Non-Invasive Techniques Reveal Heifer Response to Fescue Endophyte Type in Grazing Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Conditions
2.2. Weather Data
2.3. Forage Analysis
2.4. Animal Gain and Hair Retention Score
2.5. Extremity and Intravaginal Temperatures
2.6. Hair and Blood Sample Collection and Cortisol Analysis
2.7. Animal Behavior Data
2.8. Statistical Analysis
3. Results
3.1. Weather Data and Forage Measures
3.2. Animal Gain and Hair Retention Score
3.3. Extremity and Intravaginal Temperature
3.4. Plasma and Hair Cortisol Levels
3.5. Animal Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clay, K.; Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1744. [Google Scholar] [CrossRef] [PubMed]
- Arachevaleta, M.; Bacon, C.; Hoveland, C.; Radcliffe, D. Effect of the tall fescue endophyte on plant response to environmental stress. Agron. J. 1989, 81, 83–90. [Google Scholar] [CrossRef]
- Thompson, F.; Stuedemann, J. Pathophysiology of fescue toxicosis. Agric. Ecosyst. Environ. 1993, 44, 263–281. [Google Scholar] [CrossRef]
- Porter, J. Analysis of endophyte toxins: Fescue and other grasses toxic to livestock. J. Anim. Sci. 1995, 73, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuedemann, J.A.; Hoveland, C.S. Fescue endophyte: History and impact on animal agriculture. J. Prod. Agric. 1988, 1, 39–44. [Google Scholar] [CrossRef]
- Strickland, J.; Oliver, J.; Cross, D. Fescue toxicosis and its impact on animal agriculture. Vet. Hum. Toxicol. 1993, 35, 454–464. [Google Scholar] [PubMed]
- Burke, J.; Rorie, R.; Piper, E.; Jackson, W. Reproductive responses to grazing endophyte-infected tall fescue by postpartum beef cows. Theriogenology 2001, 56, 357–369. [Google Scholar] [CrossRef]
- Parish, J.A.; McCann, M.A.; Watson, R.H.; Paiva, N.N.; Hoveland, C.S.; Parks, A.H.; Upchurch, B.L.; Hill, N.S.; Bouton, J.H. Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in stocker cattle. J. Anim. Sci. 2003, 81, 2856–2868. [Google Scholar] [CrossRef]
- Nihsen, M.; Piper, E.; West, C.; Crawford, R., Jr.; Denard, T.; Johnson, Z.; Roberts, C.; Spiers, D.; Rosenkrans, C., Jr. Growth rate and physiology of steers grazing tall fescue inoculated with novel endophytes. J. Anim. Sci. 2004, 82, 878–883. [Google Scholar] [CrossRef]
- Hemken, R.; Boling, J.; Bull, L.; Hatton, R.; Buckner, R.; Bush, L. Interaction of environmental temperature and anti-quality factors on the severity of summer fescue toxicosis. J. Anim. Sci. 1981, 52, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Spiers, D.; Eichen, P.; Rottinghaus, G. A model of fescue toxicosis: Responses of rats to intake of endophyte-infected tall fescue. J. Anim. Sci. 2005, 83, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Bouton, J.H.; Latch, G.C.; Hill, N.S.; Hoveland, C.S.; McCann, M.A.; Watson, R.H.; Parish, J.A.; Hawkins, L.L.; Thompson, F.N. Reinfection of tall fescue cultivars with non-ergot alkaloid-producing endophytes. Agron. J. 2002, 94, 567–574. [Google Scholar]
