Effects of Dietary Enrichment with Olive Cake on the Thyroid and Adrenocortical Responses in Growing Beef Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Experimental Design
2.2. Blood Samples and Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
- (1)
- The absence of a significant effect from the dietary inclusion of OC on the concentrations of TSH, THs, and cortisol was noted;
- (2)
- A significant effect for time was recorded with increasing concentrations of T3, T4, fT4, and cortisol, suggesting that demand from the animal on its energy reserves increases so as to meet the needs of increased metabolism due to growth;
- (3)
- A sex-related difference was recorded for cortisol concentration but not for TSH or THs, with higher values in heifers than in bulls.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiofalo, B.; Di Rosa, A.R.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Effect of Supplementation of Herd Diet with Olive Cake on the Composition Profile of Milk and on the Composition, Quality and Sensory Profile of Cheeses Made Therefrom. Animals 2020, 10, 977. [Google Scholar] [CrossRef]
- Chiofalo, V.; Liotta, L.; Lo Presti, V.; Gresta, F.; Di Rosa, A.R.; Chiofalo, B. Effect of Dietary Olive Cake Supplementation on Performance, Carcass Characteristics, and Meat Quality of Beef Cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef]
- Neofytou, M.C.; Miltiadou, D.; Sfakianaki, E.; Constantinou, C.; Symeou, S.; Sparaggis, D.; Hager-Theodorides, A.L.; Tzamaloukas, O. The use of ensiled olive cake in the diets of Friesian cows increases beneficial fatty acids in milk and Halloumi cheese and alters the expression of SREBF1 in adipose tissue. J. Dairy Sci. 2020, 103, 8998–9011. [Google Scholar] [CrossRef]
- Kotsampasi, Β.; Bampidis, V.A.; Tsiaousi, A.; Christodoulou, C.; Petrotos, K.; Amvrosiadis, I.; Fragioudakis, N.; Christodoulou, V. Effects of dietary partly destoned exhausted olive cake supplementation on performance, carcass characteristics and meat quality of growing lambs. Small Rumin. Res. 2017, 156, 33–41. [Google Scholar] [CrossRef]
- Ismea. Tendenze e Dinamiche Recenti. Olio D’oliva—Settembre 2022; Ismea: Roma, Italy, 2022. [Google Scholar]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Palazzo, F.; Grotta, L.; Martino, G. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. J. Dairy Sci. 2017, 100, 8658–8669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vastolo, A.; Calabró, A.; Liotta, L.; Musco, N.; Di Rosa, A.R.; Cutrignelli, M.I.; Chiofalo, B. In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition. Animals 2019, 9, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, T.; McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ 2022, 376, o676. [Google Scholar] [CrossRef] [PubMed]
- van Niekerk, J.K.; Fischer-Tlustos, A.J.; Wilms, J.N.; Hare, K.S.; Welboren, A.C.; Lopez, A.J.; Yohe, T.T.; Cangiano, L.R.; Leal, L.N.; Steele, M.A. ADSA Foundation Scholar Award: New frontiers in calf and heifer nutrition-From conception to puberty. J. Dairy Sci. 2021, 104, 8341–8362. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, A.J.; Zanton, G.I.; Lascano, G.J.; Jones, C.M. A 100-Year Review: A century of dairy heifer research. J. Dairy Sci. 2017, 100, 10173–10188. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.-H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Foti, P.; Pino, A.; Romeo, F.V.; Vaccalluzzo, A.; Caggia, C.; Randazzo, C.L. Olive Pomace and Pâté Olive Cake as Suitable Ingredients for Food and Feed. Microorganisms 2022, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- De Santis, S.; Cariello, M.; Piccinin, E.; Sabbà, C.; Moschetta, A. Extra Virgin Olive Oil: Lesson from Nutrigenomics. Nutrients 2019, 11, 2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, K.-L.; Lumintang, J.N.; Chin, K.-Y. Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review. Nutrients 2021, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Ingole, S.D.; Deshmukh, B.T.; Nagvekar, A.S.; Bharucha, S.V. Serum Profile of Thyroid Hormones from Birth to Puberty in Buffalo Calves and Heifers. J. Buffalo Sci. 2012, 1, 39–49. [Google Scholar] [CrossRef]
