Relationship between Some Myostatin Variants and Meat Production Related Calving, Weaning and Muscularity Traits in Charolais Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Database
2.2. The Studied Traits
2.3. The Molecular Genetic Informations
2.4. The Effect of Different Factors
2.5. Estimation of Phenotypic Trends and Phenotypic Correlations
2.6. The Used Softwares
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunningham, M.; Latour, M.A.; Acker, D. Animal Science and Industry, 7th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2005. [Google Scholar]
- Georges, M.; Grobet, L.; Poncelet, D.; Royo, L.J.; Pirottin, D.; Brouvers, B. Positional candidate cloning of the bovine mh locus identifies an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. In Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, 11–16 January 1998; Volume 26, pp. 195–204. [Google Scholar]
- Stinckens, A.; Luyten, T.; Bijttebier, J.; van den Maagdenberg, K.; Dieltiens, D.; Janssens, S.; Buys, N. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 2008, 39, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Mirhoseini, S.Z.; Zare, J. The role of myostatin on growth and carcass traits and its application in animal breeding. Life Sci. 2012, 9, 2353–2357. [Google Scholar] [CrossRef]
- Elkina, Y.; von Haehling, S.; Anker, S.D.; Springer, J. The role of myostatin in muscle wasting: An overview. J. Cachexia Sarcopenia Muscle 2011, 2, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellick, G.S.; Pitchford, W.S.; Morris, C.A.; Cullen, N.G.; Crawford, A.M.; Raadsma, H.W.; Bottema, C.D.K. Effect of myostatin F94L on carcass yield in cattle. Anim. Genet. 2007, 38, 440–446. [Google Scholar] [CrossRef]
- Wiener, P.; Woolliams, J.A.; Frank-Lawale, A.; Ryan, M.; Richardson, R.I.; Nute, G.R.; Wood, J.D.; Homer, D.; Williams, J.L. The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 2009, 83, 127–134. [Google Scholar] [CrossRef]
- Allais, S.; Levéziel, H.; Payet-Duprat, N.; Hocquette, J.F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C.; Journaux, L.; Bonnot, A.; et al. The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. J. Anim. Sci. 2013, 88, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Hales, K.E.; Tait, R.G.; Lindholm-Perry, A.K.; Freetly, H.C.; Brown-Brandl, T.M.; Bennett, G.L. Effects of the F94L Limousin associated myostatin gene marker on metabolic index in growing beef heifers. Appl. Anim. Sci. 2020, 36, 851–856. [Google Scholar] [CrossRef]
- Ceccobelli, S.; Perini, F.; Trombetta, M.F.; Tavoletti, S.; Lasagna, E.; Pasquini, M. Effect of myostatin gene mutation on slaughtering performance and meat quality in Marchigiana bulls. Animals 2022, 12, 518. [Google Scholar] [CrossRef]
- Grobet, L.; Poncelet, D.; Royo, L.J.; Brouwers, B.; Pirottin, D.; Michaux, C.; Ménissier, F.; Zanotti, M.; Dunner, S.; Georges, M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome 1998, 9, 210–213. [Google Scholar] [CrossRef]
- Casas, E.; Keele, J.W.; Fahrenkrug, S.C.; Smith, T.P.L.; Cundiff, L.V.; Stone, R.T. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 1999, 77, 1686–1692. [Google Scholar] [CrossRef]
