Effect of Dietary Ensiled Olive Cake Supplementation on Performance and Meat Quality of Apulo-Calabrese Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Diets, Animals and Experimental Design
2.3. Chemical Analyses of Experimental Diets
2.4. Slaughter, Carcass Characteristics and Meat Sampling
2.5. Colour, Physical and Proximate Analyses for Meat Samples
2.6. Fatty Acids Analysis
2.7. Statistical Analysis
3. Results
3.1. Animal Performance and Meat Quality Measurements
3.2. Fatty Acid Composition
3.3. PCA Analysis
4. Discussion
4.1. Animal Performances and Meat Quality Measurements
4.2. Meat Fatty Acid Composition
4.3. PCA Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Pfaltzgraff, L.A.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food waste biomass: A resource for high-value chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Elferink, E.V.; Nonhebel, S.; Moll, H.C. Feeding livestock food residue and the consequences for the environmental impact of meat. J. Clean. Prod. 2008, 16, 1227–1233. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A review on the use of agro-industrial CO-products in animals’ diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- ISTAT Institute National of Statistics. Available online: http://dati.istat.it/viewhtml.aspx?il=blank&vh=0000&vf=0&vcq=1100&graph=0&view-metadata=1&lang=it&QueryId=33654&metadata=DCSP_COLTIVAZIONI# (accessed on 27 October 2022).
- Alcaide, E.M.; Nefzaoui, A. Recycling of olive oil by-products: Possibilities of utilization in animal nutrition. Int. Biodeterior. Biodegrad. 1996, 38, 227–235. [Google Scholar] [CrossRef]
- Joven, M.; Pintos, E.; Latorre, M.A.; Suárez-Belloch, J.; Guada, J.A.; Fondevila, M. Effect of replacing barley by increasing levels of olive cake in the diet of finishing pigs: Growth performances, digestibility, carcass, meat and fat quality. Anim. Feed Sci. Technol. 2014, 197, 185–193. [Google Scholar] [CrossRef]
- Liotta, L.; Chiofalo, V.; Lo Presti, V.; Chiofalo, B. In vivo performances, carcass traits, and meat quality of pigs fed olive cake processing waste. Animals 2019, 9, 1155. [Google Scholar] [CrossRef] [Green Version]
- Estaún, J.; Dosil, J.; Al Alami, A.; Gimeno, A.; De Vega, A. Effects of including olive cake in the diet on performance and rumen function of beef cattle. Anim. Prod. Sci. 2014, 54, 1817–1821. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Neofytou, M.C.; Simitzis, P.G. Application of olive by-products in livestock with emphasis on small ruminants: Implications on rumen function, growth performance, milk and meat quality. Animals 2021, 11, 531. [Google Scholar] [CrossRef]
- Caparra, P.; Foti, F.; Cilione, C.; Scerra, M.; Vottari, G.; Chies, L. Olive cake, citrus pulp and wheat straw silage as an ingredient in lamb diets: 1. effects on growth and carcass characteristics. Ital. J. Anim. Sci. 2003, 2, S488–S490. [Google Scholar]