- Medica, P.; Cravana, C.; Ferlazzo, A.M.; Fazio, E. Age-related functional changes of total thyroid hormones and glycosaminoglycans in growing calves. Vet. World 2019, 13, 681–686. [Google Scholar] [CrossRef] [Green Version]
- McAninch, E.A.; Bianco, A.C. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. N. Y. Acad. Sci. 2014, 1311, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Pałkowska-Goździk, E.; Lachowicz, K.; Rosołowska-Huszcz, D. Effects of Dietary Protein on Thyroid Axis Activity. Nutrients 2017, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Campanile, G.; Baruselli, P.S.; Vecchio, D.; Prandi, A.; Neglia, G.; Carvalho, N.A.T.; Sales, J.N.S.; Gasparrini, B.; D’Occhio, M.J. Growth, metabolic status and ovarian function in buffalo (Bubalus bubalis) heifers fed a low energy or high energy diet. Anim. Reprod. Sci. 2010, 122, 74–81. [Google Scholar] [CrossRef]
- Pearlmutter, P.; DeRose, G.; Samson, C.; Linehan, N.; Cen, Y.; Begdache, L.; Won, D.; Koh, A. Sweat and saliva cortisol response to stress and nutrition factors. Sci. Rep. 2020, 10, 19050. [Google Scholar] [CrossRef]
- Marques, R.S.; Bohnert, D.W.; de Sousa, O.A.; Brandão, A.P.; Schumaher, T.F.; Schubach, K.M.; Vilela, M.P.; Rett, B.; Cooke, R.F. Impact of 24-h feed, water, or feed and water deprivation on feed intake, metabolic, and inflammatory responses in beef heifers. J. Anim. Sci. 2019, 97, 398–406. [Google Scholar] [CrossRef]
- Silva, G.M.; Poore, M.H.; Ranches, J.; Santos, G.S.; Moriel, P. Effects of gradual reduction in frequency of energy supplementation on growth and immunity of beef steers. J. Anim. Sci. 2018, 96, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemmens, S.G.; Born, J.M.; Martens, E.A.; Martens, M.J.; Westerterp-Plantenga, M.S. Influence of consumption of a high-protein vs. high-carbohydrate meal on the physiological cortisol and psychological mood response in men and women. PLoS ONE 2011, 6, e16826. [Google Scholar] [CrossRef]
- Vicennati, V.; Ceroni, L.; Gagliardi, L.; Gambineri, A.; Pasquali, R. Comment: Response of the hypothalamic-pituitary-adrenocortical axis to high-protein/fat and high-carbohydrate meals in women with different obesity phenotypes. J. Clin. Endocrinol. Metab. 2002, 87, 3984–3988. [Google Scholar] [CrossRef] [PubMed]
- Stimson, R.H.; Johnstone, A.M.; Homer, N.Z.M.; Wake, D.J.; Morton, N.M.; Andrew, R.; Lobley, G.E.; Walker, B.R. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J. Clin. Endocrinol. Metab. 2007, 92, 4480–4484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, C.; Hallschmid, M.; Scheibner, J.; Niemeyer, D.; Schultes, B.; Merl, V.; Fehm, H.L.; Born, J.; Kern, W. Gut protein uptake and mechanisms of meal-induced cortisol release. J. Clin. Endocrinol. Metab. 2005, 90, 1692–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, M.; Gaudichon, C.; Martin, A.; Morens, C.; Mathé, V.; Tomé, D.; Huneau, J.-F. A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R934–R942. [Google Scholar] [CrossRef]
- Martens, M.J.I.; Rutters, F.; Lemmens, S.G.T.; Born, J.M.; Westerterp-Plantenga, M.S. Effects of single macronutrients on serum cortisol concentrations in normal weight men. Physiol. Behav. 2010, 101, 563–567. [Google Scholar] [CrossRef]
- Bionda, A.; Lopreiato, V.; Crepaldi, P.; Chiofalo, V.; Fazio, E.; Oteri, M.; Amato, A.; Liotta, L. Diet supplemented with olive cake as a model of circular economy: Metabolic response in beef cattle. Front. Sustain. Food Syst. 2022, 6, 1077363. [Google Scholar] [CrossRef]
- EMEA VICH GL9: Good Clinical Practice 2000. pp. 1–27. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl9-good-clinical-practices-step-7_en.pdf (accessed on 25 May 2023).
