Polymorphism at the CSN1S1 Locus and Energy Intake Level Affect Milk Traits and Casein Profiles in Rossa Mediterranea Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Group AA: 9 goats homozygous for strong alleles at the αs1-casein locus;
- Group AF: 12 goats heterozygous for alleles at the αs1-casein locus;
- Group FF: 6 goats homozygous for weak alleles at the αs1-casein locus.
2.1. Feeding Treatment
- H diet: Characterized by an energy intake equal to 150% of energy requirements;
- M diet: Characterized by an energy intake equal to 100% of energy requirements;
- L diet: Characterized by an energy intake equal to 70% of energy requirements.
- −
- Net energy requirements for maintenance (UFL/d) = 0.01 × live weight (kg) + 0.19;
- −
- Net energy requirement for milk production (UFL/d) = milk yield normalized at 3.5% of fat, kg/d × [0.4 + 0.0075 × (fat, g/kg − 35)].
2.2. Milk Production and Samples Collection
2.3. Milk Analysis
2.4. Capillary Zone Electrophoresis (CZE)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pagano, R.I.; Pennisi, P.; Valenti, B.; Lanza, A.; Di Trana, A.; Di Gregorio, P.; De Angelis, A.; Avondo, M. Effect of CSN1S1 genotype and its interaction with diet energy level on milk production and quality in Girgentana goats fed ad libitum. J. Dairy Res. 2010, 77, 245–251. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Di Trana, A.; Di Gregorio, P.; Tornambè, G.; Bellina, V.; Claps, S.; Maggio, G.; Todaro, M. Influence of fresh forage –based diets and αs1-casein (CSN1S1) genotype on nutrient intake and productive, metabolic, and hormonal responses in milking goats. J. Dairy Sci. 2013, 96, 2107–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonanno, A.; Di Grigoli, A.; Montalbano, M.; Bellina, V.; Mazza, F.; Todaro, M. Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αS1-casein synthesis. Eur. Food Res. Technol. 2013, 237, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Toral, P.G.; Shingfield, K.J.; Rouel, J.; Leroux, C.; Bernard, L. Effects of diet and physiological factors on milk fat synthesis, milk fat composition and lipolysis in the goat: A short review. Small Rum. Res. 2014, 122, 31–37. [Google Scholar] [CrossRef]
- Avondo, M.; Pennisi, P.; Lanza, M.; Pagano, R.I.; Valenti, B.; Di Gregorio, P.; De Angelis, A.; Giorgio, D.; Di Trana, A. Effect of the s1-casein genotype and its interaction with diet degradability on milk production, milk quality, metabolic and endocrinal response of Girgentana goats. Small Rum. Res. 2015, 123, 136–141. [Google Scholar] [CrossRef]
- Rahmatalla, S.A.; Arends, D.; Brockmann, G.A. Genetic and protein variants of milk caseins in goats. Front. Genet. 2022, 13, 995349. [Google Scholar] [CrossRef] [PubMed]
- Leduc, A.; Souchet, S.; Gelé, M.; Le Provost, F.; Boutinaud, M. Effect of feed restriction on dairy cow milk production: A review. J. Anim. Sci. 2021, 99, skab130. [Google Scholar] [CrossRef]
- Chilliard, Y.; Rouel, J.; Guillouet, P. Goat α-s1 casein genotype interacts with the effect of extruded linseed feeding on milk fat yield, fatty acid composition and post-milking lipolysis. Anim. Feed Sci. Technol. 2013, 185, 140–149. [Google Scholar] [CrossRef]
