A Comparative Genomic and Phylogenetic Investigation of the Xenobiotic Metabolism Enzymes of Cytochrome P450 in Elephants Shows Loss in CYP2E and CYP4A
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Retrieval and Isoform Numbers in CYP1–4 Sequences
2.2. Synteny Analysis of CYP Genes
2.3. Phylogenetic Analysis of Mammalian CYP Genes
2.4. Further Pseudogene Confirmation Analysis
3. Results
3.1. CYP Isoform Numbers
3.2. Phylogeny Tree and Synteny Map of CYP2A, 2C, and 3A
3.3. Pseudogene Confirmation of CYP2E and 4A
4. Discussion
4.1. High Duplicated Enzymes
4.2. Loss Pseudogene Enzymes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muboko, N.; Muposhi, V.; Tarakini, T.; Gandiwa, E.; Vengesayi, S.; Makuwe, E. Cyanide Poisoning and African elephant Mortality in Hwange National Park, Zimbabwe: A Preliminary Assessment. Pachyderm 2014, 55, 92–94. [Google Scholar]
- Roxburgh, L.; McDougall, R. Vulture Poisoning Incidents and the Status of Vultures in Zambia and Malawi. Vulture News 2012, 62, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Ogada, D.; Botha, A.; Shaw, P. Ivory Poachers and Poison: Drivers of Africa’s Declining Vulture Populations. Oryx 2016, 50, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, Y.; Guo, Y.M.; Xu, C.; Chen, L.; Codd, G.A.; Chen, J.; Wang, Y.; Wang, P.Z.; Yang, L.W.; et al. Meta-Analysis Reveals Cyanotoxins Risk across African Inland Waters. J. Hazard. Mater. 2023, 451, 131160. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Liu, Y.; Jeppesen, E.; Svenning, J.C.; Wu, J.; Zhang, W.; Zhou, T.; Wang, P.; Nangombe, S.; et al. From Unusual Suspect to Serial Killer: Cyanotoxins Boosted by Climate Change May Jeopardize Megafauna. Innovation 2021, 2, 100092. [Google Scholar] [CrossRef]
- Radhakrishnan, S. A Note on Wildlife Poisoning Cases from Kerala, South India. Eur. J. Wildl. Res. 2018, 64, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rode, K.D.; Chiyo, P.I.; Chapman, C.A.; Mcdowell, L.R. Nutritional Ecology of Elephant in Kibale National Park, Uganda, and Its Relationship with Crop-Raiding Behaviour. J. Trop. Ecol. 2006, 22, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Greene, W.; Dierenfeld, E.S.; Mikota, S. A Review of Asian and African elephant Gastrointestinal Anatomy, Physiology and Pharmacology. J. Zoo Aquar. Res. 2019, 7, 1–14. [Google Scholar]
- Mahmood, I. Application of Allometric Principles for the Prediction of Pharmacokinetics in Human and Veterinary Drug Development. Adv. Drug Deliv. Rev. 2007, 59, 1177–1192. [Google Scholar] [CrossRef]
- Hunter, R.P.; Isaza, R. Concepts and Issues with Interspecies Scaling in Zoological Pharmacology. J. Zoo Wildl. Med. 2008, 39, 517–526. [Google Scholar] [CrossRef]
- Bechert, U.S.; Brown, J.L.; Dierenfeld, E.S.; Ling, P.D.; Molter, C.M.; Schulte, B.A. Zoo Elephant Research: Contributions to Conservation of Captive and Free-Ranging Species. Int. Zoo Yearb. 2019, 53, 89–115. [Google Scholar] [CrossRef]
- Walsky, R.L.; Obach, R.S. Validated Assays for Human Cytochrome P450 Activities. Drug Metab. Dispos. 2004, 32, 647–660. [Google Scholar] [CrossRef] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450s and Other Enzymes in Drug Metabolism and Toxicity. AAPS J. 2006, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef]
- Nebert, D.W.; Russell, D.W. Clinical Importance of the Cytochromes P450. Lancet 2002, 360, 1155–1162. [Google Scholar] [CrossRef]
