Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Culture and Heat Treatments
2.2. Determination of Biological Enzymes
2.3. Labeling and Sequencing of Proteins
2.4. Expression and Function Analysis
2.5. Quantitative Real-Time PCR
2.6. Statistic Analysis
3. Results
3.1. Activity of Cellular Enzyme
3.2. Differential Protein Expression Profiles
3.3. Nutrients Digestion and Absorption
3.4. Specific Regulation of Metabolism Pathways
3.5. Signaling Pathway of Stress Response to Heat Stress
3.6. Validation of Proteomic Results Using Quantitative Real-Time PCR
4. Discussion
4.1. Antioxidant and Immune Function under High Temperature
4.2. Effects of High Temperature on Nutrient Digestion
4.3. Effects of High Temperature on Signaling Pathway of Stress
4.4. Effects of High Temperatures on Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Proteins_ID | The Gene | Sequence (5′–3′) |
---|---|---|
β-actin | F: ATGAAACCACCTACAACAGT R: TAGACCCACCAATCCAGACG | |
tr|A0A6J8EV43|A0A6J8EV43_MYTCO | HSP1A | F: GGATGCTGGGTGTATTGC R: TCGTGCCCTGGTTATTTT |
tr|A0A6J8CQ51|A0A6J8CQ51_MYTCO | HSP16.1 | F: GCTACAATCAAAGGCAGAA R: TTACCAATGACCAGTCCC |
tr|A0A6J8C8Q7|A0A6J8C8Q7_MYTCO | HSPBP1 | F: GCAGAAATAAGATGGCAGAC R: AATGGCTAACATGGCTGA |
tr|A0A6J8ET45|A0A6J8ET45_MYTCO | HSP110 | F: TTGTTCGGTCACTCGTTG R: GTGTTTCTCCTGGTTTTGTT |
tr|A0A6J8CS86|A0A6J8CS86_MYTCO | CRYAB | F: GCGGATAGAAAGYGGACC R: CACGGAAGAAGAAGGAGAA |
Sample Name | Total Spectra | Spectra | Unique Spetra | Peptide | Unique Peptide | Protein |
---|---|---|---|---|---|---|
Mytilus_coruscus | 1,101,958 | 67,221 | 61,443 | 44,351 | 41,754 | 7559 |
Samples for Comparison | Up Regulated | Down Regulated | Total Regulated (%) |
---|---|---|---|
26 °C vs. 18 °C | 763 | 889 | 1652 (21.8%) |
33 °C vs. 18 °C | 1051 | 827 | 1878 (24.8%) |
33 °C vs. 26 °C | 747 | 402 | 1149 (15.2%) |
References
- Luo, S.; Jin, S.Y.; Su, L.X.; Wang, J.W. Effect of water temperature on reproductive performance and offspring quality of rare minnow, Gobiocypris rarus. J. Therm. Biol. 2017, 67, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Sarifudin, M.; Rahman, M.A.; Yusoff, F.M.; Arshad, A.; Tan, S.G. Effects of temperature on the embryonic and early larval development in tropical species of black sea urchin, Diadema setosum (Leske, 1778). J. Environ. Biol. 2016, 37, 657–668. [Google Scholar] [PubMed]
- Jin, Y.; Liu, Z.L.; Yuan, X.W.; Jiang, Y.Z. Stage-specific influence of temperature on the growth rate of Japanese Spanish mackerel (Scomberomorus niphonius) in early life. J. Fish. Biol. 2022, 100, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.W.; Ji, T.T.; Dong, S.L. Stress responses to rapid temperature changes of the juvenile sea cucumber (Apostichopus japonicus Selenka). J. Ocean. Univ. China 2007, 6, 275–280. [Google Scholar]
- Miller, G.M.; Kroon, F.J.; Metcalfe, S. Temperature is the evil twin: Effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecolo. Appl. 2015, 25, 603–620. [Google Scholar] [CrossRef]
- Tollefson, J. IPCC climate report: Earth is warmer than it’s been in 125,000 years. Nature 2021, 596, 171–172. [Google Scholar] [CrossRef]
- Ericson, J.; Venter, L.; Copedo, J.; Nguyen, V.; Alfaro, A.; Ragg, N. Chronic heat stress as a predisposing factor in summer mortality of mussels, Perna canaliculus. Aquaculture 2022, 564, 738986. [Google Scholar] [CrossRef]
- Tan, Y.L.; Cong, R.H.; Qi, H.G.; Wang, L.P.; Zhang, G.F.; Pan, Y.; Li, L. Transcriptomics analysis and re-sequencing reveal the mechanism underlying the thermotolerance of an artificial selection population of the Pacific Oyster. Front. Physiol. 2021, 12, 663023. [Google Scholar] [CrossRef]
- Bøgwald, M.; Skår, C.K.; Karlsbakk, E.; Alfjorden, A.; Feist, S.W.; Bass, D.; Mortensen, S. Infection cycle of Marteilia pararefringens in blue mussels Mytilus edulis in a heliothermic marine oyster lagoon in Norway. Dis. Aquat. Organ. 2022, 148, 153–166. [Google Scholar] [CrossRef]