- de la Torre Adarve, G.; Ramos Morales, E.; Serradilla Manrique, J.M.; Gil Extremera, F.; Sanz Sampelayo, M.R. Milk production and composition in Malagueña dairy goats. Effect of genotype for synthesis of as1-casein on milk production and its interaction with dietary protein content. J. Dairy Res. 2009, 76, 137–143. [Google Scholar] [CrossRef]
- Sauvant, D.; Giger-Reverdin, S.; Meschy, F. Alimentation des caprins. In Alimentation des Bovins, Ovins et Caprins. Besoins des animaux—Valeurs des Aliments. Tables Inra 2007; Editions Quae: Versailles Cedex, France, 2007; pp. 137–149. [Google Scholar]
- Bowling, A.T.; Stott, M.L.; Bickel, L. Silent blood chimerism in a mare confirmed by DNA marker analysis of hair bulbs. Anim. Genet. 1993, 24, 323–324. [Google Scholar] [CrossRef]
- Jansà Perez, M.; Leroux, C.; Sànchez Bonastre, A.; Martin, P. Occurrence of a LINE sequence in the 3’UTR of the goat asl-casein E-encoding allele associated with a reduced protein synthesis level. Gene 1994, 147, 179–187. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Pappalardo, M.; Pastore, N.; Gallo, D.; Di Gregorio, P.; Masina, P. Identification of the goat CSN l SI F allele by means of PCR-RFLP method. Anim. Genet. 2000, 31, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Ramunno, L.; Cosenza, G.; Pappalardo, M.; Longobardi, E.; Gallo, D.; Pastore, N.; Di Gregorio, P.; Rando, A. Characterization of two new alleles at the goat CSN1S2 locus. Anim. Genet. 2001, 32, 264–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosenza, G.; lllario, R.; Rando, A.; Di Gregorio, P.; Masina, P.; Ramunno, L. Molecular characterization of the goat CSNISI(01) allele. J. Dairy Res. 2003, 70, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.M.L.; Olieman, C.; Schennink, A.; van Valenberg, H.J.F.; Visker, M.H.P.W.; Meuldijk, R.C.R.; van Hooijdonk, A.C.M. Estimation of variation in concentration, phosphorylation and genetic polymorphism of milk proteins using capillary zone electrophoresis. Int. Dairy J. 2008, 18, 548–555. [Google Scholar] [CrossRef]
- Feligini, M.; Frati, S.; Curik, V.C.; Brambilla, A.; Parma, P.; Curik, I.; Greppi, G.F.; Enne, G. Caprine as1-casein polymorphism: Characterisation of A, B, E and F variants by means of various biochemical and molecular techniques. Food Technol. Biotech. 2005, 43, 123–132. [Google Scholar]
- Gomez-Ruiz, J.A.; Miralles, B.; Aguera, P.; Amigo, L. Quantitative determination of alpha (s2)- and alpha (s1)-casein in goat’s milk with different genotypes by capillary electrophoresis. J. Chromatogr. A 2004, 1054, 279–284. [Google Scholar] [CrossRef]
- Recio, I.; Perez-Rodriguez, M.L.; Amigo, L.; Ramos, M. Study of the polymorphism of caprine milk caseins by capillary electrophoresis. J. Dairy Res. 1997, 64, 515–523. [Google Scholar] [CrossRef]
- Recio, I.; Perez-Rodriguez, M.L.; Ramos, M.; Amigo, L. Capillary electrophoretic analysis of genetic variants of milk proteins from different species. J. Chromatogr. A 1997, 768, 47–56. [Google Scholar] [CrossRef]
- Valenti, B.; Pagano, R.I.; Avondo, M. Effect of diet at different energy levels on milk casein composition of Girgentana goats differing in CSN1S1 genotype. Small Rum. Res. 2012, 105, 135–139. [Google Scholar] [CrossRef]