- Herrero-Encinas, J.; Blanch, M.; Pastor, J.; Mereu, A.; Ipharraguerre, I.; Menoyo, D. Effects of a bioactive olive pomace extract from olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci. 2020, 99, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Mourvaki, E.; Cardinali, R.; Servili, M.; Sebastiani, B.; Ruggeri, S.; Castellini, C. Effect of dietary supplementation with olive pomaces on the performance and meat quality of growing rabbits. Meat Sci. 2012, 92, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, P.; Calvet, S.; García-Rebollar, P.; Blas, C.; Jiménez-Belenguer, A.I.; Hernández, P.; Cerisuelo, A. Partially defatted olive cake in finishing pig diets: Implications on performance, faecal microbiota, carcass quality, slurry composition and gas emission. Animal 2020, 14, 426–434. [Google Scholar] [CrossRef]
- Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of olive cake for ewe feeding effect on milk yield and composition. Small Rumin. Res. 2004, 55, 169–176. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabró, S.; Liotta, L.; Musco, N.; Di Rosa, A.R.; Cutrignelli, M.I.; Chiofalo, B. In vitro fermentation and chemical characteristics of Mediterranean by-products for swine nutrition. Animals 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Mas, G.; Lavall, M.; Coll, D.; Roca, R.; Diaz, I.; Gispert, M.; Realini, C.E. Carcass and meat quality characteristics and fatty acid composition of tissues from Pietrain-crossed barrows and gilts fed an elevated monounsaturated fat diet. Meat Sci. 2010, 85, 707–714. [Google Scholar] [CrossRef]
- Leite, A.; Domínguez, R.; Vasconcelos, L.; Ferreira, I.; Pereira, E.; Pinheiro, V.; Teixeria, A. Can the introduction of different olive cakes affect the carcass, meat and fat quality of Bísaro pork? Foods 2022, 11, 1650. [Google Scholar] [CrossRef]
- Rowghani, E.; Zamiri, M.J.; Seradj, A.R. The chemical composition, rumen degradability, in vitro gas production, energy content and digestibility of olive cake ensiled with additives. Iran. J. Vet. Res. 2008, 9, 213–220. [Google Scholar]
- Fatma, I.; Hadhoud, M.M.; Shaaban, A.M.; Abd El Tawab, M.S.A.; Khattab, H.M.; Ebeid, G.A.; Abdo, M.M. Olive cake silage as alternative roughage for ruminant: Effect on rumen degradability and in vitro gas production. Egypt. J. Nutr. Feed. 2020, 23, 265–272. [Google Scholar]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance. Off. J. Eur. Union 2010, 276, 33–79. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0063&from=IT (accessed on 21 February 2023).
- Micari, P.; Racinaro, L.; Sarullo, V.; Carpino, S.; Marzullo, A. Zoometric rates, reproductive and productive parameters of the Apulo-calabrian swine, obtained inbreeding certified by ANAS Calabria. Ital. J. Anim. Sci. 2009, 8, 519–521. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gray, I.K.; Rumsby, M.G.; Hawke, J.C. The variations in linolenic acid and galactolipid levels in Graminaceae species with age of tissue and light environment. Phytochemistry 1967, 6, 107–113. [Google Scholar] [CrossRef]
- Council Regulation (EC) No 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing (Text with EEA relevance). Off. J. Eur. Union 2009, 303, 1–30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1099&from=IT (accessed on 21 February 2023).
