Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Bilinear Feature Extraction and Fusion Model
2.3. RepVGG Block
2.4. Shuffle Attention Network
2.5. Sheep Face Recognition Model
2.6. Experimental Environment and Initial Parameters
2.7. Experimental Evaluation Index
3. Results
3.1. Sheep Face Recognition Model Training and Evaluation
3.2. Performance Testing of Different Models
3.3. Effect of Attention Module and Dual-Feature Extraction on Model Performance
3.4. Example of Identification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gelasakis, A.I.; Valergakis, G.E.; Arsenos, G.; Banos, G. Description and Typology of Intensive Chios Dairy Sheep Farms in Greece. J. Dairy Sci. 2012, 95, 3070–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, J.E.; Cronin, G.M.; Bush, R.D.; Morris, J.E.; Cronin, G.M.; Bush, R.D. Improving Sheep Production and Welfare in Extensive Systems through Precision Sheep Management. Anim. Prod. Sci. 2012, 52, 665–670. [Google Scholar] [CrossRef]
- Riaboff, L.; Aubin, S.; Bédère, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of Preprocessing Methods for the Prediction of Cattle Behaviour from Accelerometer Data. Comput. Electron. Agric. 2019, 165, 104961. [Google Scholar] [CrossRef]
- Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2023, 13, 779. [Google Scholar] [CrossRef]
- Hatam-Nahavandi, K.; Carmena, D.; Rezaeian, M.; Mirjalali, H.; Rahimi, H.M.; Badri, M.; Vafae Eslahi, A.; Shahrivar, F.F.; Rodrigues Oliveira, S.M.; Pereira, M.d.L.; et al. Gastrointestinal Parasites of Domestic Mammalian Hosts in Southeastern Iran. Vet. Sci. 2023, 10, 261. [Google Scholar] [CrossRef]
- Lay, D.C., Jr.; Friend, T.H.; Bowers, C.L.; Grissom, K.K.; Jenkins, O.C. A Comparative Physiological and Behavioral Study of Freeze and Hot-Iron Branding Using Dairy Cows1. J. Anim. Sci. 1992, 70, 3070–3079. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Zhou, G.; Hu, Y.; Sun, A.; Xu, X.; Liu, X.; Lu, C. Traceability Technologies for Farm Animals and Their Products in China. Food Control 2017, 79, 35–43. [Google Scholar] [CrossRef]
- Reiners, K.; Hegger, A.; Hessel, E.F.; Böck, S.; Wendl, G.; Van den Weghe, H.F.A. Application of RFID Technology Using Passive HF Transponders for the Individual Identification of Weaned Piglets at the Feed Trough. Comput. Electron. Agric. 2009, 68, 178–184. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.T.; Lunadei, L. The Role of RFID in Agriculture: Applications, Limitations and Challenges. Comput. Electron. Agric. 2011, 79, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Karakuş, M.; Karakuş, F. The Use of Infrared Thermography for Welfare Assessment during the Application of Ear Tags to Lambs. Arch. Anim. Breed. 2017, 60, 297–302. [Google Scholar] [CrossRef]
- De Luis-Garcıia, R.; Alberola-López, C.; Aghzout, O.; Ruiz-Alzola, J. Biometric Identification Systems. Signal Process. Breed. 2003, 83, 2539–2557. [Google Scholar] [CrossRef]
- Wildes, R.P.; Asmuth, J.C.; Green, G.L.; Hsu, S.C.; Kolczynski, R.J.; Matey, J.R.; McBride, S.E. A Machine-Vision System for Iris Recognition. Mach. Vis. Appl. 1996, 9, 1–8. [Google Scholar] [CrossRef]
- Choras, R.S. Hybrid Iris and Retina Recognition for Biometrics. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; Volume 5, pp. 2422–2426. [Google Scholar]
- Vasilescu, M.A.O.; Terzopoulos, D. Multilinear Image Analysis for Facial Recognition. In Proceedings of the 2002 International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; Volume 2, pp. 511–514. [Google Scholar]
- Corkery, G.P.; UGonzales-Barron, A.; Butler, F.; Mc Donnell, K.; Ward, S. A Preliminary Investigation on Face Recognition as a Biometric Identifier of Sheep. Trans. ASABE 2007, 50, 313–320. [Google Scholar] [CrossRef]
- Kim, H.T.; Ikeda, Y.; Choi, H.L. The Identification of Japanese Black Cattle by Their Faces. Asian-Australas. J. Anim. Sci. 2005, 18, 868–872. [Google Scholar] [CrossRef]
- Cai, C.; Li, J. Cattle Face Recognition Using Local Binary Pattern Descriptor. In Proceedings of the 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kaohsiung, Taiwan, 29 October–1 November 2013; pp. 1–4. [Google Scholar]
- Kumar, S.; Tiwari, S.; Singh, S.K. Face Recognition for Cattle. In Proceedings of the 2015 Third International Conference on Image Information Processing (ICIIP), Waknaghat, India, 21–24 December 2015; pp. 65–72. [Google Scholar]
