Predicting Carcass Weight of Grass-Fed Beef Cattle before Slaughter Using Statistical Modelling
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Modelling and Forecasting
- At weaning: Since farmers often acquire cattle from different breeders at weaning, forecasting at this stage can provide an initial estimate of final production and assist in decision-making.
- Nine–ten months before slaughter: In northern cattle farming, the average time cattle spent in pastures from weaning to slaughter is around two years. Forecasting at this intermediate stage allows farmers to adjust husbandry practices if necessary to improve weight gain.
- Three months before slaughter: Forecasts at this stage are highly valuable for decision-making in the selling process, such as identifying an appropriate market for cattle and ensuring timely fulfillment of customer orders.
- One month before slaughter: These forecasts can support optimization of freight transport, enable predictions related to cash flow management, etc.
2.3. Measures of Predictive Performance
2.4. Multiple Linear Regression
2.5. Boosted Regression Trees
3. Results
3.1. Characteristics of Grass-Fed Beef Cattle
3.2. Analyses
3.3. Predictive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADG | average daily gain |
BRT | boosted regression trees |
CW | carcass weight |
GSW | weight gain since weaning to each stage before slaughter |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
MLR | multiple linear regression |
RMSE | root mean squared error |
TSW | time since weaning to each stage before slaughter |
WW | weaning weight |
References
- Greenwood, P.L.; Gardner, G.E.; Ferguson, D.M. Current situation and future prospects for the Australian beef industry—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 992. [Google Scholar] [CrossRef] [PubMed]
- MLA, State of Industry Report: Meat and Livestock Australia; Meat and Livestock Australia: North Sydney, Australia, 2020; Available online: https://www.mla.com.au/globalassets/mla-corporate/prices--markets/documents/trends--analysis/soti-report/mla-state-of-industry-report-2020.pdf (accessed on 19 August 2022).
- Schmoelzl, S. The potential of grazing in meat production: Strategies for the future in Australia. In Proceedings of the Sustainable Food Production through Green Digital Technology: Potential of New Eco-Friendly Grazing Structure by DX (Digital Transformation), Kagoshima City, Japan, 20 March 2022; Available online: http://hdl.handle.net/102.100.100/437547?index=1 (accessed on 11 September 2022).
- Aiken, V.C.F.; Fernandes, A.F.A.; Passafaro, T.L.; Acedo, J.S.; Dias, F.G.; Dórea, J.R.R.; Rosa, G.J.D.M. Forecasting beef production and quality using large-scale integrated data from Brazil. J. Anim. Sci. 2020, 98, skaa089. [Google Scholar] [CrossRef] [PubMed]
- Biase, A.G.; Albertini, T.Z.; de Mello, R.F. On supervised learning to model and predict cattle weight in precision livestock breeding. Comput. Electron. Agric. 2022, 195, 106706. [Google Scholar] [CrossRef]
- Pham, X.; Stack, M. How data analytics is transforming agriculture. Bus. Horiz. 2018, 61, 125–133. [Google Scholar] [CrossRef]