- Nebert, D.W.; Dalton, T.P.; Okey, A.B.; Gonzalez, F.J. Role of Aryl Hydrocarbon Receptor-Mediated Induction of the CYP1 Enzymes in Environmental Toxicity and Cancer. J. Biol. Chem. 2004, 279, 23847–23850. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.G.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of Cytochrome P450 (CYP) Genes from the Mouse and Human Genomes, Including Nomenclature Recommendations for Genes, Pseudogenes and Alternative-Splice Variants. Pharm. Genom. 2004, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Ikenaka, Y.; Nakayama, S.M.M.; Kawai, Y.K.; Ishizuka, M. Specific Gene Duplication and Loss of Cytochrome P450 in Families 1–3 in Carnivora (Mammalia, Laurasiatheria). Animals 2022, 12, 2821. [Google Scholar] [CrossRef]
- Johansson, I.; Ingelman-Sundberg, M. CNVs of Human Genes and Their Implication in Pharmacogenetics. Cytogenet. Genome Res. 2008, 123, 195–204. [Google Scholar] [CrossRef]
- Santos, M.; Niemi, M.; Hiratsuka, M.; Kumondai, M.; Ingelman-Sundberg, M.; Lauschke, V.M.; Rodríguez-Antona, C. Novel Copy-Number Variations in Pharmacogenes Contribute to Interindividual Differences in Drug Pharmacokinetics. Genet. Med. 2018, 20, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Aiba, I.; Yamasaki, T.; Shinki, T.; Izumi, S.; Yamamoto, K.; Yamada, S.; Terato, H.; Ide, H.; Ohyama, Y. Characterization of Rat and Human CYP2J Enzymes as Vitamin D 25-Hydroxylases. Steroids 2006, 71, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Wolf, C.R.; Deeni, Y.Y.; Dawe, R.S.; Evans, A.T.; Comrie, M.M.; Ferguson, J.; Ibbotson, S.H. Cutaneous Expression of Cytochrome P450 CYP2S1: Individuality in Regulation by Therapeutic Agents for Psoriasis and Other Skin Diseases. Lancet 2003, 361, 1336–1343. [Google Scholar] [CrossRef]
- Chuang, S.S.; Helvig, C.; Taimi, M.; Ramshaw, H.A.; Collop, A.H.; Amad, M.; White, J.A.; Petkovich, M.; Jones, G.; Korczak, B. CYP2U1, a Novel Human Thymus- and Brain-Specific Cytochrome P450, Catalyzes ω- and (ω-1)-Hydroxylation of Fatty Acids. J. Biol. Chem. 2004, 279, 6305–6314. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Hoffman, S.M.G.; Keeney, D.S. Epidermal CYP2 Family Cytochromes P450. Toxicol. Appl. Pharmacol. 2004, 195, 278–287. [Google Scholar] [CrossRef]
- Dong, A.N.; Tan, B.H.; Pan, Y.; Ong, C.E. The CYP2R1 Enzyme: Structure, Function, Enzymatic Properties and Genetic Polymorphism. J. Pharm. Pharm. Sci. 2021, 24, 94–112. [Google Scholar] [CrossRef]
- Hu, S.; Wang, H.; Knisely, A.A.; Reddy, S.; Kovacevic, D.; Liu, Z.; Hoffman, S.M.G. Evolution of the CYP2ABFGST Gene Cluster in Rat, and a Fine-Scale Comparison among Rodent and Primate Species. Genetica 2008, 133, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Suleski, M.; Blair Hedges, S. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- Karakus, E.; Prinzinger, C.; Leiting, S.; Geyer, J. Sequencing of the Canine Cytochrome P450 CYP2C41 Gene and Genotyping of Its Polymorphic Occurrence in 36 Dog Breeds. Front. Vet. Sci. 2021, 8, 663175. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, R.; Holding, M.L.; Orr, T.J.; Henderson, J.B.; Parchman, T.L.; Matocq, M.D.; Shapiro, M.D.; Dearing, M.D. Trio-Binned Genomes of the Woodrats Neotoma Bryanti and Neotoma Lepida Reveal Novel Gene Islands and Rapid Copy Number Evolution of Xenobiotic Metabolizing Genes. Mol. Ecol. Resour. 2022, 22, 2713–2731. [Google Scholar] [CrossRef] [PubMed]
- Vancuylenberg, B.W.B. Feeding Behaviour of the Asiatic Elephant in South-East Sri Lanka in Relation to Conservation. Biol. Conserv. 1977, 12, 33–54. [Google Scholar] [CrossRef]
- Campos-Arceiz, A.; Blake, S. Megagardeners of the Forest—The Role of Elephant in Seed Dispersal. Acta Oecologica 2011, 37, 542–553. [Google Scholar] [CrossRef]