- Qin, C.L.; Huang, W.; Zhou, S.Q.; Wang, X.C.; Liu, H.H.; Fan, M.H.; Wang, R.X.; Gao, P.; Liao, Z. Characterization of a novel antimicrobial peptide with chitin-biding domain from Mytilus coruscus. Fish Shellfish. Immun. 2014, 41, 362–370. [Google Scholar] [CrossRef]
- Liu, H.; He, J.; Zhao, R.; Chi, C.; Bao, Y. A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus. Ecotoxicol. Environ. Saf. 2015, 118, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Su, X.R.; Li, T.W.; Ding, M.J. Studies on the nutritive contents of the mussel Mytilus edulis and Mytilus coruscus. J. Marin. Drug. 1998, 2, 30–32. [Google Scholar]
- Huang, Z.H.; Ke, A.Y.; Wang, Y.H.; Chen, X.X. Effect of ecological factors on growth and survival rate of thick shell mussel (Mytilus coruscus Gloud) eyebot larval. Chin. J. Aquacul. 2015, 36, 41–44. [Google Scholar]
- Li, Y.F.; Yang, X.Y.; Cheng, Z.Y.; Wang, L.Y.; Wang, W.X.; Liang, X.; Yang, J.L. Near-future levels of ocean temperature weaken the byssus production and performance of the mussel Mytilus coruscus. Sci. Total. Environ. 2020, 733, 139347. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, L.S.; Hu, M.H.; Lu, W.Q. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress. Sci. Total. Environ. 2015, 514, 261–272. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.-W.; Yao, C.-L. Molecular and acute temperature stress response characterizations of caspase-8 gene in two mussels, Mytilus coruscus and Mytilus galloprovincialis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014, 177–178, 10–20. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Lin, S.-R.; Xu, L.-Z.; Ye, Y.-Y.; Qi, P.-Z.; Wang, W.-F.; Buttino, I.; Li, H.-F.; Guo, B.-Y. Comparative transcriptomic analysis revealed changes in multiple signaling pathways involved in protein degradation in the digestive gland of Mytilus coruscus during high-temperatures. Comp. Biochem. Physiol. Part D: Genom. Proteom. 2023, 46, 101060. [Google Scholar] [CrossRef]
- Gao, Z.; Pan, L.; Xu, R.; Zhou, Y.; Li, D. Insights into disruption of lipid metabolism in digestive gland of female scallop Chlamys farreri under B[a]P exposure. Environ. Pollut. 2022, 299, 118904. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Y.H.; Zhu, F.X.; Li, Y.R.; Liang, S.; Guo, Y.J. Impact of ocean acidification on the physiology of digestive gland of razor clams Sinonovacula constricta. Front. Mar. Sci. 2022, 9, 1010350. [Google Scholar] [CrossRef]
- Shang, Y.Y.; Wang, X.H.; Shi, Y.T.; Huang, W.; Sokolova, I.; Chang, X.Q.; Chen, D.Y.; Wei, S.S.; Khan, F.K.; Hu, M.H.; et al. Ocean acidification affects the bioenergetics of marine mussels as revealed by high-coverage quantitative metabolomics. Sci. Total Environ. 2023, 858, 160090. [Google Scholar] [CrossRef]
- Shaw, J.P.; Moore, M.N.; Readman, J.W.; Mou, Z.; Langston, W.J.; Lowe, D.M.; Frickers, P.E.; Almoosawi, L.; Pascoe, C.K.; Beesley, A. Oxidative stress, lysosomal damage and dysfunctional autophagy in molluscan hepatopancreas (digestive gland) induced by chemical contaminants. Mar. Environ. Res. 2019, 152, 104825. [Google Scholar] [CrossRef]
- Wu, F.; Sokolov, E.P.; Khomich, A.; Fettkenhauer, C.; Schnell, G.; Seita, H.; Sokolova, I.M. Interactive effects of ZnO nanoparticles and temperature on molecular and cellular stress responses of the blue mussel Mytilus edulis. Sci. Total. Environ. 2022, 818, 151785. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Li, L.; Zheng, J.; Ji, C.; Wu, H.; Chen, X.; Chen, Y.; Hu, M.; Xu, E.G.; Wang, Y. Combined toxic effects of nanoplastics and norfloxacin on mussel: Leveraging biochemical parameters and gut microbiota. Sci. Total. Environ. 2023, 880, 163304. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Wei, S.; Hu, M.; Wei, H.; Wang, X.; Shang, Y.; Li, L.; Shi, H.; Wang, Y. Microplastics aggravate the adverse effects of BDE-47 on physiological and defense performance in mussels. J. Hazard. Mater. 2020, 398, 122909. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, W.X.; Li, L.; Yin, Q.; Zhang, G.F. Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci. Rep. 2017, 7, 11716. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Zhou, R.; Feng, Q.; Wang, Q.; Wang, J.; Liu, S. IQuant: An automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 2014, 14, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Savitski, M.M.; Wilhelm, M.; Hahne, H.; Kuster, B.; Bantscheff, M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol. Cell Proteom. 2015, 14, 2394–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.L.; Sokolova, I.M. Immune responses to ZnO nanoparticles are modulated by season and environmental temperature in the blue mussels Mytilus edulis. Sci. Total. Environ. 2021, 801, 149786. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, F.; Sun, S. The survival and responses of blue mussel Mytilus edulis to 16-day sustained hypoxia stress. Mar. Environ. Res. 2022, 176, 105601. [Google Scholar] [CrossRef]
- Lymbery, R.A.; Brouwer, J.; Evans, J.P. Ocean acidification alters sperm responses to egg-derived chemicals in a broadcast spawning mussel. Biol. Lett. 2022, 18, 20220042. [Google Scholar] [CrossRef]
- Said, R.M.; Nassar, S.E. Mortality, energy reserves, and oxidative stress responses of three native freshwater mussels to temperature as an indicator of potential impacts of climate change: A laboratory experimental approach. J. Therm. Biol. 2022, 104, 103154. [Google Scholar] [CrossRef] [PubMed]
- Nardi, A.; Mezzelani, M.; Costa, S.; d’Errico, G.; Benedetti, M.; Gorbi, S.; Freitas, R.; Regoli, F. Marine heatwaves hamper neuro-immune and oxidative tolerance toward carbamazepine in Mytilus galloprovincialis. Environ. Pollut. 2022, 300, 118970. [Google Scholar] [CrossRef]
- Fadhlaoui, M.; Couture, P. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens). Aquat. Toxicol. 2016, 180, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Desai, P.V. Effect of thermal and salinity stress on Perna viridis heart (L.). Indian. J. Exp. Biol. 1998, 36, 916–919. [Google Scholar]
- Rajagopal, S.; van der Gaag, M.; van der Velde, G.; Jenner, H.A. Upper temperature tolerances of exotic brackish-water mussel, Mytilopsis leucophaeata (Conrad): An experimental study. Mar. Environ. Res. 2005, 60, 512–530. [Google Scholar] [CrossRef] [PubMed]
- Khessiba, A.; Roméo, M.; Aïssa, P. Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane. Environ. Pollut. 2005, 133, 275–281. [Google Scholar] [CrossRef]
- Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem.-Biol. Interact. 2007, 167, 219–226. [Google Scholar] [CrossRef]
- Trenzado, C.; Hidalgo, M.C.; García-Gallego, M.; Morales, A.E.; Furné, M.; Domezain, A.; Domezain, J.; Sanz, A. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 2006, 254, 758–767. [Google Scholar] [CrossRef]
- Currie, S.; Ahmady, E.; Watters, M.A.; Perry, S.; Gilmour, K. Fish in hot water: Hypoxaemia does not trigger catecholamine mobilization during heat shock in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Phys. A 2013, 165, 281–287. [Google Scholar] [CrossRef]
- Currie, S.; Bagatto, B.; DeMille, M.; Learner, A.; LeBlanc, D.; Marks, C.; Ong, K.; Parker, J.; Templeman, N.; Tufts, B.L.; et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 2010, 88, 43–58. [Google Scholar] [CrossRef]
- Khan, J.; Iftikar, F.; Herbert, N.; Gnaiger, E.; Hickey, A. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J. Comp. Physiol. B 2014, 184, 991–1001. [Google Scholar] [CrossRef]
- Jayasundara, N.; Somero, G.N. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. J. Exp. Biol. 2013, 216, 2111–2121. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Jiang, X.; Hu, X.; Gong, J.; Hwang, H.; Mai, K. Effects of temperature on non-specific immune parameters in two scallop species: Argopecten irradians (Lamarck 1819) and Chlamys farreri (Jones & Preston 1904). Aquac. Res. 2004, 35, 678–682. [Google Scholar]