- Avondo, M.; Pagano, R.I.; Guastella, A.M.; Criscione, A.; Di Gloria, M.; Valenti, B.; Piccione, G.; Pennisi, P. Diet selection and milk production and composition in Girgentana goats with different as1-casein genotype. J. Dairy Res. 2009, 76, 202–209. [Google Scholar] [CrossRef]
- Markovic, B.; Markovic, M.; Trivunovic, S.; Mirecki, S.; Antunovic, Z.; Veljic, M. Effects of the α s1-casein genotype on milk yiled and milk composition of Balkan goat in Montenegro. Agricult. Forest. 2018, 64, 5–14. [Google Scholar] [CrossRef]
- Ollier, S.; Chauvet, S.; Martin, P.; Chilliard, Y.; Leroux, C. Goat’s aS1-casein polymorphism affects gene expression profile of lactating mammary gland. Animal 2008, 2, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Billa, P.-A.; Faulconnier, Y.; Ye, T.; Bourdon, C.; Pires, J.A.A.; Leroux, C. Nutrigenomic analyses reveal miRNAs and mRNAs affected by feed restriction in the mammary gland of midlactation dairy cows. PLoS ONE 2012, 16, e0248680. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; d’Angelo, F.; Sevi, A. Focusing on casein gene cluster and protein profile in Garganica goat milk. J. Dairy Res. 2009, 76, 83–89. [Google Scholar] [CrossRef]
- Neveu, C.; Riaublanc, A.; Miranda, G.; Chich, J.F.; Martin, P. Is the apocrine milk secretion process observed in the goat species rooted in the perturbation of the intracellular transport mechanism induced by defective alleles at the αs1-Cn locus? Reprod. Nutr. Dev. 2002, 42, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Song, N.; Chen, Y.; Luo, J.; Huang, L.; Tian, H.; Li, C.; Loor, J.J. Negative regulation of αs1-casein (CSN1S1) improves β-casein content and reduces allergy potential in goat milk. J. Dairy Sci. 2020, 103, 9561–9572. [Google Scholar] [CrossRef]
- Ollier, S.; Robert-Granié, C.; Bernard, L.; Chilliard, Y.; Leroux, C. Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. J. Nutr. 2007, 137, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Tsiplakou, E.; Flemetakis, E.; Kouri, E.-D.; Karalias, G.; Sotirakoglou, K.; Zervas, G. The effect of long-term under- and overfeeding on the expression of six major milk proteins’ genes in the mammary tissue of goats. J. Anim. Physiol. Anim. Nutr. 2016, 100, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Schmidely, P.; Meschy, F.; Tessier, J.; Sauvant, D. Lactation Response and Nitrogen, Calcium, and Phosphorus Utilization of Dairy Goats Differing by the Genotype for αs1-Casein in Milk, and Fed Diets Varying in Crude Protein Concentration. J. Dairy Sci. 2002, 85, 2299–2307. [Google Scholar] [CrossRef] [Green Version]
Ingredients | % As Fed |
Pelleted alfalfa hay | 65.0 |
Maize grain | 15.8 |
Barley grain | 8.2 |
Soybean meal | 3.0 |
Carob pulp | 3.0 |
Maize gluten meal | 3.0 |
Vitamin and mineral premix | 2.0 |
Chemical Composition | |
Dry matter (DM) % | 85.7 |
Crude protein % DM | 15.2 |
Crude fiber % DM | 23.1 |
Neutral detergent insoluble (NDF) % DM | 44.5 |
Ether extract % DM | 2.6 |
Ash % DM | 10.6 |
NFC % DM | 27.1 |
Starch % DM | 19.6 |
UFL | 0.82 |
CSN1S1 Genotype (G) | Energy Intake Level (E) | Significance (p) | SEM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AA | AF | FF | L | M | H | G | E | G × E | ||