- Short, R.E.; MacNeil, M.D.; Grosz, M.D.; Gerrard, D.E.; Grings, E.E. Pleiotropic effects in Hereford, Limousin and Piedmontese F2 crossbred calves of genes controlling muscularity including the Piedmontese myostatin allele. J. Anim. Sci. 2002, 80, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosher, D.S.; Quignon, P.; Bustamante, C.D.; Sutter, N.B.; Mellersh, C.S.; Parker, H.G.; Ostrande, E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007, 3, e79. [Google Scholar] [CrossRef] [PubMed]
- Tozaki, T.; Miyake, T.; Kakoi, H.; Gawahara, H.; Sugita, S.; Hasegawa, T.; Ishida, N.; Hirota, K.; Nakano, Y. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. Suppl. 2010, 41, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lines, D.S.; Pitchford, W.S.; Kruk, Z.A.; Bottema, C.D.K. Limousin myostatin F94L variant affects semitendinosus tenderness. Meat Sci. 2009, 81, 126–131. [Google Scholar] [CrossRef]
- Domokos, Z.; Tőzsér, J. Conformation Scoring Guideline of National Association of Hungarian Charolais Cattle Breeders; National Association of Hungarian Charolais Cattle Breeders: Miskolc, Hungary, 2004; pp. 25–33. (In Hungarian) [Google Scholar]
- Kusza, S.; Hegedűs, B.; Domokos, Z. A Guide to Interpreting Gene Variants on the Weatherbys Scientific Bovine VersaSNP 50K Chip; National Association of Hungarian Charolais Cattle Breeders: Miskolc, Hungary, 2020; pp. 32–39. (In Hungarian) [Google Scholar]
- Arnold, H.; Della-Fera, M.A.; Baile, C.A. Review of myostatin history, physiology and applications. Int. Arch. Biosci. 2001, 1, 1014–1022. [Google Scholar]
- Hadjipavlou, G.; Matika, O.; Clop, A.; Bishop, S.C. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet. 2008, 39, 346–353. [Google Scholar] [CrossRef]
- Dunner, S.; Miranda, M.E.; Amigues, Y.; Canón, J.; Georges, M.; Hanset, R.; Williams, J.; Ménissier, F. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet. Sel. Evol. 2003, 35, 103–118. [Google Scholar] [CrossRef]
- Esmailizadeh, A.K.; Bottema, C.D.K.; Sellick, G.S.; Verbyla, A.P.; Morris, C.A.; Cullen, N.G.; Pitchford, W.S. Effects of the myostatin F94L substitution on beef traits. J. Anim. Sci. 2008, 86, 1038–1046. [Google Scholar] [CrossRef]
- Aiello, D.; Patel, K.; Lasagna, E. The Myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 2018, 49, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Bene, S.; Polgár, J.P.; Szűcs, M.; Márton, J.; Szabó, E.; Szabó, F. Population genetic features of calving interval of the Limousin beef cattle breed in Hungary. Acta Vet. Hung. 2022, 70, 113–120. [Google Scholar] [CrossRef]
- IBM SPSS Statistics for Windows, Version 27.0; IBM Corporation: Armonk, NY, USA, 2020.
- Gu, M.; Wang, S.; Di, A.; Wu, D.; Hai, C.; Liu, X.; Bai, C.; Su, G.; Yang, L.; Li, G. Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. Int. J. Mol. Sci. 2023, 24, 8120. [Google Scholar] [CrossRef] [PubMed]