- Fernando, P.; Wikramanayake, E.D.; Janaka, H.K.; Jayasinghe, L.K.A.; Gunawardena, M.; Kotagama, S.W.; Weerakoon, D.; Pastorini, J. Ranging Behavior of the Asian elephant in Sri Lanka. Mamm. Biol. 2008, 73, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Berliani, K.; Alikodra, H.S.; Masy’ud, B.; Kusrini, M.D. Food Preference of Sumatran elephant (Elephas maximus sumatranus) to Commodity Crops in Human-Elephant Conflict Area of Aceh, Indonesia. J. Phys. Conf. Ser. 2018, 1116, 52015. [Google Scholar] [CrossRef]
- Fowler, M.E.; Mikota, S.K. Biology, Medicine, and Surgery of Elephant; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; ISBN 9780813806761. [Google Scholar]
- Codron, J.; Lee-Thorp, J.A.; Sponheimer, M.; Codron, D.; Grant, R.C.; De Ruiter, D.J. Elephant (Loxodonta africana) Diets in Kruger National Park, South Africa: Spatial and Landscape Differences. J. Mammal. 2006, 87, 27–34. [Google Scholar] [CrossRef]
- Bax, P.N.; Sheldrick, D.L.W. Some Preliminary Observations on the Food of Elephant in the Tsavo Royal National Park (East) of Kenya. Afr. J. Ecol. 1963, 1, 40–51. [Google Scholar] [CrossRef]
- Kabigumila, J. Feeding Habits of Elephant in Ngorongoro Crater, Tanzania. Afr. J. Ecol. 1993, 31, 156–164. [Google Scholar] [CrossRef]
- Campos-Arceiz, A.; Lin, T.Z.; Htun, W.; Takatsuki, S.; Leimgruber, P. Working with Mahouts to Explore the Diet of Work Elephant in Myanmar (Burma). Ecol. Res. 2008, 23, 1057–1064. [Google Scholar] [CrossRef]
- Chen, J.; Deng, X.B.; Zhang, L.; Bai, Z.L. Diet Composition and Foraging Ecology of Asian elephant in Shangyong, Xishuangbanna, China. Acta Ecol. Sin. 2006, 26, 309–316. [Google Scholar] [CrossRef]
- Koirala, R.K.; Raubenheimer, D.; Aryal, A.; Pathak, M.L.; Ji, W. Feeding Preferences of the Asian elephant (Elephas maximus) in Nepal. BMC Ecol. 2016, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Clauss, M.; Loehlein, W.; Kienzle, E.; Wiesner, H. Studies on Feed Digestibilities in Captive Asian elephant (Elephas maximus). J. Anim. Physiol. Anim. Nutr. 2003, 87, 160–173. [Google Scholar] [CrossRef]
- Van Soest, P.J. Allometry and Ecology of Feeding Behavior and Digestive Capacity in Herbivores: A Review. Zoo Biol. 1996, 15, 455–479. [Google Scholar] [CrossRef]
- Romain, S.; Angkawanish, T.; Bampenpol, P.; Pongsopawijit, P.; Sombatphuthorn, P.; Nomsiri, R.; Silva-Fletcher, A. Diet Composition, Food Intake, Apparent Digestibility, and Body Condition Score of the Captive Asian elephant (Elephas maximus): A Pilot Study in Two Collections in Thailand. J. Zoo Wildl. Med. 2014, 45, 1–14. [Google Scholar] [CrossRef]
- Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species Differences between Mouse, Rat, Dog, Monkey and Human CYP-Mediated Drug Metabolism, Inhibition and Induction. Expert Opin. Drug Metab. Toxicol. 2006, 2, 875–894. [Google Scholar] [CrossRef]
- Oliw, E.H.; Stark, K.; Bylund, J. Oxidation of Prostaglandin H2 and Prostaglandin H2 Analogues by Human Cytochromes P450: Analysis of ω-Side Chain Hydroxy Metabolites and Four Steroisomers of 5-Hydroxyprostaglandin I1 by Mass Spectrometry. Biochem. Pharmacol. 2001, 62, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Bylund, J.; Ericsson, J.; Oliw, E.H. Analysis of Cytochrome P450 Metabolites of Arachidonic and Linoleic Acids by Liquid Chromatography-Mass Spectrometry with Ion Trap MS2. Anal. Biochem. 1998, 265, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Bylund, J.; Kunz, T.; Valmsen, K.; Oliw, E.H. Cytochromes P450 with Bisallylic Hydroxylation Activity on Arachidonic and Linoleic Acids Studied with Human Recombinant Enzymes and with Human and Rat Liver Microsomes. J. Pharmacol. Exp. Ther. 1998, 284, 51–60. [Google Scholar]
