation of impact shock in equine digits. Equine Veter. J. 2010, 30, 96–102. [Google Scholar] [CrossRef]
- Yoshihara, E.; Takahashi, T.; Otsuka, N.; Isayama, T.; Tomiyama, T.; Hiraga, A.; Wada, S. Heel movement in horses: Comparison between glued and nailed horse shoes at different speeds. Equine Veter. J. 2010, 42 (Suppl. S38), 431–435. [Google Scholar] [CrossRef] [PubMed]
- Snow, V.E.; Birdsall, D.P. Specific parameters used to evaluate hoof balance and support. In Proceedings of the Annual Convention of the American Association of Equine Practitioners (AAEP), Lexington, KY, USA, 2–5 December 1990. [Google Scholar]
- A Turner, T. Shoeing principles for the management of navicular disease in horses. J. Am. Veter. Med. Assoc. 1986, 189, 298–301. [Google Scholar]
- Balch, O.K.; Helman, R.G.; Collier, M.A. Underrun heels and toe-grab length as possible risk factors for catastrophic musculskeletal injuries in Oklahoma racehorses. In Proceedings of the AAEP, San Diego, CA, USA, 24–28 November 2001; Volume 47, pp. 334–338. [Google Scholar]
- Anderson, T.M.; McIlwraith, C.W.; Douay, P. The role of conformation in musculoskeletal problems in the racing Thoroughbred. Equine Veter. J. 2010, 36, 571–575. [Google Scholar] [CrossRef]
- Kane, A.J.; Stover, S.M.; A Gardner, I.; Bock, K.B.; Case, J.T.; Johnson, B.J.; Anderson, M.L.; Barr, B.C.; Daft, B.M.; Kinde, H.; et al. Hoof size, shape, and balance as possible risk factors for catastrophic musculoskeletal injury of Thoroughbred racehorses. Am. J. Veter. Res. 1998, 59, 1542–1545. [Google Scholar]
- Dyson, S.J.; Tranquille, C.A.; Collins, S.N.; Parkin, T.D.; Murray, R.C. External characteristics of the lateral aspect of the hoof differ between non-lame and lame horses. Veter. J. 2011, 190, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Mansmann, R.A.; James, S.; Blikslager, A.T.; Orde, K.V. Long Toes in the Hind Feet and Pain in the Gluteal Region: An Observational Study of 77 Horses. J. Equine Veter. Sci. 2010, 30, 720–726. [Google Scholar] [CrossRef]
- Brunsting, J.; Dumoulin, M.; Oosterlinck, M.; Haspeslagh, M.; Lefère, L.; Pille, F. Can the hoof be shod without limiting the heel movement? A comparative study between barefoot, shoeing with conventional shoes and a split-toe shoe. Veter. J. 2019, 246, 7–11. [Google Scholar] [CrossRef]
- Dahl, V.E.; Hitchens, P.L.; Stover, S.M. Effects of racetrack surface and nail placement on movement between heels of the hoof and horseshoes of racehorses. Am. J. Veter. Res. 2016, 77, 983–990. [Google Scholar] [CrossRef]
- Singer, E.; Garcia, T.; Stover, S. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx. J. Biomech. 2015, 48, 1930–1936. [Google Scholar] [CrossRef]
- Kingsbury, H.B.; A Quddus, M.; Rooney, J.R.; E Geary, J. A laboratory system for production of flexion rates and forces in the forelimb of the horse. Am. J. Veter. Res. 1978, 39, 365–369. [Google Scholar]