- Konovalova, E.; Romanenkova, O.; Zimina, A.; Volkova, V.; Sermyagin, A. Genetic variations and haplotypic diversity in the myostatin gene of different cattle breeds in Russia. Animals 2021, 11, 2810. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gu, M.; Wei, Z.; Bai, C.; Su, G.; Liu, X.; Zhao, Y.; Yang, L.; Li, G. Myostatin knockout regulates bile acid metabolism by promoting bile acid synthesis in cattle. Animals 2022, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, L.; Su, G.; Wei, Z.; Liu, X.; Song, L.; Hai, C.; Wu, D.; Hao, Z.; Wu, Y.; et al. Growth traits and sperm proteomics analyses of myostatin gene-edited chinese yellow cattle. Life 2022, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Meyermans, R.; Janssens, S.; Coussé, A.; Gorssen, W.; Hubin, X.; Mayeres, P.; Veulemans, V.; Claerebout, E.; Charlier, C.; Buys, N. Myostatin mutation causing double muscling could affect increased psoroptic mange sensitivity in dual purpose Belgian Blue cattle. Animal 2022, 16, 100460. [Google Scholar] [CrossRef] [PubMed]
- Bellinge, R.H.S.; Liberles, D.A.; Iaschi, S.P.A.; O’Brien, P.A.; Tay, G.K. Myostatin and its implications on animal breeding: A review. Anim. Genet. 2005, 36, 1–6. [Google Scholar] [CrossRef]
- Purfield, D.C.; Evans, R.D.; Berry, D.P. Reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genom. 2019, 20, 720. [Google Scholar] [CrossRef]
- Purfield, D.C.; Evans, R.D.; Berry, D.P. Breed-and trait-specific associations define the genetic architecture of calving performance traits in cattle. J. Anim. Sci. 2020, 98, skaa151. [Google Scholar] [CrossRef]
- Charlier, C.; Coppieters, W.; Farnir, F.; Grobet, L.; Leroy, P.L.; Michaux, C.; Mni, M.; Schwers, A.; Vanmanshoven, P.; Hanset, R.; et al. The mh gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm. Genome 1995, 6, 788–792. [Google Scholar] [CrossRef]
- Miranda, M.E.; Amigues, Y.; Boscher, M.Y.; Ménissier, F.; Cortés, O.; Dunner, S. Simultaneous genotyping to detect myostatin gene polymorphism in beef cattle breeds. J. Anim. Breed. Genet. 2002, 119, 361–366. [Google Scholar] [CrossRef] [Green Version]
- González-Berríos, C.L.; Rivera-Serrano, A.; Casas-Guérnica, A.; Sonstegard, T.; Pagán-Morales, M. Molecular breeding values distribution in slick male and female Senepol cattle differing in musculature. J. Anim. Sci. Suppl. 2016, 94, 152. [Google Scholar] [CrossRef] [Green Version]
- Dodenhoff, J.; van Vleck, L.D.; Gregory, K.E. Estimation of direct, maternal and grand maternal genetic effects for weaning weight in several breeds of beef cattle. J. Anim. Sci. 1999, 77, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, K.A.; Bertrand, J.K. Investigation of genotype by country interactions for growth traits for Charolais populations in Australia, Canada, New Zealand and USA. Liv. Prod. Sci. 2004, 85, 129–137. [Google Scholar] [CrossRef]
- Fördős, A.; Fürst-Waltl, B.; Baumung, R.; Bene, S.; Szabó, F. Estimation of genetic parameters for weaning traits in Austrian Charolais cattle fitting sire x year interaction as an additional random effect. Züchtungskunde 2010, 82, 181–194. [Google Scholar]
- Arthur, P.; Makarechian, M.; Price, M. Incidence of dystocia and perinatal calf mortality resulting from reciprocal crossing of double-muscled and normal cattle. Can. Vet. J. 1988, 29, 163. [Google Scholar] [PubMed]
- Kišacová, J.; Kúbek, A.; Meluš, V.; Čanakyová, Z.; Řehout, V. Genetic polymorphism of MYF-5 and Myostatin in Charolais breed. J. Agrobiol. 2009, 26, 7–11. [Google Scholar]
- Phocas, F.; Bloch, C.; Chapelle, P.; Bécherel, F.; Renand, G.; Ménissier, F. Developing a breeding objective for a French purebred beef cattle selection programme. Liv. Prod. Sci. 1998, 57, 49–65. [Google Scholar] [CrossRef]