- Johnson, R.N.; O’Meally, D.; Chen, Z.; Etherington, G.J.; Ho, S.Y.W.; Nash, W.J.; Grueber, C.E.; Cheng, Y.; Whittington, C.M.; Dennison, S.; et al. Adaptation and Conservation Insights from the Koala Genome. Nat. Genet. 2018, 50, 1102–1111. [Google Scholar] [CrossRef]
- Capdevila, J.; Wang, W. Role of Cyp-Epoxygenase in Regulating Renal Membrane Transport and Hypertension. Curr. Opin. Nephrol. Hypertens. 2013, 22, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imaoka, S.; Wedlund, P.J.; Ogawa, H.; Kimura, S.; Gonzalez, F.J.; Kim, H.Y. Identification of CYP2C23 Expressed in Rat Kidney as an Arachidonic Acid Epoxygenase. J. Pharmacol. Exp. Ther. 1993, 267, 1012–1016. [Google Scholar]
- Bibi, Z. Role of Cytochrome P450 in Drug Interactions. Nutr. Metab. 2008, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.K.; Wester, M.R.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The Structure of Human Microsomal Cytochrome P450 3A4 Determined by X-ray Crystallography to 2.05-Å Resolution. J. Biol. Chem. 2004, 279, 38091–38094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrychová, T.; Anzenbacherová, E.; Hudeček, J.; Skopalík, J.; Lange, R.; Hildebrandt, P.; Otyepka, M.; Anzenbacher, P. Flexibility of Human Cytochrome P450 Enzymes: Molecular Dynamics and Spectroscopy Reveal Important Function-Related Variations. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Heit, C.; Dong, H.; Chen, Y.; Thompson, D.C.; Deitrich, R.A.; Vasiliou, V.K. The Role of CYP2E1 in Alcohol Metabolism and Sensitivity in the Central Nervous System. Subcell. Biochem. 2013, 67, 235. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.K.; Brodie, M. Alcohol Self-Administration by Elephant. Bull. Psychon. Soc. 1984, 22, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Janiak, M.C.; Melin, A.D.; Pinto, S.L.; Duytschaever, G.; Carrigan, M.A.; Melin, A.D. Genetic Evidence of Widespread Variation in Ethanol Metabolism among Mammals: Revisiting the “myth” of Natural Intoxication. Biol. Lett. 2020, 16, 20200070. [Google Scholar] [CrossRef]
- Watanabe, K.P.; Kawai, Y.K.; Ikenaka, Y.; Kawata, M.; Ikushiro, S.-I.; Sakaki, T.; Ishizuka, M. Avian Cytochrome P450 (CYP) 1-3 Family Genes: Isoforms, Evolutionary Relationships, and MRNA Expression in Chicken Liver. PLoS ONE 2013, 8, e75689. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.H. Rapid Birth–Death Evolution Specific to Xenobiotic Cytochrome P450 Genes in Vertebrates. PLoS Genet. 2007, 3, e67. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, S.; Schteingart, C.D.; Hagey, L.R.; Cohen, B.I.; Mosbach, E.H.; Rossi, S.S.; Hofmann, A.F.; Matoba, N.; Une, M.; Hoshita, T.; et al. Bile Salts of the West Indian Manatee, Trichechus Manatus Latirostris: Novel Bile Alcohol Sulfates and Absence of Bile Acids. J. Lipid Res. 1988, 29, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Hiller, M. Loss of Enzymes in the Bile Acid Synthesis Pathway Explains Differences in Bile Composition among Mammals. Genome Biol. Evol. 2018, 10, 3211. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.E.C.M. The Cytochrome P450 4 (CYP4) Family. Gen. Pharmacol. 1997, 28, 351–359. [Google Scholar] [CrossRef]