- Beck, P.; Gunter, S.; Lusby, K.; West, C.; Watkins, K.; Hubbell, D., III. Animal performance and economic comparison of novel and toxic endophyte tall fescues to cool-season annuals. J. Anim. Sci. 2008, 86, 2043–2055. [Google Scholar] [CrossRef]
- Hopkins, A.; Alison, M. Stand persistence and animal performance for tall fescue endophyte combinations in the south central USA. Agron. J. 2006, 98, 1221–1226. [Google Scholar] [CrossRef]
- Shoup, L.; Miller, L.; Srinivasan, M.; Ireland, F.; Shike, D. Effects of cows grazing toxic endophyte–infected tall fescue or novel endophyte-infected tall fescue in late gestation on cow performance, reproduction, and progeny growth performance and carcass characteristics. J. Anim. Sci. 2016, 94, 5105–5113. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, D.W.; Kern-Lunbery, R.; Goldblatt, P.; Lemus, R.; Griggs, T.; Bauman, L.; Boone, S.; Shewmaker, G.; Teutsch, C. Guidelines for Optimal Use of NIRSC Forage and Feed Calibrations in Membership Laboratories; University of Tennessee: Knoxville, TN, USA, 2022. [Google Scholar]
- Gray, K.; Smith, T.; Maltecca, C.; Overton, P.; Parish, J.; Cassady, J. Differences in hair coat shedding, and effects on calf weaning weight and BCS among Angus dams. Livest. Sci. 2011, 140, 68–71. [Google Scholar] [CrossRef]
- Poudel, S.; Fike, J.H.; Pent, G.J. Hair Cortisol as a Measure of Chronic Stress in Ewes Grazing Either Hardwood Silvopastures or Open Pastures. Agronomy 2022, 12, 1566. [Google Scholar] [CrossRef]
- Liebe, D.M.; White, R.R. Meta-analysis of endophyte-infected tall fescue effects on cattle growth rates. J. Anim. Sci. 2018, 96, 1350–1361. [Google Scholar] [CrossRef]
- Tor-Agbidye, J.; Blythe, L.; Craig, A. Correlation of endophyte toxins (ergovaline and lolitrem B) with clinical disease: Fescue foot and perennial ryegrass staggers. Vet. Hum. Toxicol. 2001, 43, 140–146. [Google Scholar]
- Craig, A.M.; Blythe, L.L.; Duringer, J.M. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses. J. Agric. Food Chem. 2014, 62, 7376–7381. [Google Scholar] [CrossRef] [PubMed]
- Drewnoski, M.E.; Poore, M.H.; Oliphant, E.J.; Marshall, B.; Green, J.T., Jr. Agronomic performance of stockpiled tall fescue varies with endophyte infection status. Forage Grazingl. 2007, 5, 1–13. [Google Scholar] [CrossRef]
- Vibart, R.E.; Drewnoski, M.E.; Poore, M.H.; Green, J.T., Jr. Persistence and botanical composition of Jesup tall fescue with varying endophyte status after five years of stockpiling and intensive winter grazing. Forage Grazingl. 2008, 6, 1–7. [Google Scholar] [CrossRef]
- Hopkins, A.; Young, C.; Panaccione, D.; Simpson, W.; Mittal, S.; Bouton, J. Agronomic performance and lamb health among several tall fescue novel endophyte combinations in the south-central USA. Crop Sci. 2010, 50, 1552–1561. [Google Scholar] [CrossRef]
- Phillips, T.D.; Aiken, G.E. Novel Endophyte-Infected Tall Fescues. Forage Grazingl. 2009, 7, 1–6. [Google Scholar] [CrossRef]