- Eriksson, S.; Nasholm, A.; Johansson, K.; Philipsson, J. Genetic parameters for calving difficulty, stillbirth, and birth weight for Hereford and Charolais at first and later parities. J. Anim. Sci. 2004, 82, 375–383. [Google Scholar] [CrossRef]
- Arango, J.A.; Cundiff, L.V.; van Vleck, L.D. Breed comparisons of Angus, Charolais, Hereford, Jersey, Limousin, Simmental and South Devon for weight, weight adjusted for body condition score, height, and body condition score in beef cows. J. Anim. Sci. 2002, 80, 3123–3132. [Google Scholar] [CrossRef] [Green Version]
- Vallée, A.; van Arendonk, J.A.M.; Bovenhuis, H. Genetic parameters for calving and conformation traits in Charolais x Montbéliard and Charolais x Holstein crossbred calves. J. Anim. Sci. 2013, 91, 5582–5588. [Google Scholar] [CrossRef] [Green Version]
- Gaina, C.D.; Amalo, F.A. Genetic polymorphism of myostatin gene in Sumba Ongole (Bos indicus) cattle and its association with growth traits. J. Adv. Vet. Anim. Res. 2022, 9, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; van Tassel, C.P.; Pollak, E.J. Estimation of genetic variance and covariance components for weaning weight in Simmental cattle. J. Anim. Sci. 1997, 75, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.B.M.; MacNeil, M.D.; da Costa, R.F.; Dionello, N.J.L.; Yokoo, M.J.; Cardoso, F.F. Genetic parameters and trends for traits of the Hereford and Braford breeds in Brazil. Liv. Sci. 2018, 208, 60–66. [Google Scholar] [CrossRef]
- Gutiérrez, J.P.; Goyache, F.; Fernández, I.; Alvarez, I.; Royo, L.J. Genetic relationships among calving ease, calving interval, birth weight, and weaning weight in the Asturiana de los Valles beef cattle breed. J. Anim. Sci. 2007, 85, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Chud, T.C.S.; Caetano, S.L.; Buzanskas, M.E.; Grossi, D.A.; Guidolin, D.G.F.; Nascimento, G.B.; Munari, D.P. Genetic analysis for gestation length, birth weight, weaning weight, and accumulated productivity in Nellore beef cattle. Liv. Sci. 2014, 170, 16–21. [Google Scholar] [CrossRef]
Myostatin Allele | Genotype | Male Calves | Female Calves | Total |
---|---|---|---|---|
Number of Animals | ||||
F94L | Noncarrier | 651 | 1282 | 1933 |
Heterozygous | 37 | 76 | 113 | |
Homozygous | 0 | 0 | 0 | |
Q204X | Noncarrier | 606 | 1185 | 1791 |
Heterozygous | 82 | 173 | 255 | |
Homozygous | 0 | 0 | 0 | |
nt267 | Noncarrier | 633 | 1318 | 1981 |
Heterozygous | 25 | 40 | 65 | |
Homozygous | 0 | 0 | 0 | |
nt324 | Noncarrier | 547 | 1060 | 1607 |
Heterozygous | 132 | 277 | 409 | |
Homozygous | 9 | 21 | 30 | |
nt414 | Noncarrier | 357 | 705 | 1062 |
Heterozygous | 277 | 548 | 825 | |
Homozygous | 54 | 105 | 159 | |
Total | 688 | 1358 | 2046 |
Trait | Mean | SD | CV% | Min | Max | Norm * | Hom # |
---|---|---|---|---|---|---|---|
BIW (kg) | 43.63 | 5.99 | 13.74 | 21 | 70 | 0.07 | 0.11 |
CAE (score) | 1.16 | 0.45 | 38.55 | 1 | 3 | 0.51 | 0.00 |
CWW (kg) | 258.15 | 44.30 | 17.16 | 125 | 404 | 0.03 | 0.00 |
MSS (score) | 5.54 | 1.10 | 19.91 | 2 | 9 | 0.18 | 0.06 |
MSB (score) | 5.13 | 1.05 | 20.39 | 2 | 8 | 0.19 | 0.02 |
MST (score) | 5.36 | 1.16 | 21.71 | 2 | 10 | 0.17 | 0.27 |
RST (score) | 5.35 | 1.12 | 21.01 | 2 | 9 | 0.18 | 0.33 |