Milk yield g/d | 879.8 b | 934.5 b | 673.6 a | 651.5 a | 852.9 b | 1041.0 c | 0.002 | <0.001 | 0.547 | 34.0 |
Fat % | 5.24 b | 4.16 a | 3.80 a | 5.68 c | 4.30 b | 3.61 a | <0.001 | <0.001 | 0.590 | 0.14 |
Protein % | 4.77 b | 3.92 a | 4.08 a | 4.43 | 4.29 | 4.14 | <0.001 | 0.975 | 0.974 | 0.07 |
Lactose % | 4.38 a | 4.62 b | 4.65 b | 4.49 | 4.50 | 4.62 | 0.010 | 0.695 | 0.968 | 0.03 |
Urea mg/dL | 481.6 | 502.6 | 517.7 | 481.1 | 510.3 | 503.2 | 0.311 | 0.992 | 0.650 | 8.78 |
Live weight kg | 40.8 a | 39.4 a | 44.1 b | 39.3 | 41.7 | 42.3 | 0.017 | 0.114 | 0.982 | 0.51 |
Body condition score (BCS) | 2.49 | 2.67 | 2.70 | 2.60 | 2.63 | 2.60 | 0.141 | 0.993 | 0.995 | 0.03 |
Milk efficiency 1 | 1.53 a | 1.42 a | 1.96 b | 1.35 a | 1.54 a | 1.90 b | <0.001 | <0.001 | 0.408 | 0.05 |
CSN1S1 Genotype (G) | Energy Intake Level (E) | Significance (p) | SEM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AA | AF | FF | L | M | H | G | E | G × E | ||
Caseins profile g/kg milk | ||||||||||
Total casein | 24.9 b | 20.4 a | 19.8 a | 21.2 | 22.3 | 21.4 | 0.001 | 0.523 | 0.260 | 0.54 |
αs1-casein | 7.22 c | 3.70 b | 0.67 a | 4.36 | 3.83 | 3.74 | <0.001 | 0.873 | 0.910 | 0.32 |
αs2-casein | 2.38 a | 2.55 b | 3.14 c | 2.48 a | 2.77 b | 2.74 b | <0.001 | 0.023 | 0.034 | 0.05 |
β-casein | 12.7 | 11.8 | 13.4 | 12.1 | 13.1 | 12.4 | 0.052 | 0.511 | 0.090 | 0.29 |
k-casein | 2.53 | 2.29 | 2.59 | 2.31 | 2.61 | 2.45 | 0.164 | 0.285 | 0.421 | 0.06 |
Casein yield g/d | ||||||||||
Total casein | 20.9 c | 19.4 b | 13.3 a | 13.8 a | 18.4 b | 23.0 c | 0.001 | 0.001 | 0.411 | 0.97 |
αs1-casein | 6.09 c | 3.50 b | 0.46 a | 2.82 a | 3.31 a | 4.45 b | <0.001 | 0.006 | 0.027 | 0.36 |
αs2-casein | 2.06 | 2.44 | 2.12 | 1.63 a | 2.30 b | 2.86 c | 0.072 | 0.002 | 0.806 | 0.10 |
β-casein | 10.6 b | 11.3 b | 8.94 a | 7.88 a | 10.7 b | 13.1 c | 0.046 | 0.004 | 0.553 | 0.51 |
k-casein | 2.16 b | 2.15 b | 1.74 a | 1.51 a | 2.12 b | 2.58 c | 0.033 | 0.001 | 0.475 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumino, S.; Di Trana, A.; Valenti, B.; Bordonaro, S.; Claps, S.; Avondo, M.; Di Gregorio, P. Polymorphism at the CSN1S1 Locus and Energy Intake Level Affect Milk Traits and Casein Profiles in Rossa Mediterranea Goats. Animals 2023, 13, 1982. https://doi.org/10.3390/ani13121982
Tumino S, Di Trana A, Valenti B, Bordonaro S, Claps S, Avondo M, Di Gregorio P. Polymorphism at the CSN1S1 Locus and Energy Intake Level Affect Milk Traits and Casein Profiles in Rossa Mediterranea Goats. Animals. 2023; 13(12):1982. https://doi.org/10.3390/ani13121982
Chicago/Turabian StyleTumino, Serena, Adriana Di Trana, Bernardo Valenti, Salvatore Bordonaro, Salvatore Claps, Marcella Avondo, and Paola Di Gregorio. 2023. "Polymorphism at the CSN1S1 Locus and Energy Intake Level Affect Milk Traits and Casein Profiles in Rossa Mediterranea Goats" Animals 13, no. 12: 1982. https://doi.org/10.3390/ani13121982
APA StyleTumino, S., Di Trana, A., Valenti, B., Bordonaro, S., Claps, S., Avondo, M., & Di Gregorio, P. (2023). Polymorphism at the CSN1S1 Locus and Energy Intake Level Affect Milk Traits and Casein Profiles in Rossa Mediterranea Goats. Animals, 13(12), 1982. https://doi.org/10.3390/ani13121982