- Watson, R.; McCann, M.; Parish, J.; Hoveland, C.; Thompson, F.; Bouton, J. Productivity of cow–calf pairs grazing tall fescue pastures infected with either the wild-type endophyte or a nonergot alkaloid-producing endophyte strain, AR542. J. Anim. Sci. 2004, 82, 3388–3393. [Google Scholar] [CrossRef]
- Klotz, J.L. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins 2015, 7, 2801–2821. [Google Scholar] [CrossRef] [Green Version]
- Tarrant, P. Transportation of cattle by road. Appl. Anim. Behav. Sci. 1990, 28, 153–170. [Google Scholar] [CrossRef]
- Kegley, E.; Spears, J.; Brown, T., Jr. Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J. Anim. Sci. 1997, 75, 1956–1964. [Google Scholar] [CrossRef]
- Swanson, J.; Morrow-Tesch, J. Cattle transport: Historical, research, and future perspectives. J. Anim. Sci. 2001, 79, E102–E109. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.; Powell, J.; Weinland, B. Behavior of Steers Grazing Several Varieties of Tall Fescue During Summer Conditions. Agron. J. 1984, 76, 707–709. [Google Scholar] [CrossRef]
- Matthews, A.; Poore, M.; Huntington, G.; Green, J. Intake, digestion, and N metabolism in steers fed endophyte-free, ergot alkaloid-producing endophyte-infected, or nonergot alkaloid-producing endophyte-infected fescue hay. J. Anim. Sci. 2005, 83, 1179–1185. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati, K.R.; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef] [Green Version]
- O’brien, M.; Rhoads, R.; Sanders, S.; Duff, G.; Baumgard, L. Metabolic adaptations to heat stress in growing cattle. Domest. Anim. Endocrinol. 2010, 38, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Osborn, T. Effects of endophyte-infected tall fescue on animal performance. Agric. Ecosyst. Environ. 1993, 44, 233–262. [Google Scholar] [CrossRef]
- Aiken, G.; Klotz, J.; Looper, M.; Tabler, S.; Schrick, F. Disrupted hair follicle activity in cattle grazing endophyte-infected tall fescue in the summer insulates core body temperatures. Prof. Anim. Sci. 2011, 27, 336–343. [Google Scholar] [CrossRef]
- McClanahan, L.; Aiken, G.; Dougherty, C. Influence of rough hair coats and steroid implants on the performance and physiology of steers grazing endophyte-infected tall fescue in the summer. Prof. Anim. Sci. 2008, 24, 269–276. [Google Scholar] [CrossRef]
- Aldrich, C.; Paterson, J.; Tate, J.; Kerley, M. The effects of endophyte-infected tall fescue consumption on diet utilization and thermal regulation in cattle. J. Anim. Sci. 1993, 71, 164–170. [Google Scholar] [CrossRef]
- Rhodes, M.; Paterson, J.; Kerley, M.; Garner, H.; Laughlin, M. Reduced blood flow to peripheral and core body tissues in sheep and cattle induced by endophyte-infected tall fescue. J. Anim. Sci. 1991, 69, 2033–2043. [Google Scholar] [CrossRef]
- Jones, K.; King, S.; Griswold, K.; Cazac, D.; Cross, D. Domperidone can ameliorate deleterious reproductive effects and reduced weight gain associated with fescue toxicosis in heifers. J. Anim. Sci. 2003, 81, 2568–2574. [Google Scholar] [CrossRef]