- Wada, N.; Shinya, M.; Shiraishi, M. Letter Pig Face Recognition Using Eigenspace Method. ITE Trans. 2013, 4, 328–332. [Google Scholar]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards On-Farm Pig Face Recognition Using Convolutional Neural Networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Wang, K.; Chen, C.; He, Y. Research on Pig Face Recognition Model Based on Keras Convolutional Neural Network. IOP Conf. Ser. Earth Environ. 2020, 474, 032030. [Google Scholar] [CrossRef]
- Marsot, M.; Mei, J.; Shan, X.; Ye, L.; Feng, P.; Yan, X.; Li, C.; Zhao, Y. An Adaptive Pig Face Recognition Approach Using Convolutional Neural Networks. Comput. Electron. Agric. 2020, 173, 105386. [Google Scholar] [CrossRef]
- Yao, L.; Hu, Z.; Liu, C.; Liu, H.; Kuang, Y.; Gao, Y. Cow Face Detection and Recognition Based on Automatic Feature Extraction Algorithm. In Proceedings of the ACM Turing Celebration Conference—China, Chengdu, China, 17–19 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Wang, H.; Qin, J.; Hou, Q.; Gong, S. Cattle Face Recognition Method Based on Parameter Transfer and Deep Learning. J. Phys. Conf. Ser. 2020, 1453, 012054. [Google Scholar] [CrossRef]
- Salama, A.; Hassanien, A.E.; Fahmy, A. Sheep Identification Using a Hybrid Deep Learning and Bayesian Optimization Approach. IEEE Access 2019, 7, 31681–31687. [Google Scholar] [CrossRef]
- Xue, H.; Qin, J.; Quan, C.; Ren, W.; Gao, T.; Zhao, J. Open Set Sheep Face Recognition Based on Euclidean Space Metric. Math. Probl. Eng. 2021, 2021, e3375394. [Google Scholar] [CrossRef]
- Saradha, S.; Asha, J.; Sreemathy, J. A Deep Learning-Based Framework for Sheep Identification System Based on Facial Bio-Metrics Analysis. In Proceedings of the 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Dharan, Nepal, 10–12 November 2022; pp. 560–564. [Google Scholar]
- Yang, Q.-L.Z.Y.-B. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2235–2239. [Google Scholar]
- JOCHER. Network Data. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 8 July 2022.).
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource Remote Sensing Data Classification Based on Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 937–949. [Google Scholar] [CrossRef]
- Weng, Z.; Meng, F.; Liu, S.; Zhang, Y.; Zheng, Z.; Gong, C. Cattle Face Recognition Based on a Two-Branch Convolutional Neural Network. Comput. Electron. Agric. 2022, 196, 106871. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-Style ConvNets Great Again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.440. [Google Scholar]
- Hitelman, A.; Edan, Y.; Godo, A.; Berenstein, R.; Lepar, J.; Halachmi, I. Biometric Identification of Sheep via a Machine-Vision System. Comput. Electron. Agric. 2022, 194, 106713. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, W.; Zhang, Y.; Xuan, C.; Wu, P. Sheep Face Recognition and Classification Based on an Improved MobilenetV2 Neural Network. Int. J. Adv. Robot. Syst. 2023, 20, 172988062311529. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Yang, J.; Li, S. When Mobilenetv2 Meets Transformer: A Balanced Sheep Face Recognition Model. Agriculture 2022, 12, 1126. [Google Scholar] [CrossRef]
- Belouadah, E.; Popescu, A.; Kanellos, I. A Comprehensive Study of Class Incremental Learning Algorithms for Visual Tasks. Neural Netw. 2021, 135, 38–54. [Google Scholar] [CrossRef]
Model | Alexnet | VGG16 | Resnet34 | Googlenet | EfficientnetV2 | Densenet | RepVGG | RepB-Sheepnet |
---|---|---|---|---|---|---|---|---|
Time (ms) | 6.35 | 23.10 | 11.20 | 12.37 | 30.75 | 25.27 | 12.42 | 30.46/15.31 |
Parameters (M) | 14.66 | 134.42 | 21.35 | 6.01 | 20.23 | 6.99 | 12.86 | 25.67/23.07 |
Model | Bilinear | SA | Accuracy (%) |
---|---|---|---|
1 | / | / | 97.59 |
2 | / | on | 98.34 |
3 | on | / | 99.02 |
4 | on | on | 99.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Z.; Tian, F.; Zhang, C. Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion. Animals 2023, 13, 1957. https://doi.org/10.3390/ani13121957
Wan Z, Tian F, Zhang C. Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion. Animals. 2023; 13(12):1957. https://doi.org/10.3390/ani13121957
Chicago/Turabian StyleWan, Zhuang, Fang Tian, and Cheng Zhang. 2023. "Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion" Animals 13, no. 12: 1957. https://doi.org/10.3390/ani13121957
APA StyleWan, Z., Tian, F., & Zhang, C. (2023). Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion. Animals, 13(12), 1957. https://doi.org/10.3390/ani13121957