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- International Union of Pure and Applied Chemistry. Commission on Oils, Fats and Derivatives. In Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th ed.; Paquot, C., Hautfenne, A., Eds.; Blackwell Scientific: Oxford, UK, 1987. [Google Scholar]
- Cifuni, G.F.; Contò, M.; Failla, S. Physical and nutritional properties of buffalo meat finished on hay or maize silage-based diets. Anim. Sci. J. 2014, 85, 405–410. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Białek, M.; Karpińska, M.; Czauderna, M. Enrichment of lamb rations with carnosic acid and seleno-compounds affects the content of selected lipids and tocopherols in the pancreas. J. Anim. Feed Sci. 2022, 31, 161–174. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® Users Guide; Version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017. [Google Scholar]
- García-Casco, J.M.; Muñoz, M.; Martínez-Torres, J.M.; López-García, A.; Fernández-Barroso, M.A.; González-Sánchez, E. Alternative feeding in Iberian pigs during growth period: Incorporation of olive cake in a dry or wet (silage). Agric. Conspec. Sci. 2017, 82, 147–150. [Google Scholar]
- Aboagye, G.; Zappaterra, M.; Pasini, F.; Dall’Olio, S.; Davoli, R.; Costa, L.N. Fatty acid composition of the intramuscular fat in the longissimus thoracis muscle of Apulo-Calabrese and crossbreed pigs. Livest. Sci. 2020, 232, 103878. [Google Scholar] [CrossRef]
- Isabel, B.; Rey, A.; Lopez-Bote, C.; Menoyo, D.; Daza, A. Performance, fatty acids digestibility, carcass and muscle composition of pigs fed diets enriched with vitamin E and differing in their MUFA/PUFA ratio. J. Anim. Feed Sci. 2004, 13, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef] [PubMed]
- González, E.; Hernández-Matamoros, A.; Tejeda, J.F. Two by-products of the olive oil extraction industry as oleic acid supplement source for Iberian pigs: Effect on the meat’s chemical composition and induced lipoperoxidation. J. Sci. Food Agric. 2012, 92, 2543–2551. [Google Scholar] [CrossRef]
- Serra, A.; Conte, G.; Giovannetti, M.; Casarosa, L.; Agnolucci, M.; Ciucci, F.; Mele, M. Olive pomace in diet limits lipid peroxidation of sausages from Cinta Senese swine. Eur. J Lipid Sci. Technol. 2018, 120, 1700236. [Google Scholar] [CrossRef]
- Warmants, N.; Van Oeckel, M.J.; Boucqué, C.V. Incorporation of dietary polyunsaturated fatty acids in pork tissues and its implications for quality of end products. Meat Sci. 1996, 44, 125–144. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; 149p. Available online: https://apps.who.int/iris/handle/10665/42665 (accessed on 12 December 2022).
- Liu, H.; Chen, J. Nutritional indices for assessing fatty acids: A mini review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Oksbjerg, N.; Strudsholm, K.; Kinnndahl, G.; Hermansen, J.E. Meat quality of fully or partly outdoor reared pigs in organic production. Acta Agric. Scand. A Anim. Sci. 2005, 55, 106–112. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Human requirement for N-3 polyunsaturated fatty acids. Poultry Sci. 2000, 79, 961–970. [Google Scholar] [CrossRef]