- Leung, T.; Rajendran, R.; Singh, S.; Garva, R.; Krstic-Demonacos, M.; Demonacos, C. Cytochrome P450 2E1 (CYP2E1) Regulates the Response to Oxidative Stress and Migration of Breast Cancer Cells. Breast Cancer Res. 2013, 15, R107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Lu, D.; Dong, W.; Zhang, L.; Zhang, X.; Quan, X.; Ma, C.; Lian, H.; Zhang, L. Expression of CYP2E1 Increases Oxidative Stress and Induces Apoptosis of Cardiomyocytes in Transgenic Mice. FEBS J. 2011, 278, 1484–1492. [Google Scholar] [CrossRef]
- Abegglen, L.M.; Caulin, A.F.; Chan, A.; Lee, K.; Robinson, R.; Campbell, M.S.; Kiso, W.K.; Schmitt, D.L.; Waddell, P.J.; Bhaskara, S.; et al. Potential Mechanisms for Cancer Resistance in Elephant and Comparative Cellular Response to DNA Damage in Humans. JAMA 2015, 314, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.T.; Buters, J.T.M.; Pineau, T.; Fernandez-Salguero, P.; Gonzalez, F.J. Role of CYP2E1 in the Hepatotoxicity of Acetaminophen. J. Biol. Chem. 1996, 271, 12063–12067. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Holla, V.R.; Wei, Y.; Wang, W.H.; Gatica, A.; Wei, S.; Mei, S.; Miller, C.M.; Dae, R.C.; Price, E.; et al. Salt-Sensitive Hypertension Is Associated with Dysfunctional Cyp4a10 Gene and Kidney Epithelial Sodium Channel. J. Clin. Investig. 2006, 116, 1696–1702. [Google Scholar] [CrossRef] [Green Version]
- Capdevila, J.H.; Falck, J.R.; Imig, J.D. Roles of the Cytochrome P450 Arachidonic Acid Monooxygenases in the Control of Systemic Blood Pressure and Experimental Hypertension. Kidney Int. 2007, 72, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holla, V.R.; Adas, F.; Imig, J.D.; Zhao, X.; Price, E.; Olsen, N.; Kovacs, W.J.; Magnuson, M.A.; Keeney, D.S.; Breyer, M.D.; et al. Alterations in the Regulation of Androgen-Sensitive Cyp 4a Monooxygenases Cause Hypertension. Proc. Natl. Acad. Sci. USA 2001, 98, 5211–5216. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, I.A.; Farrell, G.C.; Field, J.; Bell, D.R.; Gonzalez, F.J.; Robertson, G.R. CYP2E1 and CYP4A as Microsomal Catalysts of Lipid Peroxides in Murine Nonalcoholic Steatohepatitis. J. Clin. Investig. 2000, 105, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, S.; Zhou, Y.; Su, W.; Ruan, X.; Wang, B.; Zheng, F.; Warner, M.; Gustafsson, J.Å.; Guan, Y. Ablation of Cytochrome P450 Omega-Hydroxylase 4A14 Gene Attenuates Hepatic Steatosis and Fibrosis. Proc. Natl. Acad. Sci. USA 2017, 114, 3181–3185. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, K.; Kondo, M.; Ikenaka, Y.; Nakayama, S.M.M.; Ishizuka, M. A Comparative Genomic and Phylogenetic Investigation of the Xenobiotic Metabolism Enzymes of Cytochrome P450 in Elephants Shows Loss in CYP2E and CYP4A. Animals 2023, 13, 1939. https://doi.org/10.3390/ani13121939
Watanabe K, Kondo M, Ikenaka Y, Nakayama SMM, Ishizuka M. A Comparative Genomic and Phylogenetic Investigation of the Xenobiotic Metabolism Enzymes of Cytochrome P450 in Elephants Shows Loss in CYP2E and CYP4A. Animals. 2023; 13(12):1939. https://doi.org/10.3390/ani13121939
Chicago/Turabian StyleWatanabe, Kanami, Mitsuki Kondo, Yoshinori Ikenaka, Shouta M. M. Nakayama, and Mayumi Ishizuka. 2023. "A Comparative Genomic and Phylogenetic Investigation of the Xenobiotic Metabolism Enzymes of Cytochrome P450 in Elephants Shows Loss in CYP2E and CYP4A" Animals 13, no. 12: 1939. https://doi.org/10.3390/ani13121939
APA StyleWatanabe, K., Kondo, M., Ikenaka, Y., Nakayama, S. M. M., & Ishizuka, M. (2023). A Comparative Genomic and Phylogenetic Investigation of the Xenobiotic Metabolism Enzymes of Cytochrome P450 in Elephants Shows Loss in CYP2E and CYP4A. Animals, 13(12), 1939. https://doi.org/10.3390/ani13121939