- Schajer, G.S. An alternate computational approach to strain-gauge rosette data reduction. Exper. Tech. 1990, 14, 54–57. [Google Scholar] [CrossRef]
- Bellenzani, M.C.R.; Greve, J.M.D.; Pereira, C.A.M. In Vitro Assessment of the Equine Hoof Wall Strains in Flat Weight Bearing and After Heel Elevation. J. Equine Veter. Sci. 2007, 27, 475–480. [Google Scholar] [CrossRef]
- Harrison, S.M.; Whitton, R.C.; Kawcak, C.E.; Stover, S.M.; Pandy, M.G. Relationship between muscle forces, joint loading and utilization of elastic strain energy in equine locomotion. J. Exp. Biol. 2010, 213 Pt 23, 3998–4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomason, J.J. Variation in surface strain on the equine hoof wall at the midstep with shoeing, gait, substrate, direction of travel, and hoof shape. Equine Veter. J. 2010, 30, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.J.; Biewener, A.A.; Bertram, J.E.A. Surface Strain on the Equine Hoof Wall in vivo: Implications for the Material Design and Functional Morphology of the Wall. J. Exp. Biol. 1992, 166, 145–168. [Google Scholar] [CrossRef]
- E Douglas, J.; Mittal, C.; Thomason, J.J.; Jofriet, J.C. The modulus of elasticity of equine hoof wall: Implications for the mechanical function of the hoof. J. Exp. Biol. 1996, 199 Pt 8, 1829–1836. [Google Scholar] [CrossRef]
- Lancaster, L.S.; Bowker, R.M.; Mauer, W.A. Equine Hoof Wall Tubule Density and Morphology. J. Veter. Med. Sci. 2013, 75, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Bowker, R.M. The Growth and Adaptive Capabilities of the Hoof Wall and Sole: Functional Changes in Response to Stress. In Proceedings of the 49th Annual Convention of the American Association of Equine Practitioners, New Orleans, LA, USA, 21–25 November 2003. [Google Scholar]
- Pleasant, R.S.; O’Grady, S.E.; McKinlay, I. Farriery for hoof wall defects: Quarter cracks and toe cracks. Vet. Clin. North Am. Equine Pract. 2012, 28, 393–406. [Google Scholar] [CrossRef]
- Richard, G.B.; Ali, M.S. Roark’s Formulas for Stress and Strain, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Crammond, G.; Boyd, S.W.; Dulieu-Barton, J.M. Speckle pattern quality assessment for digital image correlation. Opt. Lasers Eng. 2013, 51, 1368–1378. [Google Scholar] [CrossRef]
- Hampson, B.; Ramsey, G.; MacIntosh, A.; Mills, P.; De Laat, M.; Pollitt, C.; De Laat, M. Morphometry and abnormalities of the feet of Kaimanawa feral horses in New Zealand. Aust. Veter. J. 2010, 88, 124–131. [Google Scholar] [CrossRef] [PubMed]
Variable | Load | p Value | ||
---|---|---|---|---|
3600 N | 4600 N | 6200 N | ||
FETLOCK EXTENSION | ||||
Fetlock angle (°) (n = 9) | 228 a ± 0.4 | 235 b ± 0.4 | 244 c ± 0.4 | <0.001 |
HOOF EXPANSION | ||||
Proximal heel (mm) (n = 9) | 0.22 a ± 0.21 | 0.53 a ± 0.21 | 1.22 b ± 0.21 | <0.0001 |