- Gupta, P.K.; Dhar, U.; Bawa, S.R. Effect of malathion and radiation separately and jointly upon rat enzymes in vivo. Environ. Physiol. Biochem. 1975, 5, 49–53. [Google Scholar] [PubMed]
- Verma, A.; Pal, A.; Manush, S.; Das, T.; Dalvi, R.; Chandrachoodan, P.; Ravi, P.; Apte, S. Persistent sub-lethal chlorine exposure elicits the temperature induced stress responses in Cyprinus carpio early fingerlings. Pestic. Biochem. Phys. 2007, 87, 229–237. [Google Scholar] [CrossRef]
- Khan, F.U.; Hu, M.H.; Kong, H.; Shang, Y.Y.; Wang, T.; Wang, X.H.; Xu, R.; Lu, W.Q.; Wang, Y.J. Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 2020, 256, 127096. [Google Scholar] [CrossRef]
- Majerová, E.; Carey, F.C.; Drury, C.; Gates, R. Preconditioning improves bleaching tolerance in the reef-building coral Pocillopora acuta through modulations in the programmed cell death pathways. Mol. Ecol. 2021, 30, 3560–3574. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.M.; Ahn, D.H.; Kim, H.; Lee, J.S.; Rhee, J.; Park, H.S. Transcriptome profiling suggests roles of innate immunity and digestion metabolism in purplish Washington clam. Genes Genom. 2019, 41, 183–191. [Google Scholar] [CrossRef]
- Osman, A.M.; Tanios, N.I. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Comp. Biochem. Physiol. A 1983, 75, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.H.; Cheng, K.; Zheng, X.C.; Ahmad, H.; Zhang, L.L.; Wang, T. Effects of dietary supplementation with enzymatically treated Artemisia annua on growth performance, intestinal morphology, digestive enzyme activities, immunity, and antioxidant capacity of heat-stressed broilers. Poultry. Sci. 2018, 97, 430–437. [Google Scholar] [CrossRef]
- Frederick, A.R.; Lee, A.M.; Wehrle, B.A.; Catabay, C.C.; Rankins, D.R.; Clements, K.D.; German, D.P. Abalone under moderate heat stress have elevated metabolic rates and changes to digestive enzyme activities. Comp. Biochem. Physiol. A 2022, 270, 111230. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Peng, D.D.; Chong, H.; Zheng, S.Q.; Zhu, F.; Wang, G. Effect of isoflurane on myocardial ischemia-reperfusion injury through the p38 MAPK signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1342–1349. [Google Scholar]
- Tang, Y.; Wang, M.; Zheng, T.; Xiao, Y.; Wang, S.; Han, F.; Chen, G. Structural and functional brain abnormalities in postherpetic neuralgia: A systematic review of neuroimaging studies. Brain Res. 2021, 1752, 147219. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, P.; Thomas, S.C.; Heinrich, P.; Koch, G.; Schwartz, E.; Hungate, B. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil. Biol. Biochem. 2011, 43, 2023–2031. [Google Scholar] [CrossRef]
- Yang, M.J.; Jiang, M.; Peng, X.X.; Li, H. Myo-inositol restores tilapia’s ability against infection by Aeromonas sobria in higher water temperature. Front. Immunol. 2021, 12, 682724. [Google Scholar] [CrossRef]
- Ekström, A.; Sandblom, E.; Blier, P.; Dupont Cyr, B.; Brijs, J.; Pichaud, N. Thermal sensitivity and phenotypic plasticity of cardiac mitochondrial metabolism in European perch, Perca fluviatilis. J. Exp. Biol. 2017, 220, 386–396. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Wang, Y.; Lin, S.; Li, H.; Qi, P.; Buttino, I.; Wang, W.; Guo, B. Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics. Animals 2023, 13, 2248. https://doi.org/10.3390/ani13142248
Xu L, Wang Y, Lin S, Li H, Qi P, Buttino I, Wang W, Guo B. Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics. Animals. 2023; 13(14):2248. https://doi.org/10.3390/ani13142248
Chicago/Turabian StyleXu, Lezhong, Yuxia Wang, Shuangrui Lin, Hongfei Li, Pengzhi Qi, Isabella Buttino, Weifeng Wang, and Baoying Guo. 2023. "Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics" Animals 13, no. 14: 2248. https://doi.org/10.3390/ani13142248
APA StyleXu, L., Wang, Y., Lin, S., Li, H., Qi, P., Buttino, I., Wang, W., & Guo, B. (2023). Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics. Animals, 13(14), 2248. https://doi.org/10.3390/ani13142248