- Todini, L. Thyroid hormones in small ruminants: Effects of endogenous, environmental and nutritional factors. Animal 2007, 1, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.R.; Nixon, D.A.; Akasha, M.A. Total and free thyroxine and triiodothyronine in blood serum of mammals. Comp. Biochem. Physiol. A Comp. Physiol. 1988, 89, 401–404. [Google Scholar] [CrossRef]
- Mutinati, M.; Rizzo, A.; Sciorsci, R.L. Cystic ovarian follicles and thyroid activity in the dairy cow. Anim. Reprod. Sci. 2013, 138, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Nixon, D.A.; Akasha, M.A.; Anderson, R.R. Free and total thyroid hormones in serum of Holstein cows. J. Dairy Sci. 1988, 71, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Paulíková, I.; Seidel, H.; Nagy, O.; Tóthová, C.; Konvičná, J.; Kadaši, M.; Kováč, G. Thyroid Hormones, Insulin, Body Fat, and Blood Biochemistry Indices in Dairy Cows During the Reproduction/Production Cycle. Folia Vet. 2017, 61, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Razavi, S.M.; Moghaddas, B.; Rakhshande, E.; Nazifi, S. Bovine Theileriosis: Effects on the Status of Thyroid Hormones, Homocystein, Serum Lipids and Lipoproteins. Res. J. Parasitol. 2015, 10, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Khang, D.N.; Wiktorsson, H. Effects of fresh cassava tops on rumen environment parameters, thyroid gland hormones and liver enzymes of local yellow cattle fed urea-treated fresh rice straw. Trop. Anim. Health Prod. 2004, 36, 751–762. [Google Scholar] [CrossRef]
- Papas, A.; Ingalls, J.R.; Campbell, L.D. Studies on the effects of rapeseed meal on thyroid status of cattle, glucosinolate and iodine content of milk and other parameters. J. Nutr. 1979, 109, 1129–1139. [Google Scholar] [CrossRef]
- Romo, G.A.; Elsasser, T.H.; Kahl, S.; Erdman, R.A.; Casper, D.P. Dietary fatty acids modulate hormone repsonses in lactating cows: Mechanistic role for 5′-deiodinase activity in tissue. Domest. Anim. Endocrinol. 1997, 14, 409–420. [Google Scholar] [CrossRef]
- Wrenn, T.R.; Bitman, J.; McDonough, F.E.; Weyant, J.R.; Wood, D.L. Feeding Cholesterol and Tallow in Liquid Diets to Veal Calves. J. Dairy Sci. 1980, 63, 1403–1411. [Google Scholar] [CrossRef]
- Reist, M.; Erdin, D.; von Euw, D.; Tschuemperlin, K.; Leuenberger, H.; Delavaud, C.; Chilliard, Y.; Hammon, H.M.; Kuenzi, N.; Blum, J.W. Concentrate feeding strategy in lactating dairy cows: Metabolic and endocrine changes with emphasis on leptin. J. Dairy Sci. 2003, 86, 1690–1706. [Google Scholar] [CrossRef] [Green Version]
- Kahl, S.; Bitman, J. Relation of plasma thyroxine and triiodothyronine to body weight in growing male and female Holstein cattle. J. Dairy Sci. 1983, 66, 2386–2390. [Google Scholar] [CrossRef]
- Fazio, E.; Medica, P.; Cravana, C.; Messineo, C.; Ferlazzo, A. Total and free iodothyronine levels of growing thoroughbred foals: Effects of weaning and gender. Livest. Sci. 2007, 110, 207–213. [Google Scholar] [CrossRef]