- McCollough, S.F.; Piper, E.L.; Moubarak, A.S.; Johnson, Z.B.; Petroski, R.J.; Flieger, M. Effect of tall fescue ergot alkaloids on peripheral blood flow and serum prolactin in steers. J. Anim. Sci. 1994, 72 (Suppl. 1), 144. [Google Scholar]
- Al-Haidary, A.; Spiers, D.; Rottinghaus, G.; Garner, G.; Ellersieck, M. Thermoregulatory ability of beef heifers following intake of endophyte-infected tall fescue during controlled heat challenge. J. Anim. Sci. 2001, 79, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Schrick, F.N.; Schuenemann, G.M.; Waller, J.C.; Hopkins, F.M.; Edwards, J.L. Fertility of Beef Cattle Grazing Endophyte-Infected Tall Fescue Pastures. In Proceedings of the Applied Reproductive Strategies in Beef Cattle Lexinton, Lexington, KY, USA, 1–2 November 2005; pp. 178–185. [Google Scholar]
- Poole, D.H.; Lyons, S.E.; Poole, R.K.; Poore, M.H. Ergot alkaloids induce vasoconstriction of bovine uterine and ovarian blood vessels. J. Anim. Sci. 2018, 96, 4812–4822. [Google Scholar] [CrossRef] [Green Version]
- Osborn, T.; Schmidt, S.; Marple, D.; Rahe, C.; Steenstra, J. Effect of consuming fungus-infected and fungus-free tall fescue and ergotamine tartrate on selected physiological variables of cattle in environmentally controlled conditions. J. Anim. Sci. 1992, 70, 2501–2509. [Google Scholar] [CrossRef]
- Browning, R., Jr.; Leite-Browning, M.; Smith, H.; Wakefield, T., Jr. Effect of ergotamine and ergonovine on plasma concentrations of thyroid hormones and cortisol in cattle. J. Anim. Sci. 1998, 76, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Browning, R., Jr.; Thompson, F.N. Endocrine and respiratory responses to ergotamine in Brahman and Hereford steers. Vet. Hum. Toxicol. 2002, 44, 149–154. [Google Scholar]
- Looper, M.; Edrington, T.; Flores, R.; Burke, J.; Callaway, T.; Aiken, G.; Schrick, F.; Rosenkrans, C., Jr. Influence of dietary endophyte (Neotyphodium coenophialum)-infected tall fescue (Festuca arundinacea) seed on fecal shedding of antibiotic resistance-selected Escherichia coli O157: H7 in ewes. J. Anim. Sci. 2007, 85, 1102–1108. [Google Scholar] [CrossRef]
- Christison, G.; Johnson, H. Cortisol turnover in heat-stressed cows. J. Anim. Sci. 1972, 35, 1005–1010. [Google Scholar] [CrossRef]
- Säkkinen, H.; Tornbeg, J.; Goddard, P.; Eloranta, E.; Ropstad, E.; Saarela, S. The effect of blood sampling method on indicators of physiological stress in reindeer (Rangifer tarandus tarandus). Domest. Anim. Endocrinol. 2004, 26, 87–98. [Google Scholar] [CrossRef]
- Ghassemi Nejad, J.; Lohakare, J.; Son, J.; Kwon, E.; West, J.; Sung, K. Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction. Animal 2014, 8, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi Nejad, J.; Kim, B.W.; Lee, B.H.; Sung, K.I. Coat and hair color: Hair cortisol and serotonin levels in lactating Holstein cows under heat stress conditions. Anim. Sci. J. 2017, 88, 190–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comin, A.; Peric, T.; Corazzin, M.; Veronesi, M.; Meloni, T.; Zufferli, V.; Cornacchia, G.; Prandi, A. Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activation in Friesian dairy cows clinically or physiologically compromised. Livest. Sci. 2013, 152, 36–41. [Google Scholar] [CrossRef]