LTS (score) | 5.26 | 1.07 | 20.45 | 2 | 9 | 0.18 | 0.13 |
OMP (%) | 53.15 | 9.62 | 18.10 | 20 | 87 | 0.05 | 0.04 |
Factors | Traits | ||||||||
---|---|---|---|---|---|---|---|---|---|
BIW | CAE | CWW | MSS | MSB | MST | RST | LTS | OMP | |
p | |||||||||
Birth year of calves | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Sex of calves | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
F94L | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Q204X | NS | NS | <0.01 | NS | <0.05 | <0.05 | NS | <0.05 | <0.05 |
nt267 | NS | NS | NS | NS | NS | NS | NS | NS | NS |
nt324 | NS | NS | NS | NS | NS | NS | NS | NS | NS |
nt414 | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Factors | The ratio of the examined factors in phenotype (%) | ||||||||
Birth year of calves | 8.53 | 19.19 | 3.84 | 1.95 | 1.26 | 1.52 | 6.63 | 2.44 | 1.97 |
Sex of calves | 90.37 | 62.27 | 87.90 | 96.18 | 96.74 | 94.43 | 92.32 | 95.53 | 96.49 |
F94L | 0.24 | 1.39 | 0.68 | 0.12 | 0.39 | 0.01 | 0.21 | 0.50 | 0.24 |
Q204X | 0.00 | 2.05 | 5.29 | 0.63 | 1.04 | 1.79 | 0.04 | 1.07 | 0.81 |
nt267 | 0.01 | 6.12 | 0.03 | 0.10 | 0.03 | 1.30 | 0.07 | 0.10 | 0.16 |
nt324 | 0.07 | 1.02 | 1.17 | 0.35 | 0.06 | 0.24 | 0.07 | 0.08 | 0.03 |
nt414 | 0.16 | 4.54 | 0.38 | 0.40 | 0.21 | 0.19 | 0.28 | 0.03 | 0.07 |
Error | 0.62 | 3.42 | 0.71 | 0.27 | 0.27 | 0.52 | 0.38 | 0.25 | 0.23 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Factors | N | Calving and Weaning Traits | ||
---|---|---|---|---|
BIW (kg) | CAE (Score) | CWW (kg) | ||
Adjusted overall mean (±SE) | 2046 | 43.65 ± 0.63 | 1.12 ± 0.05 | 269.07 ± 4.73 |
Deviation from the overall mean | ||||
Birth year of calves | ||||
| 195 | −0.98 | +0.16 | −6.02 |
| 51 | −0.37 | −0.10 | −9.20 |
| 139 | −2.36 | −0.02 | −4.12 |
| 296 | +0.46 | +0.00 | −2.01 |
| 540 | −0.06 | +0.04 | +4.67 |
| 597 | +0.76 | -0.02 | +6.93 |
| 228 | +2.54 | −0.05 | +9.74 |
Sex of calves | ||||
| 688 | +1.67 | +0.05 | +11.54 |
| 1358 | −1.67 | −0.05 | −11.54 |
F94L | ||||
| 1933 | +0.17 | +0.01 | −2.04 |
| 113 | −0.17 | −0.01 | +2.04 |
Q204X | ||||
| 1791 | −0.01 | −0.01 | −4.28 |
| 255 | +0.01 | +0.01 | +4.28 |
nt267 | ||||
| 1981 | −0.05 | +0.04 | −0.54 |
| 65 | +0.05 | −0.04 | +0.54 |
nt324 | ||||
| 1607 | +0.08 | +0.00 | −4.58 |
| 409 | −0.07 | −0.02 | −1.27 |
| 30 | +0.00 | +0.02 | +5.85 |
nt414 | ||||
| 1062 | +0.13 | +0.02 | −0.67 |
| 825 | +0.11 | +0.02 | −1.57 |
| 159 | −0.24 | −0.04 | +2.25 |
Factors | N | Muscularity Traits | |||||
---|---|---|---|---|---|---|---|
MSS (Score) | MSB (Score) | MST (Score) | RST (Score) | LTS (Score) | OMP (%) | ||
Adjusted overall mean (±SE) | 2046 | 5.90 ± 0.11 | 5.39 ± 0.11 | 5.65 ± 0.12 | 5.54 ± 0.12 | 5.52 ± 0.11 | 55.86 ± 0.96 |
Deviation from the overall mean | |||||||
Birth year of calves | |||||||
| 195 | +0.13 | +0.15 | +0.04 | −0.19 | +0.12 | +0.61 |
| 51 | +0.06 | +0.14 | -0.25 | +0.00 | +0.20 | +0.57 |
| 139 | +0.19 | +0.06 | +0.06 | +0.41 | +0.07 | +1.44 |
| 296 | +0.09 | +0.01 | +0.22 | +0.36 | +0.08 | +1.40 |
| 540 | −0.02 | -0.03 | -0.04 | +0.03 | +0.03 | +0.00 |
| 597 | −0.21 | −0.18 | −0.05 | −0.24 | −0.28 | −2.06 |
| 228 | −0.24 | −0.16 | +0.02 | −0.36 | −0.22 | −1.97 |
Sex of calves | |||||||
| 688 | +0.47 | +0.44 | +0.35 | +0.41 | +0.47 | +4.34 |