- Rumsey, T.S.; Kahl, S.; Norton, S.A.; Eisemann, J.; Elsasser, T.H.; Hammond, A.C.; Tyrrell, H.F.; Bitman, J. Evidence that bovine growth hormone treatment increases the rate of extrathyroidal 5’-monodeiodinase activity in cattle. Domest. Anim. Endocrinol. 1990, 7, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Luongo, C.; Dentice, M.; Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 2019, 15, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.J.; Solomon, D.H.; Chopra, U.; Wu, S.Y.; Fisher, D.A.; Nakamura, Y. Pathways of metabolism of thyroid hormones. Recent Prog. Horm. Res. 1978, 34, 521–567. [Google Scholar] [CrossRef]
- Liotta, L.; Bionda, A.; La Fauci, D.; Quartuccio, M.; Visalli, R.; Fazio, E. Steroid hormonal endpoints in goats carrying single or twin fetuses reared in semi-extensive systems. Arch. Anim. Breed. 2021, 64, 467–474. [Google Scholar] [CrossRef]
- Liotta, L.; Bionda, A.; Quartuccio, M.; De Nardo, F.; Visalli, R.; Fazio, E. Thyroid and lipidic profiles in nicastrese goats (Capra hircus) during pregnancy and postpartum period. Animals 2021, 11, 2386. [Google Scholar] [CrossRef]
- Fazio, E.; Bionda, A.; Chiofalo, V.; Crepaldi, P.; Lopreiato, V.; Medica, P.; Liotta, L. Adaptive Responses of Thyroid Hormones, Insulin, and Glucose during Pregnancy and Lactation in Dairy Cows. Animals 2022, 12, 1395. [Google Scholar] [CrossRef]
- Fazio, E.; Medica, P.; Cravana, C.; Ferlazzo, A. Total and free iodothyronines profile in the donkey (Equus asinus) over a 12-month period. Acta Vet. Brno. 2012, 81, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Fazio, E.; Medica, P.; Cravana, C.; Bruschetta, G.; Ferlazzo, A. Seasonal thyroid and lipid profiles in Thoroughbred pregnant and nonpregnant mares (Equus caballus). Theriogenology 2016, 85, 1582–1589. [Google Scholar] [CrossRef]
- Hewagalamulage, S.D.; Lee, T.K.; Clarke, I.J.; Henry, B.A. Stress, cortisol, and obesity: A role for cortisol responsiveness in identifying individuals prone to obesity. Domest. Anim. Endocrinol. 2016, 56, S112–S120. [Google Scholar] [CrossRef]
- Lincoln, G.A.; Rhind, S.M.; Pompolo, S.; Clarke, I.J. Hypothalamic control of photoperiod-induced cycles in food intake, body weight, and metabolic hormones in rams. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R76–R90. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.J.; Tilbrook, A.J.; Turner, A.I.; Doughton, B.W.; Goding, J.W. Sex, fat and the tilt of the earth: Effects of sex and season on the feeding response to centrally administered leptin in sheep. Endocrinology 2001, 142, 2725–2758. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.J. Sex and season are major determinants of voluntary food intake in sheep. Reprod. Fertil. Dev. 2001, 13, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Fried, S.K. The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes. Int. J. Obes. 2014, 38, 1228–1233. [Google Scholar] [CrossRef] [Green Version]
- Peckett, A.J.; Wright, D.C.; Riddell, M.C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 2011, 60, 1500–1510. [Google Scholar] [CrossRef]
- Lee, T.K.; Clarke, I.J.; St John, J.; Young, I.R.; Leury, B.L.; Rao, A.; Andrews, Z.B.; Henry, B.A. High cortisol responses identify propensity for obesity that is linked to thermogenesis in skeletal muscle. FASEB J. 2014, 28, 35–44. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [Green Version]