- Coyne, J.M.; Berry, D.P.; Mäntysaari, E.A.; Juga, J.; McHugh, N. Comparison of fixed effects and mixed model growth functions in modelling and predicting live weight in pigs. Livest. Sci. 2015, 177, 8–14. [Google Scholar] [CrossRef]
- Alonso, J.; Castañón, Á.R.; Bahamonde, A. Support Vector Regression to predict carcass weight in beef cattle in advance of the slaughter. Comput. Electron. Agric. 2013, 91, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Benedeti, P.D.B.; Valadares Filho, S.C.; Chizzotti, M.L.; Marcondes, M.I.; de Sales Silva, F.A. Development of equations to predict carcass weight, empty body gain, and retained energy of Zebu beef cattle. Animal 2021, 15, 100028. [Google Scholar] [CrossRef]
- McPhee, M.J.; Walmsley, B.J.; Dougherty, H.C.; McKiernan, W.A.; Oddy, V.H. Live animal predictions of carcass components and marble score in beef cattle: Model development and evaluation. Animal 2020, 14, s396–s405. [Google Scholar] [CrossRef]
- Albertí, P.; Panea, B.; Sañudo, C.; Olleta, J.L.; Ripoll, G.; Ertbjerg, P.; Christensen, M.; Gigli, S.; Failla, S.; Concetti, S.; et al. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest. Sci. 2008, 114, 19–30. [Google Scholar] [CrossRef]
- Becker, E.A.; Carretta, J.V.; Forney, K.A.; Barlow, J.; Brodie, S.; Hoopes, R.; Jacox, M.G.; Maxwell, S.M.; Redfern, J.V.; Sisson, N.B.; et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 2020, 10, 5759–5784. [Google Scholar] [CrossRef]
- Saha, D.; Alluri, P.; Gan, A. Prioritizing Highway Safety Manual’s crash prediction variables using boosted regression trees. Accid. Anal. Prev. 2015, 79, 133–144. [Google Scholar] [CrossRef] [PubMed]
- McCosker, K.D.; Perkins, N.R.; Fordyce, G.; O’Rourke, P.K.; McGowan, M.R. Production and performance of commercial beef breeding females in northern Australia. 4. Factors influencing the occurrence of lactating cows becoming pregnant within 4 months of calving. Anim. Prod. Sci. 2023, 63, 332–349. [Google Scholar] [CrossRef]
- Burns, B.M.; Fordyce, G.; Holroyd, R.G. A review of factors that impact on the capacity of beef cattle females to conceive, maintain a pregnancy and wean a calf-Implications for reproductive efficiency in northern Australia. Anim. Reprod. Sci. 2010, 122, 1–22. [Google Scholar] [CrossRef] [PubMed]
- MLA. When Is the Right Time to Wean Calves: Meat and Livestock Australia. 2021. Available online: https://www.mla.com.au/news-and-events/industry-news/when-is-the-right-time-to-wean-calves/ (accessed on 13 August 2022).
- Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Chung, O.S.; Lee, J.K. Association of Leopard Cat Occurrence with Environmental Factors in Chungnam Province, South Korea. Animals 2023, 13, 122. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009; p. 33. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J.; Hijmans, M.R.J. Package ‘dismo’. Circles 2017, 9, 1–68. Available online: http://cran.r-project.org/web/packages/dismo/index.html (accessed on 9 August 2022).
- Rubio Lozano, M.S.; Ngapo, T.M.; Huerta-Leidenz, N. Tropical beef: Is there an axiomatic basis to define the concept? Foods 2021, 10, 1025. [Google Scholar] [CrossRef]
- Enríquez, D.; Hötzel, M.J.; Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta. Vet. Scand. 2011, 53, 28. [Google Scholar] [CrossRef] [Green Version]