- Gow, R.; Thomson, S.; Rieder, M.; Van Uum, S.; Koren, G. An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci. Int. 2010, 196, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Goymann, W.; Möstl, E.; Van’t Hof, T.; East, M.L.; Hofer, H. Noninvasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen. Comp. Endocrinol. 1999, 114, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.D.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef]
- Howard, M.; Muntifering, R.; Bradley, N.; Mitchell Jr, G.; Lowry, S. Voluntary intake and ingestive behavior of steers grazing Johnstone or endophyte-infected Kentucky-31 tall fescue. J. Anim. Sci. 1992, 70, 1227–1237. [Google Scholar] [CrossRef] [Green Version]
- Pent, G.J.; Greiner, S.P.; Munsell, J.F.; Tracy, B.F.; Fike, J.H. Lamb performance in hardwood silvopastures, II: Animal behavior in summer. Transl. Anim. Sci. 2020, 4, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Mannuthy, T. Behavioral responses to livestock adaptation to heat stress challenges. Asian J. Anim. Sci. 2017, 11, 1–13. [Google Scholar]
Year | Treatments 1 | |||
---|---|---|---|---|
WE | NE | SE | p-Value | |
Tall Fescue (Schedonorus phoenix), % | ||||
2020 | 73.4 | 77.5 | 3.38 | 0.3979 |
2021 | 75.6 | 76.1 | 1.97 | 0.8420 |
Average | 74.5 | 76.8 | 1.83 | 0.4404 |
Orchardgrass (Dactylis glomerata), % | ||||
2020 | 9.6 | 6.0 | 2.04 | 0.2121 |
2021 | 8.1 | 7.2 | 1.18 | 0.5965 |
Average | 8.9 | 6.6 | 1.10 | 0.1951 |
Quack Grass (Elymus repens), % | ||||
2020 | 6.2 | 6.6 | 2.52 | 0.8964 |
2021 | 2.6 | 3.8 | 1.28 | 0.5013 |
Average | 4.4 | 5.2 | 1.29 | 0.6083 |
Kentucky Bluegrass (Poa pratensis), % | ||||
2020 | 2.9 | 5.5 | 1.36 | 0.1877 |
2021 | 2.6 | 1.7 | 0.87 | 0.4707 |
Average | 2.7 | 3.6 | 0.77 | 0.6438 |
Legumes, % | ||||
2020 | 0.3 | 0.7 | 0.36 | 0.5223 |
2021 | 3.6 | 3.6 | 1.42 | 1.0000 |
Average | 1.9 | 2.1 | 0.88 | 0.9133 |
Other Broadleaf, % | ||||
2020 | 5.5 | 3.7 | 1.42 | 0.3759 |
2021 | 7.7 | 7.7 | 1.07 | 1.0000 |
Average | 6.6 | 5.7 | 0.88 | 0.5536 |
Year | Treatments 1 | |||
---|---|---|---|---|
WE | NE | SE | p-Value | |
Forage Biomass, kg ha−1 | ||||
2020 | 3010 | 3170 | 2350 | 0.6432 |
2021 | 2650 | 2320 | 1410 | 0.1072 |
Average | 2830 | 2740 | 2539 | 0.8041 |
Crude Protein 2, % | ||||
2020 | 13.8 | 15.8 | 0.54 | 0.0117 |
2021 | 12.8 | 12.1 | 0.41 | 0.2532 |
Acid Detergent Fiber 2, % | ||||
2020 | 35.5 | 32.8 | 0.56 | 0.0013 |
2021 | 34.2 | 33.5 | 0.53 | 0.3726 |
Neutral Detergent Fiber, % | ||||
2020 | 64.5 | 60.3 | 0.89 | 0.0016 |
2021 | 63.4 | 62.2 | 1.17 | 0.4559 |
Average | 63.9 | 61.2 | 0.85 | 0.0266 |
Year | Treatments 1 | |||
---|---|---|---|---|
WE | NE | SE | p-Value | |
ADG 2, kg d−1 | ||||
2020 | 0.12 | 0.22 | 0.028 | 0.0160 |
2021 | 0.49 | 0.49 | 0.050 | 0.9623 |
Average | 0.31 | 0.36 | 0.031 | 0.2377 |
Hair Retention Score 3 | ||||
2020 | 3.3 | 2.8 | 0.15 | 0.0158 |