Distal heel (mm) (n = 9) | 0.35 a ± 0.08 | 0.65 b ± 0.08 | 1.33 c ± 0.08 | <0.0001 |
Proximal quarter (mm) (n = 8) | 0.25 a ± 0.08 | 0.37 a,b ± 0.08 | 0.52 b ± 0.08 | 0.009 |
Distal quarter (mm) (n = 8) | 0.13 a ± 0.05 | 0.21 a ± 0.05 | 0.32 b ± 0.05 | 0.007 |
WALL DEFORMATION | ||||
Pr (mm) (n = 7) | 0.12 a ± 0.04 | 0.17 a ± 0.04 | 0.28 b ± 0.04 | 0.0001 |
Di (mm) (n = 9) | 0.14 a ± 0.03 | 0.19 a ± 0.03 | 0.31 b ± 0.03 | <0.0001 |
Pa (mm) (n = 9) | 0.14 a ± 0.02 | 0.16 a ± 0.02 | 0.16 a ± 0.02 | 0.562 |
Do (mm) (n = 6) | 0.70 a ± 0.57 | 0.78 a ± 0.57 | 0.81 a ± 0.57 | 0.052 |
PrDo-DiPa (mm) (n = 7) | 0.47 a ± 0.38 | 0.62 a ± 0.38 | 0.66 a ± 0.38 | 0.168 |
PrPa-DiDo (mm) (n = 9) | 0.18 a ± 0.06 | 0.28 a ± 0.06 | 0.39 b ± 0.06 | <0.0001 |
Variable | Treatment | p Value | |||
---|---|---|---|---|---|
NS | T | TQ | TQH | ||
HOOF EXPANSION | |||||
Proximal heel (mm) (n = 9) | 1.02 a ± 0.23 | 0.91 a ± 0.23 | 0.63 a ± 0.23 | 0.06 b ± 0.23 | <0.0001 |
Distal heel (mm) (n = 9) | 1.03 a ± 0.08 | 0.86 b ± 0.08 | 0.71 b ± 0.08 | 0.53 c ± 0.08 | <0.0001 |
Proximal quarter (mm) (n = 8) | 0.28 a ± 0.09 | 0.45 a,b ± 0.09 | 0.55 b ± 0.09 | 0.25 a ± 0.09 | 0.002 |
Distal quarter (mm) (n = 8) | 0.27 a,b ± 0.06 | 0.30 b ± 0.06 | 0.16 b,c ± 0.06 | 0.16 c ± 0.06 | 0.0002 |
WALL DEFORMATION | |||||
Pr (mm) (n = 7) | NA | 0.17 a ± 0.04 | 0.21 a ± 0.04 | 0.19 a ± 0.04 | 0.410 |
Di (mm) (n = 9) | 0.26 a ± 0.03 | 0.17 a ± 0.03 | 0.21 a ± 0.03 | 0.20 a ± 0.03 | <0.0001 |
Pa (mm) (n = 9) | 0.19 a ± 0.02 | 0.14 a,b ± 0.02 | 0.17 a,b ± 0.02 | 0.11 b ± 0.02 | 0.041 |
Do (mm) (n = 6) | NA | 0.76 a,b ± 0.57 | 1.17 a ± 0.57 | 0.36 b ± 0.57 | 0.655 |
PrDo-DiPa (mm) (n = 7) | NA | 0.56 a,b ± 0.38 | 0.86 a ± 0.38 | 0.33 b ± 0.38 | 0.148 |
PrPa-DiDo (mm) (n = 9) | 0.34 a ± 0.06 | 0.30 a ± 0.06 | 0.27 a ± 0.06 | 0.24 a ± 0.06 | 0.251 |
Gauge | Load | p-Value | ||
---|---|---|---|---|
3600 N | 4600 N | 6200 N | ||
PRINCIPAL TENSILE STRAIN (µε) lsm ± se | ||||
PH (n = 9) | 238 a ± 53 | 173 a,b ± 53 | 62 b ± 53 | 0.0025 |
MH (n = 9) | 328 a ± 94 | 243 a ± 94 | −8 b ± 94 | 0.0018 |
DH (n = 9) | 1442 a ± 200 | 1486 a ± 200 | 1592 a ± 200 | 0.0295 |
PQ (n = 8) | 510 a ± 125 | 497 b ± 125 | 427 b ± 125 | 0.3263 |
MQ (n = 9) | 453 a ± 235 | 466 a ± 235 | 471 a ± 235 | 0.977 |
DQ (n = 9) | 948 a ± 125 | 988 a ± 125 | 1020 a ± 125 | 0.4352 |
PRINCIPAL COMPRESSIVE STRAIN (µε) lsm ± se | ||||
PH (n = 9) | −775 a ± 224 | −879 a ± 224 | −1197 b ± 224 | <0.0001 |
MH (n = 9) | −714 a ± 251 | −971 a ± 251 | −1633 b ± 251 | <0.0001 |
DH n = 9) | −1045 a ± 331 | −1143 a,b ± 331 | −1476 a ± 331 | 0.0132 |
PQ (n = 8) | −1353 a ± 414 | −1468 a,b ± 414 | −1689 b ± 414 | 0.0184 |
MQ (n = 9) | −994 a ± 199 | −1127 b ± 199 | −1445 b ± 199 | <0.0001 |
DQ (n = 9) | −557 a ± 214 | −558 a ± 214 | −608 a ± 214 | 0.9005 |
PRINCIPAL SHEAR STRAIN (µε) lsm ± se | ||||