- Franco, D.; Vazquez, J.A.; Lorenzo, J.M. Growth performance, carcass and meat quality of the Celta pig crossbred with Duroc and Landrace genotypes. Meat Sci. 2014, 96, 195–202. [Google Scholar] [CrossRef]
- Zumbo, A.; Sutera, A.M.; Tardiolo, G.; D’Alessandro, E. Sicilian Black pig: An overview. Animals 2020, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- Woloszyn, J.; Haraf, G.; Okruszek, A.; Werenska, M.; Zuzanna Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poultry Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
Diet 1 | |||
---|---|---|---|
C | OC20 | OC40 | |
Barley grain | 29.5 | 26.5 | 16.5 |
Maize grain | 29.5 | 26.5 | 16.5 |
Wheat bran | 20.0 | - | - |
Faba bean | 20.0 | 26.0 | 26.0 |
Olive cake silage | - | 20.0 | 40.0 |
Vitamin-mineral premix 2 | 1.0 | 1.0 | 1.0 |
Chemical composition | |||
Dry matter (DM), g/kg wet weight | 901 | 810 | 713 |
Crude protein, g/kg DM | 162 | 154 | 155 |
Ether extract, g/kg DM | 27 | 40 | 54 |
Ash, g/kg DM | 32 | 34 | 37 |
NDF, g/kg DM | 255 | 270 | 341 |
ADF, g/kg DM | 94 | 151 | 218 |
ADL, g/kg DM | 15 | 33 | 56 |
Gross energy, MJ/kg DM | 18.76 | 18.91 | 18.89 |
Fatty acids (g/100 g of fatty acids) | |||
C16:0 | 15.92 | 14.49 | 13.69 |
C18:0 | 2.02 | 2.09 | 2.23 |
C18:1 n-9 | 20.72 | 31.75 | 42.25 |
C18:2 n-6 | 56.37 | 47.45 | 37.48 |
C18:3 n-3 | 3.75 | 3.19 | 2.52 |
Others | 1.22 | 1.03 | 1.83 |
Diets 1 | |||||
---|---|---|---|---|---|
C | OC20 | OC40 | S.E.M. 5 | p-Value | |
Number of pigs | 10 | 10 | 10 | ||
Final body weight, kg | 145.10 | 146.33 | 144.08 | 5.781 | 0.945 |
ADG 2 (g/d) | 412.50 | 421.50 | 402.83 | 9.171 | 0.758 |
Total DMI 3, kg/d | 3.35 | 3.07 | 2.98 | 0.203 | 0.546 |
FCR 4, g DMI/g ADG | 8.12 | 7.52 | 7.40 | 0.567 | 0.439 |
Carcass weight, kg | 120.08 | 121.83 | 119.16 | 8.330 | 0.751 |
Dressing percentage, % | 82.68 | 83.24 | 82.71 | 1.021 | 0.683 |
Diets 1 | |||||
---|---|---|---|---|---|
C | OC20 | OC40 | S.E.M. 2 | p-Value | |
Moisture | 74.083 | 74.013 | 73.199 | 0.387 | 0.232 |
Protein | 20.663 | 21.149 | 20.928 | 0.223 | 0.334 |
Fat | 1.860 | 1.905 | 2.239 | 0.407 | 0.774 |
pH48 3 | 5.766 | 5.800 | 5.850 | 0.066 | 0.682 |
Lightness (L*) | 49.316 | 49.203 | 48.277 | 1.864 | 0.967 |
Redness (a*) | 3.905 | 3.965 | 6.081 | 0.868 | 0.164 |
Yellowness (b*) | 5.854 | 6.198 | 7.249 | 0.715 | 0.296 |
Diets 1 | |||||
---|---|---|---|---|---|
C | OC20 | OC40 | S.E.M. 2 | p-Value | |
C10:0 | 1.230 | 1.527 | 1.776 | 0.601 | 0.068 |
C12:0 | 1.019 B | 1.281 A | 1.325 A | 0.057 | 0.0008 |
C14:0 | 17.153 B | 23.007 A | 23.908 A | 0.877 | 0.0001 |
C14:1n-9 | 0.509 d | 0.315 e | 0.282 e | 0.050 | 0.012 |
C15:0 | 1.254 a | 1.004 b | 0.833 b | 0.092 | 0.019 |
C16:0 | 400.47 | 427.16 | 427.35 | 17.52 | 0.562 |
C16:1 t | 5.372 | 6.021 | 5.564 | 0.363 | 0.304 |
C16:1n-9 | 57.987 B | 72.937 A | 72.027 A | 2.260 | 0.0004 |
C17:0 | 5.423 | 4.877 | 4.382 | 0.482 | 0.272 |