2021 | 3.0 | 2.5 | 0.13 | 0.0283 |
Average | 3.1 | 2.7 | 0.11 | 0.0029 |
Year | Treatments 1 | |||
---|---|---|---|---|
WE | NE | SE | p-Value | |
Ear Skin Temperature 2, °C | ||||
2020 | 29.5 | 30.6 | 0.45 | 0.0770 |
2021 | 29.6 | 31.8 | 0.25 | <0.001 |
Average | 29.5 | 30.2 | 0.30 | 0.0001 |
Hoof Surface Temperature 2, °C | ||||
2020 | 24.9 | 26.3 | 0.66 | 0.1447 |
2021 | 27.8 | 29.6 | 0.21 | <0.001 |
Average | 26.4 | 28.0 | 0.41 | 0.0075 |
Tail Skin Temperature 2, °C | ||||
2020 | 26.0 | 25.5 | 0.35 | 0.3226 |
2021 | 27.2 | 28.7 | 0.25 | 0.0001 |
Average | 26.4 | 27.4 | 0.25 | 0.0058 |
Year | Treatments 1 | |||
---|---|---|---|---|
WE | NE | SE | p-Value | |
Plasma Cortisol, ng mL−1 | ||||
2020 | 4.6 | 4.0 | 0.19 | 0.0356 |
2021 | 10.3 | 9.2 | 1.31 | 0.5699 |
Average | 7.5 | 6.6 | 1.32 | 0.6579 |
Hair Cortisol, pg mg−1 | ||||
2020 | 8.1 | 6.3 | 0.40 | 0.0009 |
2021 | 5.0 | 3.2 | 0.42 | 0.0033 |
Average | 6.6 | 4.7 | 0.29 | <0.0001 |
Behavior Category 2 | Period | Treatments 1 | |||
---|---|---|---|---|---|
WE | NE | SE | p-Value | ||
Grazing (%) | Morning (700–1200) | 30.0 | 22.0 | 2.98 | 0.1281 |
Midday (1200–1700) | 19.3 | 31.4 | 4.80 | 0.1496 | |
Evening (1700–2100) | 60.9 | 58.5 | 6.76 | 0.8105 | |
Overall | 36.7 | 37.3 | 1.83 | 0.8480 | |
Standing Up (%) | Morning (700–1200) | 44.2 | 42.0 | 9.79 | 0.8836 |
Midday (1200–1700) | 63.4 | 33.5 | 1.77 | 0.0003 | |
Evening (1700–2100) | 15.0 | 25.4 | 7.89 | 0.4027 | |
Overall | 40.9 | 33.7 | 4.78 | 0.3462 | |
Lying (%) | Morning (700–1200) | 25.1 | 35.9 | 9.20 | 0.4551 |
Midday (1200–1700) | 17.2 | 34.9 | 4.18 | 0.0402 | |
Evening (1700–2100) | 23.8 | 15.6 | 3.58 | 0.1768 | |
Overall | 22.1 | 28.8 | 3.45 | 0.2410 | |
Drinking Water (%) | Morning (700–1200) | 0.27 | 0.10 | 0.165 | 0.5182 |
Midday (1200–1700) | 0.01 | 0.19 | 0.062 | 0.1098 | |
Evening (1700–2100) | 0.12 | 0.49 | 0.261 | 0.3685 | |
Overall | 0.13 | 0.26 | 0.088 | 0.3572 | |
Eating Mineral (%) | Morning (700–1200) | 0.36 | 0.02 | 0.234 | 0.3647 |
Midday (1200–1700) | 0.08 | 0.00 | 0.049 | 0.3268 | |
Evening (1700–2100) | 0.21 | 0.05 | 0.146 | 0.4703 | |
Overall | 0.22 | 0.02 | 0.049 | 0.0518 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, S.; Fike, J.H.; Wright, L.; Pent, G.J. Non-Invasive Techniques Reveal Heifer Response to Fescue Endophyte Type in Grazing Studies. Animals 2023, 13, 2373. https://doi.org/10.3390/ani13142373
Poudel S, Fike JH, Wright L, Pent GJ. Non-Invasive Techniques Reveal Heifer Response to Fescue Endophyte Type in Grazing Studies. Animals. 2023; 13(14):2373. https://doi.org/10.3390/ani13142373
Chicago/Turabian StylePoudel, Sanjok, John H. Fike, Lee Wright, and Gabriel J. Pent. 2023. "Non-Invasive Techniques Reveal Heifer Response to Fescue Endophyte Type in Grazing Studies" Animals 13, no. 14: 2373. https://doi.org/10.3390/ani13142373
APA StylePoudel, S., Fike, J. H., Wright, L., & Pent, G. J. (2023). Non-Invasive Techniques Reveal Heifer Response to Fescue Endophyte Type in Grazing Studies. Animals, 13(14), 2373. https://doi.org/10.3390/ani13142373