| 1358 | −0.47 | −0.44 | −0.35 | −0.41 | −0.47 | −4.34 |
F94L | |||||||
| 1933 | +0.03 | +0.06 | −0.01 | +0.04 | +0.07 | +0.43 |
| 113 | −0.03 | −0.06 | +0.01 | −0.04 | −0.07 | −0.43 |
Q204X | |||||||
| 1791 | −0.06 | −0.07 | −0.07 | −0.01 | −0.07 | −0.60 |
| 255 | +0.06 | +0.07 | +0.07 | +0.01 | +0.07 | +0.60 |
nt267 | |||||||
| 1981 | −0.04 | −0.02 | −0.11 | −0.03 | −0.04 | −0.46 |
| 65 | +0.04 | +0.02 | +0.11 | +0.03 | +0.04 | +0.46 |
nt324 | |||||||
| 1607 | −0.11 | −0.04 | +0.00 | +0.02 | +0.00 | −0.23 |
| 409 | −0.07 | −0.01 | −0.06 | +0.05 | −0.04 | −0.29 |
| 30 | +0.17 | +0.05 | +0.06 | −0.06 | +0.04 | +0.52 |
nt414 | |||||||
| 1062 | −0.06 | −0.03 | −0.03 | −0.05 | +0.00 | −0.27 |
| 825 | +0.03 | +0.03 | −0.03 | −0.01 | −0.02 | −0.01 |
| 159 | +0.03 | +0.00 | +0.05 | +0.06 | +0.01 | +0.28 |
Traits | Slope (bX) | Intercept (a) | Fitting | |||||
---|---|---|---|---|---|---|---|---|
b | SE | p | a | SE | p | R2 | p | |
BIW (kg) | +0.54 | 0.20 | <0.05 | −1042.52 | 4407.67 | <0.05 | 0.59 | <0.05 |
CAE (score) | −0.01 | 0.02 | NS | 29.82 | 31.44 | NS | 0.14 | NS |
CWW (kg) | +3.18 | 0.44 | <0.01 | −6146.81 | 885.23 | <0.01 | 0.91 | <0.01 |
MSS (score) | −0.06 | 0.02 | <0.05 | 134.90 | 38.18 | <0.05 | 0.70 | <0.05 |
MSB (score) | −0.06 | 0.01 | <0.01 | 122.69 | 14.19 | <0.01 | 0.93 | <0.01 |
MST (score) | +0.01 | 0.03 | NS | −16.01 | 59.19 | NS | 0.03 | NS |
RST (score) | −0.05 | 0.06 | NS | 103.80 | 115.26 | NS | 0.13 | NS |
LTS (score) | −0.07 | 0.02 | <0.05 | 150.65 | 36.77 | <0.01 | 0.76 | <0.05 |
OMP (%) | −0.51 | 0.20 | <0.05 | 1077.82 | 401.49 | <0.05 | 0.57 | <0.05 |
r | CAE | CWW | MSS | MSB | MST | RST | LTS | OMP |
---|---|---|---|---|---|---|---|---|
BIW | * 0.13 | * 0.24 | * 0.13 | * 0.15 | * 0.08 | * 0.13 | * 0.13 | * 0.14 |
CAE | 0.00 | * 0.09 | * 0.09 | 0.04 | * 0.08 | * 0.09 | * 0.09 | |
CWW | * 0.21 | * 0.20 | * 0.17 | * 0.24 | * 0.21 | * 0.24 | ||
MSS | * 0.86 | * 0.61 | * 0.68 | * 0.80 | * 0.90 | |||
MSB | * 0.63 | * 0.66 | * 0.82 | * 0.91 | ||||
MST | * 0.67 | * 0.62 | * 0.79 | |||||
RST | * 0.65 | * 0.82 | ||||||
LTS | * 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csürhés, T.; Szabó, F.; Holló, G.; Mikó, E.; Török, M.; Bene, S. Relationship between Some Myostatin Variants and Meat Production Related Calving, Weaning and Muscularity Traits in Charolais Cattle. Animals 2023, 13, 1895. https://doi.org/10.3390/ani13121895
Csürhés T, Szabó F, Holló G, Mikó E, Török M, Bene S. Relationship between Some Myostatin Variants and Meat Production Related Calving, Weaning and Muscularity Traits in Charolais Cattle. Animals. 2023; 13(12):1895. https://doi.org/10.3390/ani13121895
Chicago/Turabian StyleCsürhés, Tamás, Ferenc Szabó, Gabriella Holló, Edit Mikó, Márton Török, and Szabolcs Bene. 2023. "Relationship between Some Myostatin Variants and Meat Production Related Calving, Weaning and Muscularity Traits in Charolais Cattle" Animals 13, no. 12: 1895. https://doi.org/10.3390/ani13121895
APA StyleCsürhés, T., Szabó, F., Holló, G., Mikó, E., Török, M., & Bene, S. (2023). Relationship between Some Myostatin Variants and Meat Production Related Calving, Weaning and Muscularity Traits in Charolais Cattle. Animals, 13(12), 1895. https://doi.org/10.3390/ani13121895