PH (n = 9) | 1034 a ± 233 | 1103 a ± 233 | 1254 a ± 233 | 0.0728 |
MH (n = 9) | 1194 a ± 229 | 1399 a ± 299 | 1864 b ± 299 | 0.003 |
DH (n = 8) | 2460 a ± 386 | 2612 a,b ± 386 | 3073 b ± 386 | 0.0576 |
PQ (n = 9) | 2020 a ± 561 | 2108 a ± 561 | 2198 a ± 561 | 0.4815 |
MQ (n = 9) | 1453 a ± 239 | 1578 a,b ± 239 | 1887 b ± 239 | 0.0089 |
DQ (n = 8) | 1787 a ± 365 | 1849 a ± 365 | 1965 a ± 365 | 0.3716 |
Gauge | Treatment | p-Value | |||
---|---|---|---|---|---|
NS | T | TQ | TQH | ||
PRINCIPAL TENSILE STRAIN (µε) | |||||
PH (n = 9) | 115 a ± 56 | 233 a ± 56 | 147 a ± 56 | 136 a ± 61 | 0.1673 |
MH (n = 9) | 168 a,b ± 101 | 345 a ± 97 | 200 a,b ± 101 | 37 b ± 112 | 0.0674 |
DH (n = 9) | 1489 a,b ± 203 | 1395 a ± 200 | 1356 a ± 203 | 1788 b ± 220 | 0.0002 |
PQ (n = 8) | NA | 494 a,b ± 124 | 358 a ± 131 | 581 b ± 124 | 0.0081 |
MQ (n = 9) | NA | 538 a ± 236 | 270 b ± 234 | 582 a ± 236 | 0.0024 |
DQ (n = 9) | 741 a ± 128 | 893 a,b ± 125 | 1025 b,c ± 128 | 1282 c ± 134 | <0.0001 |
PRINCIPAL COMPRESSIVE STRAIN (µε) | |||||
PH (n = 9) | NA | −1045 a ± 223 | −715 b ± 223 | −1092 a ± 225 | <0.0001 |
MH (n = 9) | −1275 a ± 260 | −954 a ± 254 | −858 a ± 260 | −1338 a ± 276 | 0.068 |
DH (n = 9) | NA | −1011 a ± 327 | −1272 a ± 330 | −1382 a ± 346 | 0.0696 |
PQ (n = 8) | −1278 a ± 420 | −1627 a ± 415 | −1477 a ± 424 | −1632 a ± 415 | 0.0923 |
MQ (n = 9) | −929 a ± 202 | −899 a,b ± 204 | −1355 b,c ± 202 | −1571 c ± 204 | <0.0001 |
DQ (n = 9) | NA | −343 a ± 207 | −689 b ± 218 | −692 a,b ± 229 | 0.0201 |
MAXIMUM SHEAR STRAIN (µε) | |||||
PH (n = 9) | NA | 1343 a ± 231 | 929 b ± 234 | 1119 a,b ± 234 | 0.0005 |
MH (n = 9) | 1421 a ± 227 | 1378 a ± 246 | 1297 a ± 246 | 1846 a ± 278 | 0.2318 |
DH (n = 8) | NA | 2376 a ± 377 | 2646 a,b ± 383 | 3123 b ± 415 | 0.4052 |
PQ (n = 8) | NA | 2196 a,b ± 560 | 1865 a ± 566 | 2264 b ± 560 | 0.0449 |
MQ (n = 9) | 1290 a ± 241 | 1354 a ± 250 | 1629 a ± 245 | 2285 b ± 256 | <0.0001 |
DQ (n = 8) | NA | 1431 a ± 363 | 2235 b ± 366 | 1935 b ± 369 | <0.0001 |
Gauge | Load | p-Value | ||
---|---|---|---|---|
3600 N | 4600 N | 6200 N | ||
PRINCIPAL TENSILE DIRECTION (°) lsm ± se | ||||
PH (n = 9) | 87 a ± 12 | 86 a ± 12 | 85 a ± 12 | 0.74 |
MH (n = 9) | 82 a ± 10 | 84 a ± 10 | 79 a ± 10 | 0.81 |
DH (n = 9) | 97 a ± 20 | 98 a ± 20 | 79 a ± 20 | 0.08 |
PQ (n = 8) | 83 a ± 5 | 82 a ± 5 | 81 a ± 5 | 0.87 |
MQ (n = 9) | 92 a ± 13 | 94 a ± 13 | 96 a ± 13 | 0.88 |
DQ (n = 9) | 121 a ± 19 | 118 a ± 19 | 119 a ± 19 | 0.96 |
PRINCIPAL COMPRESSIVE DIRECTION (°) lsm ± se | ||||
PH (n = 9) | 177 a ± 12 | 176 a ± 12 | 175 a ± 12 | 0.74 |
MH (n = 9) | 172 a ± 10 | 174 a ± 10 | 169 a ± 10 | 0.81 |
DH (n = 9) | 159 a ± 17 | 187 a ± 17 | 168 a ± 17 | 0.11 |
PQ (n = 8) | 173 a ± 5 | 172 a ± 5 | 171 a ± 5 | 0.92 |
MQ (n = 9) | 182 a ± 13 | 184 a ± 13 | 186 a ± 13 | 0.88 |
DQ (n = 9) | 211 a ± 19 | 208 a ± 19 | 209 a ± 19 | 0.96 |