- Fordyce, G.; Smith, D.R.; McGowan, M.R.; McCosker, K.D. Live weight accounting for beef cow management. Livest. Sci. 2022, 262, 104960. [Google Scholar] [CrossRef]
- Watanabe, R.N.; Bernardes, P.A.; Romanzini, E.P.; Braga, L.G.; Brito, T.R.; Teobaldo, R.W.; Reis, R.A.; Munari, D.P. Strategy to predict high and low frequency behaviors using triaxial accelerometers in grazing of beef cattle. Animals 2021, 11, 3438. [Google Scholar] [CrossRef]
- Imaz, J.A.; García, S.; González, L.A. Application of in-paddock technologies to monitor individual self-fed supplement intake and liveweight in beef cattle. Animals 2020, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Fordyce, G.; James, T.A.; Holroyd, R.G.; Beaman, N.J.; Mayer, R.J.; O’Rourke, P.K. The performance of Brahman-Shorthorn and Sahiwal-Shorthorn beef cattle in the dry tropics of northern Queensland. 3. Birth weights and growth to weaning. Aust. J. Exp. Agric. 1993, 33, 119–127. [Google Scholar] [CrossRef]
- Story, C.E.; Rasby, R.J.; Clark, R.T.; Milton, C.T. Age of calf at weaning of spring-calving beef cows and the effect on cow and calf performance and production economics. J. Anim. Sci. 2000, 78, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Bureš, D.; Bartoň, L. Growth performance, carcass traits and meat quality of bulls and heifers slaughtered at different ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, C.M.; Scott, J.A.; Karisch, B.B.; Woolums, A.R.; Blanton, J.R.; Kaplan, R.M.; Epperson, W.B.; Smith, D.R. A randomized controlled trial to test the effect of on-arrival vaccination and deworming on stocker cattle health and growth performance. Bov. Pract. 2018, 52, 26. [Google Scholar] [CrossRef]
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E. Diet and genetics influence beef cattle performance and meat quality characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-García, A.A.; Pardío-Sedas, V.T.; León-Banda, G.G.; Ahuja-Aguirre, C.; Paredes-Ramos, P.; Hernández-Cruz, B.C.; Murillo, V.V. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Quantitative | ||||
Feature | Min | Mean | Max | SD |
Carcass weight (kg) | 197.0 | 295.0 | 426.0 | 27.1 |
Weaning weight (kg) | 100.0 | 217.0 | 350.0 | 51.0 |
Pre_slaughter weight (kg) | 400.0 | 554.0 | 802.0 | 46.8 |
Weight gain since weaning to slaughter (kg) | 104.0 | 336.4 | 587.0 | 59.7 |
Average daily gain since weaning to slaughter (kg) | 0.2 | 0.5 | 1.3 | 0.1 |
Time since weaning to slaughter (months) | 10.2 | 25.0 | 47.1 | 5.8 |
Qualitative | ||||
Feature | P 1 (%) | Feature | P 1 (%) | |
Breed | Weaned season | |||
Brahman (Bh) | 4.5 | Dry | 61.8 | |
Brahman cross (Bh-X) | 48.6 | Wet | 38.2 | |
British/European cross (Bt/Ep) | 5.4 | |||
Crossbreed/composite (Cc/Cm) | 2.3 | Property | ||
Santa cross (St-X) | 12.7 | A | 73.3 | |
Unknown (Un) | 26.4 | B | 15.8 | |
C | 10.9 | |||
Sex | ||||
Female | 2.7 | |||
Male | 97.3 |
Scenario | Variance Explained in Carcass Weight—R2 (%) | |||
---|---|---|---|---|
MLR | BRT | |||
BW Only | BW + Other Predictors | BW Only | BW + Other Predictors | |
Before 1 month of slaughter | 77 | 82 | 78 | 84 |
Before 3 months of slaughter | 70 | 74 | 71 | 80 |
Before 9–10 months of slaughter | 30 | 46 | 39 | 59 |
At weaning | 8 | 10 | 10 | 16 |