C17:1 | 4.136 | 4.493 | 3.702 | 0.536 | 0.579 |
C18:0 | 207.96 | 203.21 | 195.622 | 8.958 | 0.238 |
C18:1t11 | 3.288 | 3.167 | 3.863 | 0.497 | 0.466 |
C18:1 n-9 | 682.355 B | 844.561 A | 921.361 A | 23.283 | 0.0001 |
C18:1 n-7 | 75.122 | 82.937 | 85.988 | 2.816 | 0.057 |
C18:2t9t12 | 2.798 b | 3.363 ab | 3.501 a | 0.191 | 0.047 |
C18:2 n-6 | 349.686 A | 244.785 B | 209.244 B | 14.587 | 0.0001 |
C20:0 | 1.819 | 2.212 | 2.351 | 0.165 | 0.097 |
C18:3n-6 | 2.144 d | 1.454 e | 1.202 e | 0.167 | 0.003 |
C20:1 | 1.380 | 1.321 | 1.365 | 0.194 | 0.869 |
C18:3 n-3 | 12.521 | 12,046 | 12.533 | 0.654 | 0.795 |
C21:0 | 4.347 b | 5.413 ab | 6.627 a | 0.580 | 0.044 |
C20:2 n-6 | 13.847 e | 17.960 de | 22.045 d | 1.422 | 0.004 |
C22:0 | 1.833 | 1.855 | 1.892 | 0.291 | 0.913 |
C20:3 n-6 | 13.162 A | 9.927 B | 9.653 B | 0.479 | 0.0002 |
C20:3 n-3 | 13.949 A | 7.960 B | 6.809 B | 1.177 | 0.0013 |
C20:4 n-6 | 132.431 A | 61.705 B | 41.953 B | 13.041 | 0.0005 |
C20:5 n-3 | 6.197 A | 4.649 B | 4.526 B | 0.253 | 0.0004 |
C22:2 n-6 | 2.094 | 1.261 | 2.145 | 0.699 | 0.614 |
C22:4 n-6 | 16.075 | 6.528 | 5.342 | 3.538 | 0.063 |
C22:5 n-3 | 18.682 | 14.282 | 8.658 | 3.012 | 0.093 |
C22:6 n-3 | 12.994 A | 6.624 B | 4.654 B | 1.314 | 0.0011 |
n-3 3 | 63.293 d | 45.561 e | 37.183 e | 4.368 | 0.0019 |
n-6 4 | 516.592 A | 325.662 B | 269.539 B | 27.928 | 0.0001 |
n-6/n-3 | 8.161 | 7.147 | 7.249 | 0.388 | 0.309 |
SFA 5 | 642.508 | 671.547 | 666.066 | 25.662 | 0.842 |
MUFA 6 | 830.149 B | 1015.552 A | 1094.152 A | 25.261 | 0.0001 |
PUFA 7 | 596.530 A | 392.544 B | 332.265 B | 30.609 | 0.0001 |
P/S 8 | 0.928 d | 0.584 e | 0.499 e | 0.079 | 0.0031 |
AI 9 | 0.333 | 0.375 | 0.374 | 0.019 | 0.263 |
TI 10 | 0.746 | 0.826 | 0.826 | 0.047 | 0.409 |
h/H 11 | 3.163 | 2.864 | 2.892 | 0.209 | 0.646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caparra, P.; Chies, L.; Scerra, M.; Foti, F.; Bognanno, M.; Cilione, C.; De Caria, P.; Claps, S.; Cifuni, G.F. Effect of Dietary Ensiled Olive Cake Supplementation on Performance and Meat Quality of Apulo-Calabrese Pigs. Animals 2023, 13, 2022. https://doi.org/10.3390/ani13122022
Caparra P, Chies L, Scerra M, Foti F, Bognanno M, Cilione C, De Caria P, Claps S, Cifuni GF. Effect of Dietary Ensiled Olive Cake Supplementation on Performance and Meat Quality of Apulo-Calabrese Pigs. Animals. 2023; 13(12):2022. https://doi.org/10.3390/ani13122022
Chicago/Turabian StyleCaparra, Pasquale, Luigi Chies, Manuel Scerra, Francesco Foti, Matteo Bognanno, Caterina Cilione, Paolo De Caria, Salvatore Claps, and Giulia Francesca Cifuni. 2023. "Effect of Dietary Ensiled Olive Cake Supplementation on Performance and Meat Quality of Apulo-Calabrese Pigs" Animals 13, no. 12: 2022. https://doi.org/10.3390/ani13122022
APA StyleCaparra, P., Chies, L., Scerra, M., Foti, F., Bognanno, M., Cilione, C., De Caria, P., Claps, S., & Cifuni, G. F. (2023). Effect of Dietary Ensiled Olive Cake Supplementation on Performance and Meat Quality of Apulo-Calabrese Pigs. Animals, 13(12), 2022. https://doi.org/10.3390/ani13122022