- Sartin, J.L.; Whitlock, B.K.; Daniel, J.A. Triennial Growth Symposium: Neural regulation of feed intake: Modification by hormones, fasting, and disease. J. Anim. Sci. 2011, 89, 1991–2003. [Google Scholar] [CrossRef]
- Kelly, A.K.; Earley, B.; McGee, M.; Fahey, A.G.; Kenny, D.A. Endocrine and hematological responses of beef heifers divergently ranked for residual feed intake following a bovine corticotropin-releasing hormone challenge. J. Anim. Sci. 2016, 94, 1703–1711. [Google Scholar] [CrossRef]
- Swali, A.; Cheng, Z.; Bourne, N.; Wathes, D.C. Metabolic traits affecting growth rates of pre-pubertal calves and their relationship with subsequent survival. Domest. Anim. Endocrinol. 2008, 35, 300–313. [Google Scholar] [CrossRef]
- Arthington, J.D.; Eichert, S.D.; Kunkle, W.E.; Martin, F.G. Effect of transportation and commingling on the acute-phase protein response, growth, and feed intake of newly weaned beef calves. J. Anim. Sci. 2003, 81, 1120–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.A.; Arthington, J.D.; Chase, C.C. Early weaning alters the acute-phase reaction to an endotoxin challenge in beef calves. J. Anim. Sci. 2009, 87, 4167–4172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henricks, D.M.; Cooper, J.W.; Spitzer, J.C.; Grimes, L.W. Sex differences in plasma cortisol and growth in the bovine. J. Anim. Sci. 1984, 59, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.A.; Burdick Sanchez, N.C.; Hulbert, L.E.; Ballou, M.A.; Dailey, J.W.; Caldwell, L.C.; Vann, R.C.; Welsh, T.H.; Randel, R.D. Sexually dimorphic innate immunological responses of pre-pubertal Brahman cattle following an intravenous lipopolysaccharide challenge. Vet. Immunol. Immunopathol. 2015, 166, 108–115. [Google Scholar] [CrossRef] [PubMed]
CTR | L-OC | H-OC | |
---|---|---|---|
Feed composition (% DM) | |||
Corn flour | 34.00 | 35.00 | 35.00 |
Soybean meal 44% | 18.00 | 15.00 | 15.00 |
Corn flakes | 13.00 | 13.00 | 13.50 |
Destoned olive cake | - | 10.00 | 15.00 |
Wheat bran | 11.00 | 4.00 | 4.00 |
Barley | 10.00 | 9.00 | 8.00 |
Sunflower | 7.00 | 5.00 | 1.40 |
Vitamin and mineral mix * | 4.00 | 4.00 | 3.30 |
Soybean flakes | 2.00 | 4.00 | 4.00 |
Carob | 1.00 | 1.00 | 0.80 |
Saccharomyces cerevisiae, live yeast | 0.40 | 0.40 | 0.40 |
Sodium bicarbonate | 0.80 | 0.80 | 0.50 |
Sodium chloride | 0.50 | 0.50 | 0.50 |
Sodium propionate | 0.30 | 0.30 | 0.40 |
Calcium carbonate | 0.30 | 0.30 | 0.30 |
Dicalcium phosphate | 0.20 | 0.20 | 0.20 |
Nutrient composition | |||
Dry matter | 89.20 | 88.50 | 89.00 |
Crude protein (% DM) | 18.50 | 18.20 | 18.30 |
Crude fat (% DM) | 5.00 | 5.40 | 6.10 |
Ash (% DM) | 5.00 | 5.10 | 4.90 |
Acid detergent fibre (% DM) | 8.50 | 10.60 | 11.50 |
Neutral detergent fibre (% DM) | 44.30 | 46.70 | 45.30 |
Starch (% DM) | 44.00 | 43.90 | 43.40 |
Net energy (UFV/kg of DM) ** | 1.09 | 1.08 | 1.08 |
Sex | Heifers | Bulls | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time of Sampling | Day 56 | Day 147 | Day 56 | Day 147 | p-Values | ||||||||||||||
Diet | CTR | L-OC | H-OC | CTR | L-OC | H-OC | CTR | L-OC | H-OC | CTR | L-OC | H-OC | Diet | Time | Sex | Diet × Time | Diet × Sex | T0 | R2 |