PRINCIPAL SHEAR DIRECTION (°) lsm ± se | ||||
PH (n = 9) | 132 a ± 12 | 131 a ± 12 | 130 a ± 12 | 0.74 |
MH (n = 9) | 127 a ± 10 | 129 a ± 10 | 124 a ± 10 | 0.81 |
DH (n = 9) | 142 a ± 20 | 143 a ± 20 | 124 a ± 20 | 0.08 |
PQ (n = 8) | 127 a ± 6 | 127 a ± 6 | 121 a ± 6 | 0.37 |
MQ (n = 9) | 137 a ± 13 | 139 a ± 13 | 141 a ± 13 | 0.88 |
DQ (n = 9) | 166 a ± 19 | 163 a ± 19 | 164 a ± 19 | 0.96 |
Gauge | Treatment | p-Value | |||
---|---|---|---|---|---|
NS | T | TQ | TQH | ||
PRINCIPAL TENSILE DIRECTION (°) lsm ± se | |||||
PH (n = 9) | 75 a ± 12 | 86 b ± 12 | 85 b ± 12 | 97 c ± 13 | <0.0001 |
MH (n = 9) | 58 a ± 10 | 67 a ± 11 | 69 a ± 11 | 132 b ± 13 | <0.0001 |
DH (n = 9) | 80 a ± 20 | 86 a,b ± 20 | 83 a,b ± 20 | 115 b ± 21 | 0.053 |
PQ (n = 8) | NA | 75 a ± 5 | 85 b ± 5 | 86 b ± 5 | 0.002 |
MQ (n = 9) | 56 a ± 13 | 101 b ± 14 | 105 b ± 13 | 114 b ± 14 | <0.0001 |
DQ (n = 9) | 102 a ± 19 | 106 a ± 19 | 104 a ± 21 | 166 b ± 24 | 0.031 |
PRINCIPAL COMPRESSIVE DIRECTION (°) lsm ± se | |||||
PH (n = 9) | 165 a ± 12 | 176 b ± 12 | 175 b ± 12 | 187 c ± 13 | <0.0001 |
MH (n = 9) | 148 a ± 10 | 157 a ± 11 | 159 a ± 11 | 222 b ± 13 | <0.0001 |
DH (n = 9) | 173 a,b ± 18 | 146 a ± 17 | 170 a,b ± 18 | 197 b ± 21 | 0.045 |
PQ (n = 8) | NA | 165 a ± 5 | 175 b ± 5 | 176 b ± 5 | 0.002 |
MQ (n = 9) | 146 a ± 13 | 191 b ± 14 | 195 b ± 13 | 204 b ± 14 | <0.0001 |
DQ (n = 9) | 192 a ± 19 | 196 b ± 19 | 194 b ± 21 | 256 b ± 24 | 0.031 |
PRINCIPAL SHEAR DIRECTION (°) lsm ± se | |||||
PH (n = 9) | 120 a ± 12 | 131 b ± 12 | 130 b ± 12 | 142 c ± 13 | <0.0001 |
MH (n = 9) | 103 a ± 10 | 112 a ± 11 | 114 a ± 11 | 177 b ± 13 | <0.0001 |
DH (n = 9) | 125 a ± 20 | 131 a ± 20 | 128 a ± 20 | 160 a ± 21 | 0.053 |
PQ (n = 8) | NA | 120 a ± 6 | 125 a ± 6 | 131 a ± 6 | 0.080 |
MQ (n = 9) | 101 a ± 13 | 146 b ± 14 | 150 b ± 13 | 159 b ± 14 | <0.0001 |
DQ (n = 9) | 147 a ± 19 | 151 a ± 19 | 149 a ± 21 | 211 b ± 24 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahl, V.E.; Singer, E.R.; Garcia, T.C.; Hawkins, D.A.; Stover, S.M. Hoof Expansion, Deformation, and Surface Strains Vary with Horseshoe Nail Positions. Animals 2023, 13, 1872. https://doi.org/10.3390/ani13111872
Dahl VE, Singer ER, Garcia TC, Hawkins DA, Stover SM. Hoof Expansion, Deformation, and Surface Strains Vary with Horseshoe Nail Positions. Animals. 2023; 13(11):1872. https://doi.org/10.3390/ani13111872
Chicago/Turabian StyleDahl, Vanessa E., Ellen R. Singer, Tanya C. Garcia, David A. Hawkins, and Susan M. Stover. 2023. "Hoof Expansion, Deformation, and Surface Strains Vary with Horseshoe Nail Positions" Animals 13, no. 11: 1872. https://doi.org/10.3390/ani13111872
APA StyleDahl, V. E., Singer, E. R., Garcia, T. C., Hawkins, D. A., & Stover, S. M. (2023). Hoof Expansion, Deformation, and Surface Strains Vary with Horseshoe Nail Positions. Animals, 13(11), 1872. https://doi.org/10.3390/ani13111872