Time before Slaughter | Sample Size | MLR | BRT | ||||
---|---|---|---|---|---|---|---|
MAPE (%) | MAE (kg) | RMSE (kg) | MAPE (%) | MAE (kg) | RMSE (kg) | ||
1 month (scenario 1) | 483 | 2.67 | 7.90 | 10.48 | 2.98 | 8.72 | 11.65 |
3 months (scenario 2) | 2995 | 4.12 | 12.04 | 15.57 | 4.03 | 11.78 | 15.34 |
9–10 months (scenario 3) | 487 | 5.80 | 16.57 | 20.60 | 5.67 | 16.28 | 20.76 |
At weaning (scenario 4) | 2995 | 7.79 | 19.67 | 25.29 | 7.68 | 19.38 | 25.06 |
Weaning Weight | Weight Gain: Weaning to Slaughter | Number of Cows | Carcass Weight per Head (kg) | Time on Grass per Head (Months) | Cost (Grass + Labor) per Head 1 ($) | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
100:150 kg | 200:300 kg | 12 | 235 | 10.6 | 32.4 | 1.7 | 844.7 | 43.8 |
100:150 kg | 300:400 kg | 161 | 264 | 17.9 | 32.8 | 2.7 | 855.1 | 69.4 |
100:150 kg | 400:500 kg | 117 | 297 | 16.1 | 27.9 | 6.2 | 727.4 | 161.9 |
100:150 kg | 500:600 kg | 2 | 331 | 28.3 | 37.5 | 2.1 | 977.7 | 55.3 |
150:200 kg | 200:300 kg | 70 | 248 | 21.7 | 27.0 | 5.0 | 703.9 | 129.1 |
150:200 kg | 300:400 kg | 558 | 288 | 19.4 | 26.1 | 4.9 | 680.5 | 128.3 |
150:200 kg | 400:500 kg | 176 | 318 | 18.7 | 26.4 | 5.7 | 688.3 | 149.7 |
150:200 kg | 500:600 kg | 8 | 378 | 23.0 | 34.5 | 5.8 | 899.5 | 152.0 |
200:250 kg | 100:200 kg | 3 | 217 | 12.7 | 21.7 | 6.8 | 565.8 | 177.5 |
200:250 kg | 200:300 kg | 171 | 267 | 20.4 | 25.4 | 5.1 | 662.2 | 133.2 |
200:250 kg | 300:400 kg | 838 | 302 | 17.7 | 24.1 | 4.8 | 628.3 | 125.7 |
200:250 kg | 400:500 kg | 64 | 339 | 17.1 | 28.1 | 5.5 | 732.6 | 142.4 |
200:250 kg | 500:600 kg | 7 | 399 | 18.4 | 36.0 | 3.0 | 938.6 | 78.2 |
250:300 kg | 100:200 kg | 17 | 249 | 18.9 | 22.6 | 5.6 | 589.2 | 145.7 |
250:300 kg | 200:300 kg | 319 | 290 | 17.6 | 22.2 | 4.9 | 578.8 | 128.3 |
250:300 kg | 300:400 kg | 238 | 316 | 20.9 | 23.7 | 5.6 | 617.9 | 145.7 |
250:300 kg | 400:500 kg | 7 | 353 | 15.5 | 26.4 | 3.6 | 688.3 | 92.6 |
300:350 kg | 100:200 kg | 25 | 268 | 21.3 | 18.4 | 5.7 | 479.7 | 148.3 |
300:350 kg | 200:300 kg | 137 | 304 | 17.8 | 19.4 | 5.2 | 505.8 | 135.6 |
300:350 kg | 300:400 kg | 30 | 345 | 23.7 | 23.1 | 5.5 | 602.3 | 142.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duwalage, K.I.; Wynn, M.T.; Mengersen, K.; Nyholt, D.; Perrin, D.; Robert, P.F. Predicting Carcass Weight of Grass-Fed Beef Cattle before Slaughter Using Statistical Modelling. Animals 2023, 13, 1968. https://doi.org/10.3390/ani13121968
Duwalage KI, Wynn MT, Mengersen K, Nyholt D, Perrin D, Robert PF. Predicting Carcass Weight of Grass-Fed Beef Cattle before Slaughter Using Statistical Modelling. Animals. 2023; 13(12):1968. https://doi.org/10.3390/ani13121968
Chicago/Turabian StyleDuwalage, Kalpani Ishara, Moe Thandar Wynn, Kerrie Mengersen, Dale Nyholt, Dimitri Perrin, and Paul Frederic Robert. 2023. "Predicting Carcass Weight of Grass-Fed Beef Cattle before Slaughter Using Statistical Modelling" Animals 13, no. 12: 1968. https://doi.org/10.3390/ani13121968
APA StyleDuwalage, K. I., Wynn, M. T., Mengersen, K., Nyholt, D., Perrin, D., & Robert, P. F. (2023). Predicting Carcass Weight of Grass-Fed Beef Cattle before Slaughter Using Statistical Modelling. Animals, 13(12), 1968. https://doi.org/10.3390/ani13121968