Cortisol (mg/dL) | 2.87 ± 0.81 | 2.97 ± 1.65 | 3.77 ± 1.13 | 5.69 ± 2.59 | 7.23 ± 1.57 | 5.48 ± 1.36 | 2.75 ± 1.99 | 2.37 ± 1.44 | 2.64 ± 1.26 | 2.44 ± 1.25 | 1.87 ± 1.02 | 2.78 ± 1.05 | 0.6279 | 0.0002 | 0.0003 | 0.5246 | 0.1232 | 0.1565 | 0.41 |
TSH (ng/mL) | 0.16 ± 0.06 | 0.16 ± 0.04 | 0.18 ± 0.05 | 0.21 ± 0.13 | 0.14 ± 0.09 | 0.20 ± 0.09 | 0.19 ± 0.07 | 0.21 ± 0.13 | 0.21 ± 0.12 | 0.19 ± 0.07 | 0.16 ± 0.10 | 0.16 ± 0.11 | 0.6015 | 0.6814 | 0.6786 | 0.4188 | 0.7977 | 0.2033 | 0.06 |
T3 (ng/dL) | 131.88 ± 15.92 | 100.35 ± 24.29 | 111.78 ± 19.03 | 83.56 ± 20.56 | 119.01 ± 21.33 | 91.68 ± 25.15 | 86.83 ± 10.76 | 98.85 ± 10.65 | 93.50 ± 20.78 | 138.63 ± 11.26 | 139.38 ± 23.65 | 120.13 ± 14.49 | 0.4028 | 0.0257 | 0.1223 | 0.0470 | 0.6459 | 0.0735 | 0.18 |
fT3 (pg/mL) | 3.38 ± 0.36 | 2.88 ± 0.35 | 2.96 ± 0.44 | 2.26 ± 0.47 | 3.32 ± 0.91 | 1.93 ± 0.66 | 2.81 ± 0.37 | 3.05 ± 0.41 | 2.64 ± 0.60 | 3.03 ± 0.75 | 2.87 ± 0.77 | 2.82 ± 0.55 | 0.4720 | 0.0618 | 0.4464 | 0.1304 | 0.3643 | 0.3684 | 0.18 |
T4 (mg/dL) | 8.48 ± 1.64 | 7.27 ± 1.57 | 8.70 ± 1.82 | 8.28 ± 1.87 | 8.61 ± 1.98 | 9.07 ± 2.46 | 6.70 ± 0.68 | 7.82 ± 1.74 | 7.02 ± 1.70 | 8.85 ± 1.43 | 9.17 ± 1.91 | 7.21 ± 0.70 | 0.9077 | 0.0133 | 0.1387 | 0.4397 | 0.0566 | 0.0406 | 0.21 |
fT4 (ng/dL) | 2.63 ± 1.01 | 2.43 ± 0.47 | 2.46 ± 0.41 | 2.15 ± 0.52 | 3.41 ± 0.87 | 2.59 ± 1.38 | 1.74 ± 0.45 | 2.14 ± 0.41 | 2.03 ± 0.50 | 2.75 ± 0.44 | 2.85 ± 0.98 | 3.05 ± 0.43 | 0.6350 | 0.0001 | 0.4876 | 0.2340 | 0.1416 | <0.0001 | 0.38 |
Day 0 | Day 56 | Day 147 | |
---|---|---|---|
Cortisol (mg/dL) | 2.84 ± 0.13 | 2.90 ± 0.25 | 4.25 ± 0.25 |
TSH (ng/mL) | 0.14 ± 0.01 | 0.18 ± 0.05 | 0.29 ± 0.05 |
T3 (ng/dL) | 117.04 ± 2.99 | 103.86 ± 3.59 | 115.4 ± 3.59 |
fT3 (pg/mL) | 3.68 ± 0.08 | 2.95 ± 0.09 | 2.71 ± 0.09 |
T4 (mg/dL) | 5.98 ± 0.19 | 7.67 ± 0.24 | 8.53 ± 0.24 |
fT4 (ng/dL) | 2.04 ± 0.06 | 2.24 ± 0.1 | 2.8 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, E.; Bionda, A.; Chiofalo, V.; La Fauci, D.; Randazzo, C.; Pino, A.; Crepaldi, P.; Attard, G.; Liotta, L.; Lopreiato, V. Effects of Dietary Enrichment with Olive Cake on the Thyroid and Adrenocortical Responses in Growing Beef Calves. Animals 2023, 13, 2120. https://doi.org/10.3390/ani13132120
Fazio E, Bionda A, Chiofalo V, La Fauci D, Randazzo C, Pino A, Crepaldi P, Attard G, Liotta L, Lopreiato V. Effects of Dietary Enrichment with Olive Cake on the Thyroid and Adrenocortical Responses in Growing Beef Calves. Animals. 2023; 13(13):2120. https://doi.org/10.3390/ani13132120
Chicago/Turabian StyleFazio, Esterina, Arianna Bionda, Vincenzo Chiofalo, Deborah La Fauci, Cinzia Randazzo, Alessandra Pino, Paola Crepaldi, George Attard, Luigi Liotta, and Vincenzo Lopreiato. 2023. "Effects of Dietary Enrichment with Olive Cake on the Thyroid and Adrenocortical Responses in Growing Beef Calves" Animals 13, no. 13: 2120. https://doi.org/10.3390/ani13132120
APA StyleFazio, E., Bionda, A., Chiofalo, V., La Fauci, D., Randazzo, C., Pino, A., Crepaldi, P., Attard, G., Liotta, L., & Lopreiato, V. (2023). Effects of Dietary Enrichment with Olive Cake on the Thyroid and Adrenocortical Responses in Growing Beef Calves. Animals, 13(13), 2120. https://doi.org/10.3390/ani13132120